15-251: Great Theoretical Ideas in Computer Science Lecture 18

Probability 2

$$
\begin{aligned}
& \mathrm{S}=\text { RandInt }(6)+\text { RandInt (6) } \\
& \text { if } \mathrm{S}=12 \text { then } \mathrm{I}=1 \\
& \text { else } \mathrm{I}=0
\end{aligned}
$$

 \uparrow

ne: $(1,1)$
$\mathrm{S}=7$
$\mathrm{I}=0$

outcome: $(4,3)$
outcome: $(6,6)$
S = 2

Random Variables: introducing them

Retroactively:
"Let \mathbf{D} be the random variable given by subtracting the first roll from the second."

$$
\mathbf{D}((1,1))=0, \ldots, \quad D((5,3))=-2, \text { etc. }
$$

Random Variables

Definition 1:
A random variable is a variable,
in some randomized code.
Of type 'real number'.
(Better to say it's the variable's value at the end of an execution.)

Random Variables

Definition 2:
A random variable \mathbf{X} assigns a real number to each outcome.
l.e., it is a function $\mathrm{X}: \Omega \rightarrow \mathbb{R}$
from the sample space S to the reals.
E.g., $\quad \mathbf{S}((1,1))=2, \quad \mathbf{S}((1,2))=3$, ... $\mathbf{S}((6,6))=12$

Random Variables: introducing them

In terms of other random variables:

$$
\text { "Let } \mathbf{Y}=\mathbf{S}^{2}+\mathbf{D} . " \Rightarrow \mathbf{Y}((5,3))=62
$$

"Suppose you win $\$ 30$ on a roll of double-6, and you lose $\$ 1$ otherwise. Let \mathbf{W} be the random variable representing your winnings."

$$
\mathbf{W}=31 \cdot \mathbf{I}-1
$$

Random Variables: introducing them

Without bothering to give an "experiment":
"Let X be a Bernoulli(1/3) random variable."
"Let \mathbf{T} be a random variable which is uniformly distributed (= each value equal probability) on the set $\{0,2,4,6,8\}$."

$$
T=2 \cdot(\operatorname{RandInt}(5)-1)
$$

Events to Random Variables

Definition:
Let A be an event. The indicator of A is the random variable \mathbf{X} which is 1 when A occurs and 0 when A doesn't occur.

$$
X: \Omega \rightarrow \mathbb{R} \quad \mathbf{X}(\ell)= \begin{cases}1 & \text { if } \ell \in A \\ 0 & \text { if } \ell \notin A\end{cases}
$$

Expectation

aka Expected Value aka Mean

Random Variables to Events

E.g.: "Let A be the event that $\mathbf{S} \geq 10$."
$A=\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)\}$

$$
\operatorname{Pr}[S \geq 10]=6 / 36=1 / 6
$$

Shorthand notation for the event $\{\ell: \mathbf{S}(\ell) \geq 10\}$.

Independence of Random Variables

Definition:
Random variables \mathbf{X} and \mathbf{Y} are independent if the events " $X=u$ " and " $Y=v$ " are independent for all $u, v \in \mathbb{R}$.
(And similarly for more than 2 random vbls.)
(And 'Principle of Independence' still holds.)

Expectation

Intuitively, expectation of \mathbf{X} is what its average value would be if you ran the code millions and millions of times.

Definition:
Let \mathbf{X} be a random variable in experiment with sample space Ω. Its expectation is:

$$
\mathbf{E}[\mathbf{X}]=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{X}(\ell)
$$

Expectation - examples

Let \mathbf{R} be the roll of a standard die.
$\mathbf{E}[\mathbf{R}]=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 4+\frac{1}{6} \cdot 5+\frac{1}{6} \cdot 6$

$$
=3.5
$$

Question: What is $\operatorname{Pr}[\mathbf{R}=3.5]$?
Answer: 0. Don't always expect the expected!

