15-251: Great Theoretical Ideas in Computer Science

Lecture 18 Random Variables

Probability p. Definition 1:

A random variable is a variable,
in some randomized code.

Of type ‘real number’.

(Better to say it's the variable’s value at
the end of an execution.)

S = RandInt(6) + RandInt(6) Random Variables

if S == 12 then I =1
else I 0 .
Definition 2:

RandInt (6)

A random variable X assigns a real
///\N\ number to each outcome.

l.e., itis a function X : Q - R
72\\NV2Z72\\WZA\\\ from the sample space > to the reals.
1} i Y

E.g. S((11))=2 5((12)) =3,
outcome: (1,1) outcome: (4,3) outcome: (6,6) S((6,6)) =12
S=2 S=7 S=12 '
I=0 I=0 T=1

Random Variables: introducing them Random Variables: introducing them

Retroactively: In terms of other random variables:

“Let D be the random variable given by “Let Y = S2+D.” = Y((53))=62
subtracting the first roll from the second.”

“Suppose you win $30 on a roll of double-6,
and you lose $1 otherwise. Let W be the
random variable representing your winnings.”

D((1,1)) =0, ..., D((5,3)) =-2, etc.

W=31:1-1




Random Variables: introducing them

Without bothering to give an “experiment”:

“Let X be a Bernoulli(1/3) random variable.”

“Let T be a random variable which is
uniformly distributed (= each value equal probability)
on the set {0,2,4,6,8}.”

2- (RandInt(5)-1)

Events to Random Variables

Definition:

Let A be an event. The indicator of A is
the random variable X which is 1 when
A occurs and 0 when A doesn’t occur.

1 ifteA
0 ifLgA

X:Q0-R X(f)={

Expectation

aka Expected Value
aka Mean

Random Variables to Events

E.g.: “Let A be the event that S = 10.”
A ={(4,6),(5,5),(5,6), (6,4), (6,5), (6,6) }

Pr[S > 10] = 6/36 = 1/6
\_'_l
Shorthand notation for
the event { /:S(/) = 10 }.

Independence of Random Variables

Definition:

Random variables X and Y are independent
if the events “X = u” and “Y = v” are
independent for all u,veR.

(And similarly for more than 2 random vbls.)

(And ‘Principle of Independence’ still holds.)

Expectation

Intuitively, expectation of X is what its
average value would be if you ran the
code millions and millions of times.

Definition:

Let X be a random variable in experiment
with sample space Q. Its expectation is:

E[X] =) Pr[f]-X(2)

feq




Expectation — examples
Let R be the roll of a standard die.
ER—ll 12 13 14 15 16
[]_g +€. +6. + -4 4 —- +6.

6 6

Question: What is Pr[R = 3.5]?

Answer: 0. Don't always expect the expected!

Expectation — examples

Let R; = RandInt(6), R, = RandInt(6),
S = R;+R,.

1 1 1
E[S]=£~(1+1)+E-(1+2)+---+£-(6+6)

= |ots of arithmetic ®

=7 (eventually)

Linearity of Expectation

Given an experiment,
let X and Y be any random variables.

Then E[X+Y] = E[X] + E[Y]

X and Y do not have to be independent!!

Expectation — examples

“Suppose you win $30 on a roll of double-6,
and you lose $1 otherwise. Let W be the
random variable representing your winnings.”

1 1 1 1
E[W] = (D) + - (-1 4ot o (-1)+ -+ 30

= -5/36 = —13.9¢

One of the top tricks in probability...

Linearity of Expectation

E[X+Y] = E[X] + E[Y]

Proof: Let Z = X+Y (another random vbl).

Then E[Z] = Y Pr[{]-Z({)
feQ
= 3 Pr] - (X() + Y(£))
e
=Y Prl]-X(2) + 3 Prii]-Y(D)
feQ 1eQ

=E[X] + E[Y]




Linearity of Expectation

E[X+Y] = E[X] + E[Y]
Also:
E[aX+b] = aE[X]+b for any a,beR,

E[X; + = + X,] = E[X;] + - + E[X,]

Expectation of an Indicator

Fact:
Let A be an event, let X be its indicator rand. vbl.
Then E[X] = Pr[Al.

