15-251: Great Theoretical Ideas in Computer Science Lecture 17

Probability 1

France, 1654

"Chevalier de Méré" AKA Antoine Gombaud

Let's bet:
I will roll a die four times. I win if I get a 1.
(not actually Méré)

France, 1654

France, 1654

Antoine Gombaud, AKA "Chevalier de Méré"

New bet:
I will roll two dice, 24 times.
I win if I get double-1's.

France, 1654

France, 1654

Alice and Bob are flipping a coin. Alice gets a point for Heads, Bob a point for Tails. First one to 4 points wins the stake of 100 francs.

Alice is leading 3-2 when gendarmes arrive to break up the game. How should they divide the stakes?

Moral of the Story:

Analyzing gambling is not a side-benefit of probability.

Probability was invented
to analyze gambling.

This is not
"Great Theoretical Ideas
in Gambling"

This is
"Great Theoretical Ideas in Computer Science"

Probability Theory $=$
 Analyzing Code with Random Number Generators

"Méré throws four 6-sided dice."

$$
\begin{aligned}
\text { die1 } & =\operatorname{RandInt}(6) \\
\text { die2 } & =\operatorname{RandInt}(6) \\
\text { die3 } & =\operatorname{RandInt}(6) \\
\text { die4 } & =\operatorname{RandInt}(6)
\end{aligned}
$$

"A patient has a 10\% chance of having a certain disease..."


```
x = RandInt(10)
if x == 1 then
        patient.hasDisease = 1
else
    patient.hasDisease = 0
```

"A patient has a 10\% chance of having a certain disease..."

Bernoulli (p) returns 1 with probability p,
0 with probability $1-p$
"Antoine flips two fair coins."

coin1 = Bernoulli(1/2)
coin2 = Bernoulli(1/2)
$\left(\begin{array}{rl}\text { if Bernoulli }(1 / 2) & ==0 \\ \text { then coin1 } & =\text { Heads } \\ \text { else coin1 } & =\text { Tails }\end{array}\right)$

The two random generators we allow:

RandInt(m) returns 1, 2, 3, ..., m with probability $1 / m$ each

Bernoulli (p) returns 1 with probability p, 0 with probability 1-p

NOT ALLOWED IN 15-251:

Uniform $(0,1)$ ïturns a randciníieal number Detween 0 and 1

How to Analyze Random Code

Mary flips a fair coin. If it's heads, she rolls a 3 -sided die. If it's tails, she rolls a 4-sided die.

STEP 2: Draw a probability tree.

```
flip = Bernoulli(1/2)
if flip == 0 (Heads) then
    die = RandInt(3)
else
    die = RandInt(4)
```


Outcome:

A leaf in the probability tree.
l.e., a possible sequence of values of all calls to generators in an execution.

Sample Space:

The set of all outcomes.
E.g., $\{(H, 1),(H, 2),(H, 3),(T, 1),(T, 2),(T, 3),(T, 4)\}$

Probability:

Each outcome has a nonnegative probability. Sum of all outcomes' probabilities always 1.

How to Analyze Random Code

Mary flips a fair coin. If it's heads, she rolls a 3 -sided die. If it's tails, she rolls a 4-sided die.

STEP 1: Translate to code.

```
flip = Bernoulli(1/2)
if flip == O (Heads) then
    die = RandInt(3)
else
    die = RandInt(4)
```


How to Analyze Random Code

How to Analyze Random Code

Mary flips a fair coin. If it's heads, she rolls a 3 -sided die. If it's tails, she rolls a 4-sided die. What is the probability die roll is 3 or higher?

Event:
A subset of outcomes.
In our example, $\mathrm{S}=\{(\mathrm{H}, 3),(\mathrm{T}, 3),(\mathrm{T}, 4)\}$.
$\operatorname{Pr}[S]=$ sum of the probabilities of the outcomes in S.

France, 1654

It seems fair that Alice should get
(100 francs) x
Pr[Alice would win].
So let's compute that!