Expectation - examples

Let $\mathbf{R}_{1}=\operatorname{RandInt}(6), \mathbf{R}_{2}=\operatorname{RandInt}(6)$,
$\mathbf{S}=\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}$.
$\mathbf{E}[\mathbf{S}]=\frac{1}{36} \cdot(1+1)+\frac{1}{36} \cdot(1+2)+\cdots+\frac{1}{36} \cdot(6+6)$
$=$ lots of arithmetic $(:$
$=7$ (eventually)

Linearity of Expectation

Given an experiment, let \mathbf{X} and \mathbf{Y} be any random variables.

Then

$$
\mathrm{E}[\mathbf{X}+\mathbf{Y}]=\mathrm{E}[\mathbf{X}]+\mathrm{E}[\mathbf{Y}]
$$

\mathbf{X} and \mathbf{Y} do not have to be independent!!

Expectation - examples

"Suppose you win $\$ 30$ on a roll of double-6, and you lose $\$ 1$ otherwise. Let \mathbf{W} be the random variable representing your winnings."
$\mathbf{E}[\mathbf{W}]=\frac{1}{36} \cdot(-1)+\frac{1}{36} \cdot(-1)+\cdots+\frac{1}{36} \cdot(-1)+\frac{1}{36} \cdot 30$

$$
=-5 / 36 \approx-13.9 \phi
$$

One of the top tricks in probability...

Linearity of Expectation

$$
E[\mathbf{X}+\mathbf{Y}]=E[\mathbf{X}]+E[\mathbf{Y}]
$$

Proof: Let $\mathbf{Z}=\mathbf{X}+\mathbf{Y}$ (another random vbl).
Then $\mathbf{E}[\mathbf{Z}]=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{Z}(\ell)$

$$
=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot(\mathbf{X}(\ell)+\mathbf{Y}(\ell))
$$

$$
=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{X}(\ell)+\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{Y}(\ell)
$$

$$
=\mathbf{E}[\mathbf{X}]+\mathbf{E}[\mathbf{Y}]
$$

Linearity of Expectation

$$
E[\mathbf{X}+\mathbf{Y}]=E[\mathbf{X}]+E[\mathbf{Y}]
$$

Also:

$$
E[a \mathbf{X}+b]=a E[\mathbf{X}]+b \text { for any } a, b \in \mathbb{R}
$$

$$
\mathbf{E}\left[\mathbf{X}_{1}+\cdots+\mathbf{X}_{n}\right]=\mathbf{E}\left[\mathbf{X}_{1}\right]+\cdots+\mathbf{E}\left[\mathbf{X}_{n}\right]
$$

Expectation of an Indicator

Fact:

Let A be an event, let \mathbf{X} be its indicator rand. vbl.
Then $E[\mathbf{X}]=\operatorname{Pr}[A]$.
Proof: $\quad \mathbf{E}[\mathbf{X}]=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{X}(\ell)$

$$
=\sum_{\ell \in \mathrm{A}} \operatorname{Pr}[\ell] \cdot 1+\sum_{\ell \notin \mathrm{A}} \operatorname{Pr}[\ell] \cdot 0
$$

$$
=\sum_{\ell \in \mathrm{A}} \operatorname{Pr}[\ell]
$$

$$
=\operatorname{Pr}[\mathrm{A}]
$$

Linearity of Expectation + Indicators

There are 251 students in a class.
The TAs randomly permute their midterms before handing them back.

Let \mathbf{X} be the number of students getting their own midterm back.

What is $E[\mathbf{X}]$?

Linearity of Expectation example

Let $\mathbf{R}_{1}=\operatorname{Rand} \operatorname{lnt}(6), \mathbf{R}_{2}=$ RandInt(6), $\mathbf{S}=\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}$.

$$
\mathbf{E}[\mathbf{S}]=\mathbf{E}\left[\mathbf{R}_{1}\right]+\mathbf{E}\left[\mathbf{R}_{2}\right]
$$

$$
=3.5+3.5
$$

$$
=7
$$

Linearity of Expectation $+$
Indicators
= best friends forever

Let's try 3 students first

	Student 1	Student 2	Student 3	Prob	\# getting own midterm
ث	1	2	3	1/6	3
ح	1	3	2	1/6	1
+	2	1	3	1/6	1
E	2	3	1	1/6	0
\pm	3	1	2	1/6	0
Σ	3	2	1	1/6	1