Proof: E[X]= 3 Pr[{]-X({)
1eQ

=Y Prf]-1+ ¥ Prf]-0
IeA I€A

=Y Pr[{]
fleA

= Pr[A]

Linearity of Expectation + Indicators

There are 251 students in a class.

The TAs randomly permute their midterms
before handing them back.

Let X be the number of students getting
their own midterm back.

What is E[X]?

Linearity of Expectation example

Let R; = RandInt(6), R, = RandInt(6),
S = R;+R;.

E[S]=E[R:1]+E[R:]

=35+35
=7

Linearity of Expectation
+
Indicators

= best friends forever

Let’s try 3 students first

-~ E[X] = (1/6)(3+1+1+0+0+1) = 1




Now let's do 251 students

A Formula for Expectation

E(X]= > Pr[X=ul-u

uerange(X)

Remarks:
» range(X) = the set of real numbers X may take on
+ “X =u"is an event

» some people (not us) take this as the definition

Example

Question: Let X be a uniformly random integer
between 1 and 10. Let Y = X mod 3.

What is E[Y]?

range(Y) = {0,1,2}

E[Y] Prf[Y=0]-0 + Pr[Y=1]-1 + Pr[Y=2]-2
PrlY = 1] + 2Pr[Y = 2]
Pr({1,4,7,10}] + 2Pr[{2,5,8}]

4/10 + 2(3/10) =1

Now let's do 251 students

Let A, be the event that ith student gets own midterm.
Let X; be the indicator of A;.
Then X = X; + X, + -+ + X,

Thus E[X] = E[X;] + E[X,] + --- + E[X,]
by linearity of expectation

E[X;] = Pr[A], and Pr[A] = 1/251 for eachi.

~ E[X]=251-(1/251) =1

E[X]= > Pr[X=u]-u

uerange(X)

Proof by “counting two ways”:
E[X]= ¥ Pr[f]-X(f)
feQ

= X > Prl1-X()
uerange(X) £:X(f)=u

b > Pr[{]-u
uerange(X) £:X(£)=u

2 u- Pr({]
uerange(X) £:X()=u

3 u-Pr[X=u]

ya

uerange(X)

Example

Question: Let X be a uniformly random integer
between 1 and 10. Let Y = X mod 3.

What is E[Y]?

range(Y) = {0,1,2}

E[Y] = Pr[Y=0]-0 + Pr[Y=1]-1 + Pr[Y=2]-2

Note: We didn’t really care how Y was created.

We only needed Pr[Y=u] for each u € range(Y).




Probability Mass Functions

def: The probability mass function (PMF)
of a random variable X is the
function py : R—=R defined by

px(u) = Pr(X = u]

Properties:
* px(u) # 0 only for u € range(X)

« X px(u=1
uerange(X)

. E[X]= 2 px(u)-u

uerange(X)

E.g.: “Let X be a random variable with
px(1) = .2, px(2) = .5, px(3) = .3"

“ Is this legit? Could you write code
| that generated such an X?

This is a legitimate PMF whenever:

. px(u) =20 forallu
* Zu px(U) =1

Expectation Formula Generalized

E[FX)]= Y. Pr[X=u]-f(u)

uerange(X)

More generally:

E[oX.Y)I= > Pr[X=unY=v]-g(uv)
uerange(X)
verange(Y)

Probability Mass Functions

The PMF of a random variable X captures
most information you need to know about it.

(Exception: relationship to other rv's.)

Random variables sometimes just defined by
a PMF, with no reference to an experiment.

E.g.: “Let X be a random variable with
px(1) = .2, px(2) =.5, px(3) =.3"

Expectation Formula Generalized

E(X]= >, Pr[X=ul-u

uerange(X)

and E[X’]= > PrX=u]-u?

uerange(X)

and E[sin(X)]= >  Pr[X=u]-sin(u)

uerange(X)

E[FO]= .  PriX=u]-f(u)

uerange(X)

Example

X RandInt (2)
Y RandInt (X+1)

Question: What is E[XY]?