Events and Probabilities: Facts

Since $\operatorname{Pr}[A]=$ sum of probs of outcomes in A, \ldots

$$
\text { If } A \subseteq B \text { then } \operatorname{Pr}[A] \leq \operatorname{Pr}[B]
$$

$\begin{array}{ll}\text { "not } A^{\prime} & \operatorname{Pr}\left[A^{c}\right]=1-\operatorname{Pr}[A] \\ \text { "A or } B^{\prime \prime} & \operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]\end{array}$
FALLACY: $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$
True: $\quad \operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$

France, 1654

Alice and Bob are flipping a coin. Alice gets a point for Heads, Bob a point for Tails. First one to 4 points wins the stake of 100 francs.

Alice is leading 3-2 when gendarmes arrive to break up the game. How should
they divide the stakes?

Event A = "Alice wins" = \{ H, TH \}
$\operatorname{Pr}[A]=1 / 2+1 / 4=3 / 4$

Let W be the event that Méré wins Easier to compute Pr[WC].
$W^{\mathrm{c}}=$ \{ all outcomes with no 1's \}
$\left|W^{c}\right|=5^{4}$
$\therefore \operatorname{Pr}\left[W^{c}\right]=54 / 6^{4}$
$\therefore \operatorname{Pr}[W]=1-5^{4} / 6^{4} \approx 51.8 \%$

Conditioning

= Revising probabilities based on 'partial information'
'Partial information' = an event
'Conditioning on event A' is like assuming/promising A occurs.

France, 1654

$\operatorname{Pr}[$ Méré wins] =

$$
\begin{gathered}
1-35^{24} / 36^{24} \\
\approx 49.1 \%
\end{gathered}
$$

Condition on S , the event "roll is 3 or higher"

$$
\operatorname{Pr}[(H, 1) \mid S]=0
$$

"probability of outcome $(\mathrm{H}, 1)$ conditioned on event S"

Condition on S , the event "roll is 3 or higher"

$$
\operatorname{Pr}[(H, 2) \mid S]=0
$$

Condition on S , the event "roll is 3 or higher"

$$
\operatorname{Pr}[(H, 3) \mid S]=\frac{1 / 6}{5 / 12}=2 / 5
$$

Condition on S , the event "roll is 3 or higher"

$$
\operatorname{Pr}[(T, 3) \mid S]=\frac{1 / 8}{5 / 12}=3 / 10
$$

Conditioning: formally

Given an experiment, let A be an event.
(with nonzero probability)

The conditional probability of outcome ℓ is

$$
\begin{gathered}
\operatorname{Pr}[\ell \mid \mathrm{A}]= \begin{cases}0 & \text { if } \ell \notin \mathrm{A}, \\
\frac{\operatorname{Pr}[\ell]}{\operatorname{Pr}[\mathrm{A}]} & \text { if } \ell \in \mathrm{A} .\end{cases} \\
\therefore \operatorname{Pr}[\mathrm{B} \mid \mathrm{A}]=\sum_{\ell \in \mathrm{B}} \operatorname{Pr}[\ell \mid \mathrm{A}]=\sum_{\ell \in \mathrm{B} \cap \mathrm{~A}} \frac{\operatorname{Pr}[\ell]}{\operatorname{Pr}[\mathrm{A}]}=\frac{\operatorname{Pr}[\mathrm{B} \cap \mathrm{~A}]}{\operatorname{Pr}[\mathrm{A}]}
\end{gathered}
$$

"Chain Rule"

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
$$

$\operatorname{Pr}[\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}]=\operatorname{Pr}[\mathrm{A}] \cdot \operatorname{Pr}[\mathrm{B} \mid \mathrm{A}] \cdot \operatorname{Pr}[\mathrm{C} \mid \mathrm{A} \cap \mathrm{B}]$
$\operatorname{Pr}[\mathrm{A} \cap \mathrm{B} \cap \mathrm{C} \cap \mathrm{D}]=\operatorname{Pr}[\mathrm{A}] \cdot \operatorname{Pr}[\mathrm{B} \mid \mathrm{A}]$
$\cdot \operatorname{Pr}[C \mid A \cap B] \cdot \operatorname{Pr}[D \mid A \cap B \cap C]$
etc.