$\therefore E[\mathbf{X}]=(1 / 6)(3+1+1+0+0+1)=1$

Now let's do 251 students

A Formula for Expectation

$$
\mathbf{E}[\mathbf{X}]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=\mathrm{u}] \cdot \mathrm{u}
$$

Remarks:

- $\operatorname{range}(\mathbf{X})=$ the set of real numbers \mathbf{X} may take on
- " $\mathbf{X}=\mathrm{u}$ " is an event
- some people (not us) take this as the definition

Example

Question: Let \mathbf{X} be a uniformly random integer between 1 and 10. Let $\mathbf{Y}=\mathbf{X} \bmod 3$. What is E[Y]?
range $(\mathbf{Y})=\{0,1,2\}$
$\mathbf{E}[\mathbf{Y}]=\operatorname{Pr}[\mathbf{Y}=0] \cdot 0+\operatorname{Pr}[\mathbf{Y}=1] \cdot 1+\operatorname{Pr}[\mathbf{Y}=2] \cdot 2$
$=\operatorname{Pr}[\mathbf{Y}=1]+2 \operatorname{Pr}[\mathbf{Y}=2]$
$=\operatorname{Pr}[\{1,4,7,10\}]+2 \operatorname{Pr}[\{2,5,8\}]$
$=4 / 10+2(3 / 10)=1$

Now let's do 251 students

Let A_{i} be the event that $\mathrm{ith}^{\text {th }}$ student gets own midterm.
Let \mathbf{X}_{i} be the indicator of A_{i}.
Then $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{\mathrm{n}}$
Thus $\mathbf{E}[\mathbf{X}]=\mathbf{E}\left[\mathbf{X}_{1}\right]+\mathbf{E}\left[\mathbf{X}_{2}\right]+\cdots+\mathbf{E}\left[\mathbf{X}_{n}\right]$
by linearity of expectation
$E\left[X_{i}\right]=\operatorname{Pr}\left[A_{i}\right]$, and $\operatorname{Pr}\left[A_{i}\right]=1 / 251$ for each i .
$\therefore E[\mathbf{X}]=251 \cdot(1 / 251)=1$

$$
E[\mathbf{X}]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=\mathrm{u}] \cdot \mathrm{u}
$$

Proof by "counting two ways":

$$
\begin{aligned}
& E[\mathbf{X}]=\sum_{\ell \in \Omega} \operatorname{Pr}[\ell] \cdot \mathbf{X}(\ell) \\
& =\sum_{\text {uerange }(\mathbf{X})} \sum_{\ell: \mathbf{X}(\ell)=u} \operatorname{Pr}[\ell] \cdot \mathbf{X}(\ell) \\
& =\sum_{\text {uerange }(\mathbf{X})} \sum_{\ell: \mathbf{x}(\ell)=\mathrm{u}} \operatorname{Pr}[\ell] \cdot \mathrm{u} \\
& =\sum_{\text {u } \operatorname{range}(\mathbf{X})} \mathrm{u} \cdot \sum_{\ell: \mathbf{x}(\ell)=\mathrm{u}} \operatorname{Pr}[\ell] \\
& =\sum_{u \in \operatorname{range}(\mathbf{X})} \mathrm{u} \cdot \operatorname{Pr}[\mathbf{X}=\mathrm{u}]
\end{aligned}
$$

Example

Question: Let \mathbf{X} be a uniformly random integer between 1 and 10. Let $\mathbf{Y}=\mathbf{X} \bmod 3$. What is E[Y]?
range(\mathbf{Y}) $=$ \{0,1,2\}
$\mathbf{E}[\mathbf{Y}]=\operatorname{Pr}[\mathbf{Y}=0] \cdot 0+\operatorname{Pr}[\mathbf{Y}=1] \cdot 1+\operatorname{Pr}[\mathbf{Y}=2] \cdot 2$

Note: We didn't really care how \mathbf{Y} was created.
We only needed $\operatorname{Pr}[\mathbf{Y}=\mathrm{u}]$ for each $\mathrm{u} \in \operatorname{range}(\mathbf{Y})$.