= Pr[X=1nY=1]-1-1 = (1/4)-
+Pr[X=1nY=2]-1- +(1/4) -
+Pr[X=1nY=3]-1- + (0)-
+Pr[X=2nY=1]-2- +(1/6) -
+Pr[X=2nY=2]-2- +(1/6) -
+Pr[X=2nY=3]-2- +(1/6) -




Example

RandInt (2)
RandInt (X+1)

E[XY] = 11/4
E[X] = 3/2

E[Y] = 7/4 (exercise)

Notice: E[XY] = E[X] E[Y] in general!

If X and Y are independent
then E[XY] = E[X] E[Y].
Proof:

E[XY] > Pr(X=unY=v]-uv
uerange(X)
verange(Y)

> Pr[X=u]Pr[Y=v]-uv (independence!)

u,v

> px(uu - py(v)v
u,v

- (goeon) (5o
— E[X]E[Y]

Binomial Random Variables
Let neN*tand 0 <p < 1.

X ~ Binomial(n,p) means
X=X +X,+---+ X,

where X;'s are Bernoulli(p) (and independent).

Your two favorite kinds
of random variables

Binomial Random Variables
X ~ Binomial(n,p)

What is range(X)? {0,1, 2,...,n}
What is px(u) = Pr[X = u]?

There are 2" outcomes for X;'s; e.g., 00101---1
X = u when outcome has u 1's and n—u 0’s
Such an outcome has probability p¥(1—p)-u

# of such outcomes is (Z]

o u,
= px(u) = ( )p”(l—p)”‘“, u=0,1,2,...,n
u



Binomial Random Variables

X ~ Binomial(n,p)

n
p"(”)z( )p“(l—p)"-“, u=0,1,2,...,n

Check: Z (E)p”(l -p)"U=(p+(1-p)"

u=0
(“Binomial Theorem”)

n
E[X] = Z (E) (1 = p)"U - u

u=0

Geometric Random Variables

Let0<p< 1.

X ~ Geometric(p) means we keep doing
“p-biased coin flips” until we get Heads;
then X is the number of flips it took.

=1
while Bernoulli (p) ==
= X+1

Geometric Random Variables
X ~ Geometric(p)

What is range(X)? {1,2,3,4,..}

..NT' Super-math-nerds:

PANIIC teimicaines sk
What is px(u) = Pr[X = u]?
(1-p)*~tp

(sum of geometrlc serles)

Z(l p)~tp=p- Z(l P) =P == (1 H=p=1

u=0

Check:

Binomial Random Variables

X ~ Binomial(n,p)

n
px(u) = ( )p“(l -p)" Y, u=0,1,2,...,n

Check: Z (E) pYl-p)" U=(p+(1-p)" =1

u=0

(“Binomial Theorem”)

E[X] = E[X;] + - + E[X,] = np

(linearity of expectation)

Geometric Random Variables

Bernoulli (p)

7N

Bernoulli (p)

=1
Pr[X=1] = p
e \

Bernoulli (p)

/ \ Pr[X=2] = (l—p)p

rnoulli (p)

Pr[X=3] = (1-p)2p

Geometric Random Variables
X ~ Geometric(p)

What is E[X]?

Average number of p-biased coin flips
until you get Heads: you might guess 1/p.

You'll see the proof in recitation.




The Coupon Collector

There are n different kinds of coupons.

ooo

On each day, you get a random coupon.
(You may get duplicates.)

Let X be the # of days till you have them all.

What is E[X]?

The Coupon Collector

Key idea: Let X; be # of days it took you to
go from i—1 to i coupons.

When sitting on i—1 distinct coupons,
each day you have probability "=
of getting a new one.

. —(i-1
« X, ~ Geometric("=0=) L E[X]= -y

for example,

E[X1]=2=1, E[Xz2]=:", -, E[Xa]="=n

My favorite problem: Max-Cut
Input: A graph G=(V,E).

Output: A “2-coloring” of V:

each vertex designated yellow or blue.

Have as many cut edges as possible.
An edge is cut if its endpoints have
different colors.

The Coupon Collector

Let X be the # of days till you have them all.
What is E[X]?

