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So far

Formalization of computation/algorithm

Computability / Uncomputability

Computational Complexity

- How to analyze it
- Some neat algorithms

Identifying intractable problems. NP-completeness.

Dealing with intractable problems:  Approximation algs.



Next

Randomized algs.

More mathematical tools:

- number theory
- linear algebra
- fields, polynomials

Other important TCS concepts:
- cryptography

- quantum computation
- communication complexity
- CS perspective on proofs

- Markov chains



Randomness and the universe

Newtonian physics suggests that the 
universe evolves deterministically.

Does the universe have true randomness?

Quantum physics says otherwise.



Randomness and the universe

Does the universe have true randomness?

God does not play dice with the world.

- Albert Einstein

Einstein, don’t tell God what to do.

- Niels Bohr



Randomness and the universe

Does the universe have true randomness?

Even if it doesn’t, we can still model our uncertainty
about things using probability.

Randomness is an essential component in 
modeling and analyzing nature. 

It also plays a key role in computer science.



Randomness in computer science

Cryptography

Can’t achieve unpredictability without randomness.

Simulating real-world events

Statistics via sampling

e.g. election polls

Learning theory

Data is generated by some probability distribution.

Coding Theory

Encode data to be able to deal with random noise.



Randomness in computer science

Randomized models for deterministic objects

e.g. the www graph

Quantum computing

Randomness in inherent in quantum mechanics.

Speeding up algorithms

…



Randomness and algorithms

How can randomness be used in computation?

Where can randomness come into the picture?

Given some algorithm that solves a problem…

- What if the input is chosen randomly?

- What if the algorithm can make random choices?



Randomness and algorithms

How can randomness be used in computation?

Where can randomness come into the picture?

Given some algorithm that solves a problem…

- What if the input is chosen randomly?

- What if the algorithm can make random choices?



Randomness and algorithms

Let’s allow the algorithm to flip a coin when it wants.
It can make decisions based on the outcomes of the flips.

Comparing with a deterministic algorithm:
In a deterministic algorithm, for a fixed input,
computational steps are determined:

...

0

We call such an algorithm a randomized algorithm.



Randomness and algorithms

Comparing with a deterministic algorithm:
In a randomized algorithm, for a fixed input:
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H T

0 0 0
0

0

Let’s allow the algorithm to flip a coin when it wants.
It can make decisions based on the outcomes of the flips.

We call such an algorithm a randomized algorithm.



Randomness and algorithms

Let’s allow the algorithm to flip a coin when it wants.
It can make decisions based on the outcomes of the flips.

We call such an algorithm a randomized algorithm.

Why should we expect a randomized algorithm to be 
potentially useful?

Think about the power of population sampling.



Randomness and algorithms

An algorithm has 2 important parameters:

- correctness (or how correct it is)
- complexity (say with respect to running time)

If we ask our randomized algorithm to be 
  - always correct,
  - always run in time O(T(n)),
then we have a deterministic alg. with time compl. O(T(n))

(take your randomized alg. and assume you always get Heads)

So for a randomized algorithm to be interesting:
- it is not correct all the time, or
- it doesn’t always run in time O(T(n))



Randomness and algorithms

So for a randomized algorithm to be interesting:
- it is not correct all the time, or
- it doesn’t always run in time O(T(n))
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Randomness and algorithms

So for a randomized algorithm to be interesting:
- it is not correct all the time, or
- it doesn’t always run in time O(T(n))

H T

H T

H T

H T

0 0 1
0

0

Error probability: probability of red

Running time: length of the longest path



Types of randomized algorithms

2 Types:

- Monte Carlo algorithms

- Las Vegas algorithms

> For every input, there is a certain probability of error.

> There is a worst-case running time guarantee.

> For every input, there is a certain probability that
the running time is larger than desired or expected.

> For every input, gives the correct answer.
(worst-case correctness guarantee)



Example of a Monte Carlo Algorithm: 
Min Cut

Example of a Las Vegas Algorithm: 
Quicksort



Example of a Monte Carlo Algorithm: 
Min Cut

Gambles with correctness. 
Doesn’t gamble with resources.



Cut Problems

Max Cut Problem (Ryan’s favorite problem):
Given a graph                    , 
find a non-empty subset            such that
number of edges from       to             is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S



Cut Problems

Max Cut Problem (Ryan’s favorite problem):

S V � S

Given a graph                    , 
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)

red blue



Cut Problems

Min Cut Problem (my favorite problem):

Let’s see a super simple randomized algorithm for it.