Probability Mass Functions

def: The probability mass function (PMF) of a random variable \mathbf{X} is the
function $p_{x}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\mathrm{p}_{\mathbf{x}}(\mathrm{u})=\operatorname{Pr}[\mathbf{X}=\mathrm{u}]
$$

Properties:

- $p_{x}(u) \neq 0$ only for $u \in \operatorname{range}(\mathbf{X})$
- $\sum_{u \in \operatorname{range}(\mathbf{x})} p_{x}(u)=1$
- $\mathbf{E}[\mathbf{X}]=\sum_{u \in \operatorname{range}(\mathbf{X})} p_{\mathbf{x}}(u) \cdot u$
E.g.: "Let \mathbf{X} be a random variable with

$$
\mathrm{p}_{\mathbf{x}}(1)=.2, \mathrm{p}_{\mathbf{x}}(2)=.5, \mathrm{p}_{\mathbf{x}}(3)=.3^{\prime \prime}
$$

Is this legit? Could you write code that generated such an \mathbf{X} ?

This is a legitimate PMF whenever:

$$
\begin{array}{rlr}
\text { - } \quad p_{x}(u) & \geq 0 \quad \text { for all } u \\
\text { - } \quad \Sigma_{u} p_{x}(u) & =1
\end{array}
$$

Expectation Formula Generalized

$$
E[f(\mathbf{X})]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=u] \cdot f(u)
$$

More generally:

$$
\mathbf{E}[g(\mathbf{X}, \mathbf{Y})]=\sum_{\substack{\operatorname{uerange}(\mathbf{X}) \\ \mathrm{v} \in \operatorname{range}(\mathbf{Y})}} \operatorname{Pr}[\mathbf{X}=\mathrm{u} \cap \mathbf{Y}=\mathrm{v}] \cdot \mathrm{g}(\mathrm{u}, \mathrm{v})
$$

Probability Mass Functions

The PMF of a random variable \mathbf{X} captures most information you need to know about it.
(Exception: relationship to other rv's.)

Random variables sometimes just defined by a PMF, with no reference to an experiment.
E.g.: "Let \mathbf{X} be a random variable with

$$
p_{x}(1)=.2, p_{x}(2)=.5, p_{x}(3)=.3^{\prime \prime}
$$

Expectation Formula Generalized

$$
\mathbf{E}[\mathbf{X}]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=\mathrm{u}] \cdot \mathrm{u}
$$

and

$$
E\left[\mathbf{X}^{2}\right]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=u] \cdot u^{2}
$$

$$
\text { and } E[\sin (\mathbf{X})]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=u] \cdot \sin (u)
$$

etc.:

$$
E[f(\mathbf{X})]=\sum_{u \in \operatorname{range}(\mathbf{X})} \operatorname{Pr}[\mathbf{X}=u] \cdot f(u)
$$

Example

$$
\begin{aligned}
& \mathbf{X}=\operatorname{RandInt}(2) \\
& \mathbf{Y}=\operatorname{RandInt}(\mathbf{X}+1)
\end{aligned}
$$

Question: What is E[XY]?

$$
\begin{aligned}
= & \operatorname{Pr}[\mathbf{X}=1 \cap \mathbf{Y}=1] \cdot 1 \cdot 1 & & =(1 / 4) \cdot 1 \cdot 1 \\
& +\operatorname{Pr}[\mathbf{X}=1 \cap \mathbf{Y}=2] \cdot 1 \cdot 2 & & +(1 / 4) \cdot 1 \cdot 2 \\
& +\operatorname{Pr}[\mathbf{X}=1 \cap \mathbf{Y}=3] \cdot 1 \cdot 3 & & +(0) \cdot 1 \cdot 3 \\
& +\operatorname{Pr}[\mathbf{X}=2 \cap \mathbf{Y}=1] \cdot 2 \cdot 1 & & +(1 / 6) \cdot 2 \cdot 1 \\
& +\operatorname{Pr}[\mathbf{X}=2 \cap \mathbf{Y}=2] \cdot 2 \cdot 2 & & +(1 / 6) \cdot 2 \cdot 2 \\
& +\operatorname{Pr}[\mathbf{X}=2 \cap \mathbf{Y}=3] \cdot 2 \cdot 3 & & +(1 / 6) \cdot 2 \cdot 3
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathbf{X}=\operatorname{RandInt}(2) \\
& \mathbf{Y}=\operatorname{RandInt}(\mathbf{X}+1) \\
& \mathbf{E}[\mathbf{X Y}]=11 / 4 \\
& \mathbf{E}[\mathbf{X}]=3 / 2 \\
& \mathbf{E}[\mathbf{Y}]=7 / 4 \text { (exercise) }
\end{aligned}
$$