Condition on S , the event "roll is 3 or higher" Let A be the event that Tails was flipped.
$\operatorname{Pr}[A \mid S]=0+0+3 / 10+3 / 10=3 / 5$

Silver and Gold: a problem

One bag contains two silver coins.
Another contains two gold coins.
Another contains one silver and one gold.

Mark picks a bag at random, then picks a coin from it at random.
It turns out to be gold. What is the probability the other coin in his bag is gold?

Silver and Gold: a problem

Let G_{1} be the event that the first chosen coin is gold.
Let G_{2} be the event that the second coin in the bag is gold. The problem is asking us to find $\operatorname{Pr}\left[\mathrm{G}_{2} \mid \mathrm{G}_{1}\right]$.
$\operatorname{Pr}\left[\mathrm{G}_{1}\right]=3 / 6=1 / 2$ (each coin equally likely to be first)
$\operatorname{Pr}\left[\mathrm{G}_{1} \cap \mathrm{G}_{2}\right]=1 / 3 \quad$ (if and only if gold-gold bag picked)

$$
\therefore \operatorname{Pr}\left[\mathrm{G}_{2} \mid \mathrm{G}_{1}\right]=\frac{\operatorname{Pr}\left[\mathrm{G}_{2} \cap \mathrm{G}_{1}\right]}{\operatorname{Pr}\left[\mathrm{G}_{1}\right]}=\frac{1 / 3}{1 / 2}=2 / 3
$$

Law of Total Probability

or, how to actually calculate stuff

$$
\operatorname{Pr}[\mathrm{B}]=\operatorname{Pr}[\mathrm{A}] \cdot \operatorname{Pr}[\mathrm{B} \mid \mathrm{A}]+\operatorname{Pr}\left[\mathrm{A}^{\mathrm{C}}\right] \cdot \operatorname{Pr}\left[\mathrm{B} \mid \mathrm{A}^{\mathrm{c}}\right]
$$

"Regarding event B - either A occurs
(this has probability $\operatorname{Pr}[A]$),
in which case B occurs with probability $\operatorname{Pr}[B \mid A] ;$ or, A does not occur
(this has probability $\operatorname{Pr}\left[A^{c}\right]=1-\operatorname{Pr}[A]$),
in which case B occurs with probability $\operatorname{Pr}\left[B \mid A^{c}\right]$."

Law of Total Probability

or, how to actually calculate stuff

$$
\operatorname{Pr}[B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]+\operatorname{Pr}\left[A^{c}\right] \cdot \operatorname{Pr}\left[B \mid A^{c}\right]
$$

Proof:

$$
\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]=\operatorname{Pr}[B \cap A]
$$

Similarly, $\quad \operatorname{Pr}\left[A^{C}\right] \cdot \operatorname{Pr}\left[B \mid A^{C}\right]=\operatorname{Pr}\left[B \cap A^{c}\right]$
Each outcome in B is in exactly one of $B \cap A, B \cap A^{c}$ Thus $\operatorname{Pr}[B]=\operatorname{Pr}[B \cap A]+\operatorname{Pr}\left[B \cap A^{c}\right]$

Law of Total Probability

more general version
Let events A_{1}, \ldots, A_{n} be a partition of the sample space, meaning each outcome is in exactly one.

Then for any event B,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] \cdot \operatorname{Pr}\left[B \mid A_{n}\right]
$$

Example

"I roll 101 regular dice. What is the probability their sum is divisible by 6?"

Trick: "Condition on" the sum of the first 100.

Let A_{k} be event "the first 100 dice sum to k ". Then $\mathrm{A}_{100}, \ldots, \mathrm{~A}_{600}$ partition the sample space. Let B be event "sum of all 101 divisible by 6". $\operatorname{Pr}\left[B \mid A_{k}\right]=1 / 6$ for any k,
because conditioned on the first 100 summing to k, the final sum equally likely to be $k+1, k+2, \ldots, k+6$; exactly one of these is div. by 6

So $\operatorname{Pr}[B]=$
$\operatorname{Pr}\left[\mathrm{A}_{100}\right] \operatorname{Pr}\left[\mathrm{B} \mid \mathrm{A}_{100}\right]+\cdots+\operatorname{Pr}\left[\mathrm{A}_{600}\right] \operatorname{Pr}\left[\mathrm{B} \mid \mathrm{A}_{600}\right]$
$=\operatorname{Pr}\left[\mathrm{A}_{100}\right](1 / 6)+\cdots+\operatorname{Pr}\left[\mathrm{A}_{600}\right](1 / 6)$
$=(1 / 6)\left(\operatorname{Pr}\left[\mathrm{A}_{100}\right]+\cdots+\operatorname{Pr}\left[\mathrm{A}_{600}\right]\right)=1 / 6$.