Given a graph                    , 
find a non-empty subset            such that
number of edges from       to             is minimized.

G = (V,E)
S ⇢ V
S V � S



Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2



a

c

b
e

d

Contraction algorithm for min cut

Select an edge randomly:

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2



a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:
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c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge.

When two vertices remain, you have your cut:

{a, b, c, d} {e} size:  2

(delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b

e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:
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e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:



a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge.

When two vertices remain, you have your cut:

{a} {b,c,d,e} size: 3

(delete self loops)

Size of min-cut: 2Select an edge randomly:



Contraction algorithm for min cut

Theorem:
Let                    be a graph with n vertices. 
Fix some min cut in the graph. The probability that the 
contraction algorithm will output this cut is                  .                     

G = (V,E)

2/n(n� 1)

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)



Contraction algorithm for min cut

Proof of Theorem:

Fix some minimum cut.

S V � S

F

When does the algorithm make an error?
(How can it not end up with the above cut?)

What if the algorithm picks an edge in     to contract?F
Then it cannot output F.

What if it never picks an edge in     to contract?F
Then it will output F.

|F| = k
|V| = n
|E| = m



Contraction algorithm for min cut

Proof of Theorem:

Pr[ alg. outputs F ]  =

S V � S

F

Pr[ alg. never contracts an edge in F ]

How many iterations are there? n-2

Goal: Show this probability is at least  2 / n(n-1).

Let        = an edge in F is contracted in iteration i.Ei

E1 \ E2 \ · · · \ En�2Pr[                                   ]



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[E1 \ E2 \ · · · \ En�2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1 \ E2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

· · ·

Pr[E1] =
k

m

We actually want this in terms of n and not m.



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[E1] =
k

m

(if not, min-cut has less than k edges)
Observation: 8v 2 V : deg(v) � k

Recall: 
X

v2V

deg(v) = 2m =) 2m � kn

 2

n
Pr[E1] �

✓
1� 2

n

◆
=)

S
V � S



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Pr[E1 \ E2 \ · · · \ En�2]

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[En�2|E1 \ E2 \ · · · \ En�3]

·Pr[E2|E1] · Pr[E3|E1 \ E2] · · ·�
✓
1� 2

n

◆

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

again, want to write in terms of k and n 



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

again, want to write in terms of k and n 

(if not, min-cut has less than k edges)

Observation: At every point in the algorithm
8v 2 V : deg(v) � k

2m0 � k(n� 1)After one contraction:

# remaining edges � k(n� 1)/2



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

� 1� k

k(n� 1)/2
= 1� 2

n� 1



Contraction algorithm for min cut

Proof of Theorem:
Let        = an edge in F is contracted in iteration i.Ei

Pr[E1 \ E2 \ · · · \ En�2]

Goal: Pr[                                   ] is at least  2 / n(n-1).E1 \ E2 \ · · · \ En�2

Pr[En�2|E1 \ E2 \ · · · \ En�3]

�
✓
1� 2

n

◆
·
✓
1� 2

n� 1

◆
· Pr[E3|E1 \ E2] · · ·

�
✓
1� 2

n

◆✓
1� 2

n� 1

◆✓
1� 2

n� 2

◆
· · ·

✓
1� 2

n� (n� 4)

◆✓
1� 2

n� (n� 3)

◆

=

✓
n� 2

n

◆✓
n� 3

n� 1

◆✓
n� 4

n� 2

◆
· · ·

✓
2

4

◆✓
1

3

◆
= 2/n(n� 1)



Contraction algorithm for min cut

Theorem:
Let                    be a graph with n vertices. 
Fix some min cut in the graph. The probability that the 
contraction algorithm will output this cut is                  .                     

G = (V,E)

2/n(n� 1)

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)



Contraction algorithm for min cut

Theorem:
Let                    be a graph with n vertices. 
Fix some min cut in the graph. The probability that the 
contraction algorithm will output this cut is                  .                     

G = (V,E)

2/n(n� 1)

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

(and still remain in polynomial time)1� 1

en



Boosting success by repeated trials

What is the relation between t and success probability?

Run the algorithm t times using fresh random bits.
Output the smallest cut among the ones you find.

Again, fix some minimum cut.