Notice: $\mathbf{E}[\mathbf{X Y}] \neq \mathbf{E}[\mathbf{X}] \mathbf{E}[\mathbf{Y}]$ in general!

If \mathbf{X} and \mathbf{Y} are independent then $\mathbf{E}[\mathbf{X Y}]=\mathbf{E}[\mathbf{X}] \mathbf{E}[\mathbf{Y}]$.

Proof:

$$
\begin{aligned}
\mathbf{E}[\mathbf{X Y}] & =\sum_{\substack{u \in \operatorname{range}(\mathbf{X}) \\
\mathrm{v} \in \operatorname{range}(\mathbf{Y})}} \operatorname{Pr}[\mathbf{X}=\mathrm{u} \cap \mathbf{Y}=\mathrm{v}] \cdot \mathrm{uv} \\
& =\sum_{\mathrm{u}, \mathrm{v}} \operatorname{Pr}[\mathbf{X}=\mathrm{u}] \operatorname{Pr}[\mathbf{Y}=\mathrm{v}] \cdot \mathrm{uv} \quad \text { (independence!) } \\
& =\sum_{\mathrm{u}, \mathrm{v}} \mathrm{p}_{\mathbf{X}}(\mathrm{u}) \mathrm{u} \cdot \operatorname{pr}(\mathrm{v}) \mathrm{v} \\
& =\left(\sum_{\mathrm{u}} \mathrm{p}_{\mathbf{X}}(\mathrm{u}) \mathrm{u}\right) \cdot\left(\sum_{\mathrm{v}} \operatorname{pry}_{\mathbf{Y}}(\mathrm{v}) \mathrm{v}\right) \\
& =\mathbf{E}[\mathbf{X}] \mathbf{E}[\mathbf{Y}]
\end{aligned}
$$

Your two favorite kinds of random variables

Binomial Random Variables

Let $\mathrm{n} \in \mathbb{N}^{+}$and $0<\mathrm{p}<1$.
$\mathbf{X} \sim \operatorname{Binomial}(n, p)$ means

$$
\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{\mathrm{n}}
$$

where \mathbf{X}_{i} 's are Bernoulli(p) (and independent).

Binomial Random Variables

$$
X \sim \operatorname{Binomial}(n, p)
$$

What is range (\mathbf{X}) ?
$\{0,1,2, \ldots, n\}$
What is $\mathrm{p}_{\mathbf{X}}(\mathrm{u})=\operatorname{Pr}[\mathbf{X}=\mathrm{u}]$?
There are 2^{n} outcomes for \mathbf{X}_{i} 's; e.g., $00101 \cdots 1$
$\mathbf{X}=\mathrm{u}$ when outcome has u 1 's and $\mathrm{n}-\mathrm{u} 0$'s
Such an outcome has probability $p^{u}(1-p)^{n-u}$ \# of such outcomes is $\binom{n}{u}$
$\therefore p_{x}(u)=\binom{n}{u} p^{u}(1-p)^{n-u}, u=0,1,2, \ldots, n$

Binomial Random Variables

$$
\begin{gathered}
\mathbf{X} \sim \operatorname{Binomial}(n, p) \\
p_{x}(u)=\binom{n}{u} p^{u}(1-p)^{n-u}, u=0,1,2, \ldots, n
\end{gathered}
$$

Check: $\sum_{u=0}^{n}\binom{n}{u} p^{u}(1-p)^{n-u}=(p+(1-p))^{n}=1$
("Binomial Theorem")

$$
E[X]=\sum_{u=0}^{n}\binom{n}{u} p^{u}(1-p)^{n-u} \cdot u=? ?
$$

Binomial Random Variables

$$
\begin{gathered}
x \sim \operatorname{Binomial}(n, p) \\
p_{x}(u)=\binom{n}{u} p^{u}(1-p)^{n-u}, u=0,1,2, \ldots, n
\end{gathered}
$$