Independence

def: We say events A, B are independent if

$$
\operatorname{Pr}[\mathrm{A} \cap \mathrm{~B}]=\operatorname{Pr}[\mathrm{A}] \operatorname{Pr}[\mathrm{B}]
$$

Except in the pointless case of $\operatorname{Pr}[A]$ or $\operatorname{Pr}[B]$ is 0 , equivalent to $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$, or to $\quad \operatorname{Pr}[B \mid A]=\operatorname{Pr}[B]$.

Trickier Problem

"I roll 101 regular dice. What is the probability their sum is divisible by 5 ?"

AnSWEr: $\quad 32665931175003545304834513357902891026857185523647743577153598318474857073869$ ≈ 2000000000000 I solved this using linear algebra (Lecture 23...)

Independence Problem

Question:
I flip two coins. Let A be event "first flip is heads", let B be event "even number of heads". Are A and B independent?

Answer \#1:
Yes! $\operatorname{Pr}[A]=1 / 2, \operatorname{Pr}[B]=1 / 2$,
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(H, H)]=1 / 4$.
And $(1 / 2)(1 / 2)=1 / 4$.

Independence Problem

Question:

I flip two coins. Let A be event "first flip is heads", let B be event "even number of heads". Are A and B independent?

Answer \#2:
Who cares? This is a pointless question.
You managed to calculate the 3 probabilities; who cares if two multiply to give the third?

The Secret "Principle of Independence"
Suppose you have a block of randomized code with two parts.

Suppose A is an event that only depends on the first part,

B only on the second part.
Suppose you prove that the two parts cannot affect each other.
(E.g., equivalent to run them in opposite order.)

Then A and B are independent.
And you may deduce that $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.

Independence of Multiple Events

$$
\left.\begin{array}{l}
\text { def: } \quad A_{1}, \ldots, A_{5} \text { are independent if } \\
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[A_{3}\right] \operatorname{Pr}\left[A_{4}\right] \operatorname{Pr}\left[A_{5}\right] \\
\& \\
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right] \operatorname{Pr}\left[A_{3}\right] \operatorname{Pr}\left[A_{4}\right] \\
\&
\end{array} \quad \operatorname{Pr}\left[A_{1} \cap A_{3} \cap A_{5}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3}\right] \operatorname{Pr}\left[A_{5}\right]\right) .
$$

\& in fact, the definition requires

$$
\operatorname{Pr}\left[\bigcap_{i \in S} A_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[A_{i}\right] \quad \text { for all } S \subseteq\{1,2,3,4,5\}
$$

Birthday Problem

Question:
There are m students in a room ($m \leq 365$).
What's the probability they
all have different birthdays?
Modeling:
Ignore Feb. 29. Assume days equally likely. Assume no twins in the class.
for $i=1$...m
student[i].bday $=$ RandInt(365)

Independence of Multiple Events

def: $\quad A_{1}, \ldots, A_{5}$ are independent if

$$
\operatorname{Pr}\left[\bigcap_{i \in S} A_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[A_{i}\right] \text { for all } S \subseteq\{1,2,3,4,5\}
$$

Similar 'Principle of Independence' holds
(5 blocks of code which don't affect each other)
Consequence: anything like

$$
\operatorname{Pr}\left[A_{1} \mid\left(A_{2} \cup A_{3}\right) \cap\left(A_{4}^{c} \cup A_{5}\right)\right]=\operatorname{Pr}\left[A_{1}\right]
$$

Birthday Problem - Analysis

Let A_{i} be event that student i's bday differs from the bday of all previous students.