Let        = in the i’th repetition, we don’t find this min cut. Ai

Pr[fail to find this cut] = Pr[A1 \A2 \ · · · \At]

= Pr[A1] Pr[A2] · · ·Pr[At] = Pr[A1]
t


✓
1� 2

n(n� 1)

◆t


✓
1� 1

n2

◆t



Boosting success by repeated trials

Pr[error] 
✓
1� 1

n2

◆t

Extremely useful inequality: 8x 2 R : 1 + x  e

x



Boosting success by repeated trials

Pr[error] 
✓
1� 1

n2

◆t

Extremely useful inequality: 8x 2 R : 1 + x  e

x

x = �1/n2Take

Pr[error] 
⇣
e�1/n2

⌘t
= e�t/n2

t = cn2

t = n2 lnn

t = n3

t = n2
=) Pr[error]  1/e

=) Pr[error]  1/ec

=) Pr[error]  1/n

=) Pr[error]  1/en



Boosting success by repeated trials

We can always boost the success probability of 
Monte Carlo algorithms via repeated trials.



Conclusion for min cut

We have a polynomial time algorithm that solves 
the min cut problem with probability               .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.



Example of a Las Vegas Algorithm: 
Quicksort

Doesn’t gamble with correctness. 
Gambles with resources.



Quicksort Algorithm

8 2 7 99 5 04

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S-



Quicksort Algorithm

8 2 7 99 5 04

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Pick uniformly at random a  “pivot” xm

-

-



Quicksort Algorithm

8 2 7 99 5 0

4

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S-

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

8 2 7 99 5 0

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

4

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

42 0

S1

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

42 0

S1 S2

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

8 7 99 5

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

42 0

S1 S2

Recursively sort        and      .S1 S2-

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

5 7 8 99

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

40 2

S1 S2

Recursively sort        and      .S1 S2-

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm

5 7 8 99

On input S = (x1, x2, . . . , xn)

If            ,  return n  1 S

Compare       to all other    ’s xm x

Let                                   ,S1 = {xi : xi < xm}
S2 = {xi : xi > xm}

-

-

-

40 2

S1 S2

Recursively sort        and      .S1 S2-

Return [S1, xm, S2]-

Pick uniformly at random a  “pivot” xm-



Quicksort Algorithm Analysis

This is a Las Vegas algorithm:

- always gives the correct answer

- running time can vary depending on our luck



Quicksort Algorithm Analysis

Worst case scenario:
Suppose we always end up picking the first element as 
the pivot.

For an input like

6 5 4 3 2 17

how many comparisons would we make?

(n� 1) + (n� 2) + · · ·+ 2 + 1 =
n(n� 1)

2
= ⌦(n2)

T (n) = T (n� 1) + (n� 1)

Recursive relation for the number of comparisons:



Quicksort Algorithm Analysis

Best case scenario:

What is the best choice of pivot?

No matter which pivot you choose, 
you’ll make |S|-1 comparisons before the recursive calls.

Total number of comparisons:

T (n) = T (|S1|) + T (|S2|) + (n� 1)

T (n) = T (k) + T (n� k � 1) + (n� 1)

For               ,                                .k ⇡ n/2 T (n) = O(n log n)



Quicksort Algorithm Analysis

For fun, let’s look at the expected number of 
comparisons.

Let       = number of comparisonsX

What is           ?E[X]

How can we bound           ?E[X]

Indicator r.v.’s  +  Linearity of expectation



Quicksort: Expected number of comparisons

Let       = number of comparisonsX

We want to write      as a sum of indicator r.v.’s.X

Then use linearity of expectation:

X =
kX

i=1

Xi , Xi =

⇢
1 if event Ei occurs

0 otherwise

E[X] = E

"
X

i

Xi

#
=

X

i

E[Xi]

E[Xi] = 1 ·Pr[Xi = 1] + 0 ·Pr[Xi = 0](                                                                )

=
X

i

Pr[Ei]