Check: $\sum_{u=0}^{n}\binom{n}{u} p^{u}(1-p)^{n-u}=(p+(1-p))^{n}=1$
("Binomial Theorem")

$$
E[\mathbf{X}]=E\left[\mathbf{X}_{1}\right]+\cdots+E\left[\mathbf{X}_{n}\right]=\mathrm{np}
$$

(linearity of expectation)

Geometric Random Variables

Let $0<\mathrm{p}<1$.
X ~ Geometric(p) means we keep doing "p-biased coin flips" until we get Heads; then \mathbf{X} is the number of flips it took.

$$
\begin{aligned}
& \mathrm{X}=1 \\
& \text { while Bernoulli }(\mathrm{p})=0 \\
& \quad \mathrm{X}=\mathrm{X}+1
\end{aligned}
$$

Geometric Random Variables

$$
\mathbf{X} \sim \text { Geometric }(\mathrm{p})
$$

What is range (\mathbf{X}) ?

What is $p_{x}(u)=\operatorname{Pr}[\mathbf{X}=u]$?

$$
(1-p)^{u-1} p
$$

Check:
$\sum_{u=1}^{\infty}(1-p)^{u-1} p=p \cdot \sum_{u=0}^{\infty}(1-p)^{u}=p \cdot \frac{1}{1-(1-p)}=\frac{p}{p}=1$

Geometric Random Variables

Geometric Random Variables

$$
X \sim \text { Geometric }(p)
$$

What is $\mathbf{E}[\mathbf{X}]$?
Average number of p-biased coin flips until you get Heads: you might guess 1/p.

You'll see the proof in recitation.

The Coupon Collector

There are n different kinds of coupons.

On each day, you get a random coupon. (You may get duplicates.)

Let \mathbf{X} be the \# of days till you have them all. What is $E[\mathbf{X}]$?

The Coupon Collector

Key idea: Let \mathbf{X}_{i} be \# of days it took you to go from i-1 to i coupons.

When sitting on $\mathrm{i}-1$ distinct coupons, each day you have probability \qquad of getting a new one.
$\therefore \mathbf{X}_{\mathrm{i}} \sim \operatorname{Geometric}\left(\frac{\mathrm{n}-(\mathrm{i}-1)}{\mathrm{n}}\right) \quad \therefore \mathbf{E}\left[\mathbf{X}_{\mathrm{i}}\right]=\frac{\mathrm{n}}{\mathrm{n}-(\mathrm{i}-1)}$

> for example,
$E\left[\mathbf{X}_{1}\right]=\frac{n}{n}=1, \quad E\left[\mathbf{X}_{2}\right]=\frac{n}{n-1}, \cdots, \quad E\left[\mathbf{X}_{n}\right]=\frac{n}{1}=n$

My favorite problem: Max-Cut

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated yellow or blue.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.

The Coupon Collector

Let \mathbf{X} be the \# of days till you have them all.

What is $\mathbf{E}[\mathbf{X}]$?

Key idea: Let \mathbf{X}_{i} be \# of days it took you to go from i-1 to i coupons.
$\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{\mathrm{n}}$
$\therefore E[\mathbf{X}]=E\left[\mathbf{X}_{1}\right]+E\left[\mathbf{X}_{2}\right]+\cdots+E\left[\mathbf{X}_{n}\right]$
So we need to figure out $E\left[\mathbf{X}_{\mathrm{i}}\right]$.