Let D be event that all bdays are different.

$$
D=A_{1} \cap A_{2} \cap A_{3} \cap \cdots \cap A_{m}
$$

Chain rule:

$$
\operatorname{Pr}[D]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] \operatorname{Pr}\left[A_{4} \mid \cdots \text { etc. }\right]
$$

So what is $\operatorname{Pr}\left[A_{i} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right]$?

Birthday Problem - Analysis

Let A_{i} be event that student i's bday differs from the bday of all previous students.

Let D be event that all bdays are different.
$\operatorname{Pr}[D]=\operatorname{Pr}\left[\mathrm{A}_{1}\right] \operatorname{Pr}\left[\mathrm{A}_{2} \mid \mathrm{A}_{1}\right] \operatorname{Pr}\left[\mathrm{A}_{3} \mid \mathrm{A}_{1} \cap \mathrm{~A}_{2}\right] \operatorname{Pr}\left[\mathrm{A}_{4} \mid \cdots\right.$ etc. $]$ $=1 \cdot\left(1-\frac{1}{365}\right) \cdot\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{m-1}{365}\right)$

This is the final answer.

Birthday Problem - Analysis

Pr[all m students have different bdays]

$$
=1 \cdot\left(1-\frac{1}{365}\right) \cdot\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{m-1}{365}\right)
$$

Birthday Problem -

Sometimes called the Birthday "Paradox", because 23 seems surprisingly small.

Birthday Problem - Analysis

Pr[in m students, some pair share a bday]

$$
=1-1 \cdot\left(1-\frac{1}{365}\right) \cdot\left(1-\frac{2}{365}\right) \cdots\left(1-\frac{m-1}{365}\right)
$$

Birthday Problem - Analysis

What if there are N possible "birthdays"?
$\operatorname{Pr}[$ in m students, some pair share a "bday"]

$$
=1-1 \cdot\left(1-\frac{1}{N}\right) \cdot\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{m-1}{N}\right)
$$

For what value of m is this $\approx 1 / 2$?
This is not a calculus class, so l'll just tell you:

$$
\text { for } m \approx \sqrt{N}
$$

Cryptographic Hash Functions

"Scrambles" any string S into a k-bit 'hash' f(S)

- Given $f(S)$, should be 'hard' to recover S.
- Should be 'hard' to find a "collision": two strings $S_{1} \neq S_{2}$ with $f\left(S_{1}\right)=f\left(S_{2}\right)$.

Applications: authentication schemes, data integrity schemes, digital signatures, e-cash...

Cryptographic Hash Functions

1991：Rivest publishes MD5．$(k=128)$
1993：NSA publishes SHA－0．$\quad(k=160)$
1995：NSA：＂Um，never mind．
Please use SHA－1 instead．＂
SHA－1 was／is widely used：SSL，PGP，
2001：NSA also introduces SHA－2
（variants with $\mathrm{k}=224,256,384,512$ ）
2012：Non－NSA introduces SHA－3

Birthday Attack

Everybody knows this．
2^{80} is considered safely＂too large＂．
A crypto hash function is considered
＂broken＂if you can beat the Birthday Attack．

Xiaoyun Wang（王小云）
2005：SHA－1 collisions in 2^{69}
Later（w／coauthors）：in 2^{63}
SHA－1＝broken
（phased out of SSL by 2017）
Birthday Attack
Everybody knows this．
2^{80} is considered safely＂too large＂．
A crypto hash function is considered
＂broken＂if you can beat the Birthday Attack．

Birthday Attack

Imagine trying to find a collision for SHA－1：
Take a huge number of strings，hash them all， hope that two hash to the same 160 bits．

If SHA－1 is really safe，each hash $f(S)$ should be like RandInt（ 2^{160} ）．

This is like the Birthday Problem with $N=2^{160}$ ！
So \＃tries before good chance of collision：
$\approx \sqrt{2^{160}}=2^{80}=1208925819614629174706176$

Definitions：

RandInt，Bernoulli
experiment
sample space，outcome event，probability
conditioning
Law of Total Probability
independence
Solving problems：
how to find probabilities
how to condition
proving independence