Key idea: Let X; be # of days it took you to
go from i—1 to i coupons.

X=X, +X, + - + X,
. E[X] = E[X,] + E[X,] + - + E[X,]

So we need to figure out E[X;].

The Coupon Collector

~ E[X] = E[X,] + E[IX,] + - + E[X,]

where H, = “the nth harmonic number”
=1
-1
(see Lecture 8)

My favorite problem: Max-Cut
Input: A graph G=(V,E).

Output: A “2-coloring” of V:
each vertex designated yellow or blue.

Have as many cut edges as possible.
An edge is cut if its endpoints have
different colors.




My favorite problem: Max-Cut

On one hand:
Finding the MAX-Cut is NP-hard.

On the other hand:
Polynomial-time “Local Search” algorithm
guarantees cutting = ¥2 m out of m edges.

There’s another, super-duper-simple
O(n)-time algorithm with a similar guarantee.

So simple, it doesn’t even really look at the input!

Indicators + Linearity to the rescue

for i =1...n
color[i] = RandInt(2)

Let X be the number of edges cut.

For each of the m edges e,
let B, be the event that it's cut,
let X, be the indicator random vbl. for B..

Indicators + Linearity to the rescue

For each of the m edges e,
let B, be the event that it's cut,
let X, be the indicator random vbl. for B,.

- E[X]=) E[Xe]=) Pr[Bc]

Pr[B.] = 1/2 S~ E[X]I=%m &

My favorite problem: Max-Cut

Idea: Try a random 2-coloring!

for i = 1...n
color[i] = RandInt(2)

Let X be the random variable
giving the number of edges cut.

What is E[X]?

Indicators + Linearity to the rescue

For each of the m edges e,
let B, be the event that it's cut,
let X, be the indicator random vbl. for B..

o E[X]=) E[Xe] =) Pr[Be]
e e
Pr[B.] = 1/2 (cutif colors 1,2 or 2,1) O—O

Max-3SAT

Let S be a “CNF formula”, each clause having
exactly 3 literals (with distinct variables).

€.9. S = (X1VXVX3) A (XaVX3VX5) A (X1VXqVX5) A -

Given that S is satisfiable,
it’s NP-hard to find a satisfying assignment. ®

Lecture 15: Don’t give up!
Max-3SAT asks: try to find a truth assignment
satisfying as many of the clauses as you can.

10



Max-3SAT
Dumb(?) idea: Try a random truth assignment!
Let X be the number of clauses satisfied.
What is E[X]?  Just as with Max-Cut...

E[X] = E[X;] + E[X,] + -+ + E[X,;,]
where X is indicator that jth clause satisfied.

E[XJ-] = Pr{jth clause satisfied] = 7/8

€.9. S = (X1VXVX3) A (XaVX3VX5) A (X1VXqV—1X5) A ==

Max-3SAT

Let S be a “CNF formula”, each clause having
exactly 3 literals (with distinct variables).

Given that S is satisfiable,
it’s NP-hard to find a satisfying assignment. ®

A super-duper-simple algorithm will satisfy
87.5% of the clauses (in expectation).

Can we do better?
No !!

Definitions:
Random variables
Independence of rv’s
Indicators
Expectation
Linearity of expectation
PMFs
Binomials, Geometrics

Study Guide

Solving problems:
Linearity+Indicators
Computing expectations
Coupon Collector

Max-Cut and Max-3Sat
randomized algs.

Max-3SAT
Dumb(?) idea: Try a random truth assignment!
Let X be the number of clauses satisfied.
What is E[X]? Just as with Max-Cut...

E[X] = E[X;] + E[X,] + -+ + E[X;,]
where X is indicator that jth clause satisfied.

E[XJ-] = Pr[jth clause satisfied] = 7/8

. we satisfy (7/8)m clauses (87.5%) in expectation.

Max-3SAT

Theorem:
Given a satisfiable 3CNF
formula S, it's NP-hard
to find a truth assignment
satisfying = 87.5001%
of the clauses (or any fraction > 7/8).

Johan Hastad

Thus the trivial randomized algorithm is the best

poly-time approximation algorithm for Max-3SAT!
(Assuming P = NP.)