The Coupon Collector

$\therefore \mathrm{E}[\mathbf{X}]=\mathrm{E}\left[\mathbf{X}_{1}\right]+\mathrm{E}\left[\mathbf{X}_{2}\right]+\cdots+\mathrm{E}\left[\mathbf{X}_{n}\right]$

$$
=\frac{n}{n}+\frac{n}{n-1}+\frac{n}{n-2}+\cdots+\frac{n}{1}
$$

$$
=n\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)
$$

$$
=\mathrm{n} \cdot \mathrm{H}_{\mathrm{n}} \quad \approx \mathrm{n} \ln \mathrm{n}
$$

where $\mathrm{H}_{\mathrm{n}}=$ "the nth harmonic number"

$$
=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \approx \ln n
$$

My favorite problem: Max-Cut

Input: $\quad \mathrm{A}$ graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Output: A "2-coloring" of V: each vertex designated yellow or blue.

Goal: Have as many cut edges as possible. An edge is cut if its endpoints have different colors.

My favorite problem: Max-Cut
On one hand:
Finding the MAX-Cut is NP-hard.
On the other hand:
Polynomial-time "Local Search" algorithm
guarantees cutting $\geq 1 / 2 \mathrm{~m}$ out of m edges.

There's another, super-duper-simple
O(n)-time algorithm with a similar guarantee.
So simple, it doesn't even really look at the input!

My favorite problem: Max-Cut

Idea: Try a random 2-coloring!

```
for i = 1...n
    color[i] = RandInt(2)
```

Let \mathbf{X} be the random variable giving the number of edges cut.

What is $E[\mathbf{X}]$?

Indicators + Linearity to the rescue

```
for i = 1...n
    color[i] = RandInt(2)
```

Let \mathbf{X} be the number of edges cut.
For each of the m edges e, let B_{e} be the event that it's cut, let \mathbf{X}_{e} be the indicator random vbl. for B_{e}.

$$
\mathbf{X}=\sum_{\text {edges } \mathrm{e}} \mathbf{X}_{\mathrm{e}}
$$

Indicators + Linearity to the rescue

For each of the m edges e,
let B_{e} be the event that it's cut, let \mathbf{X}_{e} be the indicator random vbl. for B_{e}.

$$
\begin{gathered}
\mathbf{X}=\sum_{\text {edges } \mathrm{e}} \mathbf{X}_{\mathrm{e}} \\
\therefore \mathbf{E}[\mathbf{X}]=\sum_{\mathrm{e}} \mathbf{E}\left[\mathbf{X}_{\mathrm{e}}\right]=\sum_{\mathrm{e}} \operatorname{Pr}\left[\mathrm{~B}_{\mathrm{e}}\right]
\end{gathered}
$$

$\operatorname{Pr}\left[B_{e}\right]=1 / 2$

$$
\begin{equation*}
\therefore E[\mathbf{X}]=1 / 2 \mathrm{~m} \tag{m}
\end{equation*}
$$

Max-3SAT

Let S be a "CNF formula", each clause having exactly 3 literals (with distinct variables).
e.g. $S=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee \neg x_{5}\right) \wedge \cdots$

Given that S is satisfiable,
it's NP-hard to find a satisfying assignment. :
Lecture 15: Don't give up!
Max-3SAT asks: try to find a truth assignment satisfying as many of the clauses as you can.

Max-3SAT

Dumb(?) idea: Try a random truth assignment! Let \mathbf{X} be the number of clauses satisfied.

What is $E[\mathbf{X}]$? Just as with Max-Cut...
$E[X]=E\left[X_{1}\right]+E\left[\mathbf{X}_{2}\right]+\cdots+E\left[\mathbf{X}_{m}\right]$
where \mathbf{X}_{j} is indicator that jth clause satisfied.
$E\left[\mathbf{X}_{\mathrm{j}}\right]=\operatorname{Pr}[j$ th clause satisfied $]=7 / 8$
e.g. $S=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee \neg x_{5}\right) \wedge \cdots$

Max-3SAT

Let S be a "CNF formula", each clause having exactly 3 literals (with distinct variables).

Given that S is satisfiable,
it's NP-hard to find a satisfying assignment. :
A super-duper-simple algorithm will satisfy 87.5% of the clauses (in expectation).

Can we do better?
No !!

Definitions:
Study Guide

Random variables Independence of rv's Indicators
Expectation
Linearity of expectation PMFs
Binomials, Geometrics
Solving problems:
Linearity+Indicators
Computing expectations

Coupon Collector
Max-Cut and Max-3Sat randomized algs.