Indicator r.v.’s  +  Linearity of expectation



Quicksort: Expected number of comparisons

Let       = number of comparisonsX

We want to write      as a sum of indicator r.v.’s.X

Indicator r.v.’s  +  Linearity of expectation

So: X =
X

1i<jn

Xij =
n�1X

i=1

nX

j=i+1

Xij

Xij =Let            # time      and       get compared.xi xj

5 7 8 9940 2

S1 S2

How many times do      and       get compared? xi xj 0 or 1



Quicksort: Expected number of comparisons

Let       = number of comparisonsX

We want to write      as a sum of indicator r.v.’s.X

Indicator r.v.’s  +  Linearity of expectation

Xij =

⇢
1 if xi and xj are compared

0 otherwise

So: X =
X

1i<jn

Xij =
n�1X

i=1

nX

j=i+1

Xij

Xij =Let            # time      and       get compared.xi xj

E[X] =

X

1i<jn

Pr[xi and xj are compared]

=)



Quicksort: Expected number of comparisons

E[X] =

X

1i<jn

Pr[xi and xj are compared]

Let                       be the input elements in sorter order.y1, y2, . . . , yn

E[X] =

X

1i<jn

Pr[yi and yj are compared]

8 2 7 99 5 04

x1 x2 x3 x4 x5 x6 x7

y1y2y3 y4y5y6 y7



Quicksort: Expected number of comparisons

E[X] =

X

1i<jn

Pr[yi and yj are compared]

Claim: Pr[yi and yj are compared] =

2

j � i+ 1

Proof: Define Y ij = {yi, yi+1, . . . , yj}
Consider the algorithm when a pivot     is being chosen.p

p 62 Y ij Y ij ✓ S1 or Y ij ✓ S2=)

p 2 Y ij but p 6= yi and p 6= yj
yi 2 S1=) and yj 2 S2 (    and      never compared)yi yj

Case 1: 

Case 2: 

Case 3: p = yi or p = yj (    and      are compared)yi yj



Quicksort: Expected number of comparisons

E[X] =

X

1i<jn

Pr[yi and yj are compared]

Claim: Pr[yi and yj are compared] =

2

j � i+ 1

Proof: Define Y ij = {yi, yi+1, . . . , yj}

Conclusion: yi yjand get compared iff

    or     is chosen as pivot before yi yj yi+1, yi+2, . . . , yj�1

What is the probability of this?

i.e., the first pivot from        was      or     .  Y ij yi yj

2

|Y ij | =
2

j � i+ 1



Quicksort: Expected number of comparisons

8
2

7
99

5
0

4

What is the probability
2 and 7 get compared?

S



Quicksort: Expected number of comparisons

8
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7
99

5
0

4

What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?

S



Quicksort: Expected number of comparisons
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What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?

S



Quicksort: Expected number of comparisons
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4

What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?



Quicksort: Expected number of comparisons
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What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?



Quicksort: Expected number of comparisons
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7

5 4

What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?



Quicksort: Expected number of comparisons

2

7

5 4

What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?



Quicksort: Expected number of comparisons

8
2

7
99

5
0

4

What is the probability
2 and 7 get compared?

What is the probability
you pick 2 or 7 before 4 or 5?

Let          be this event.E2,7

Let      be the event that
a red element is picked in 
i’th trial.

Ri

Pr[E2,7] = Pr[E2,7|R1]Pr[R1] +Pr[E2,7|R2]Pr[R2] + · · ·
= 2/4Pr[E2,7|R1](Pr[R1] +Pr[R2] + · · · )=



Quicksort: Expected number of comparisons

E[X] =

X

1i<jn

Pr[yi and yj are compared]

Claim: Pr[yi and yj are compared] =

2

j � i+ 1

E[X] =
X

1i<jn

2

j � i+ 1
= 2

X

1i<jn

1

j � i+ 1

(i = 1)

(i = 2)

(i = n� 1)

...

1

2
+

1

3
+ · · ·+ 1

n� 1
+

1

n
1

2
+

1

3
+ · · ·+ 1

n� 1

1

2
+

+

=

+ · · ·

X

1i<jn

1

j � i+ 1



Quicksort: Expected number of comparisons

E[X] =

X

1i<jn

Pr[yi and yj are compared]

Claim: Pr[yi and yj are compared] =

2

j � i+ 1

E[X] =
X

1i<jn

2

j � i+ 1
= 2

X

1i<jn

1

j � i+ 1

1

2
+

1

3
+ · · ·+ 1

n� 1
+

1

n
1

2
+

1

3
+ · · ·+ 1

n� 1

1

2
+

+

=

+ · · ·

( lnn)
X

1i<jn

1

j � i+ 1

E[X]  2n lnnSo:
= O(n log n)



Quicksort number of comparisons

From expectation to probability.

We know expected number of comparisons is                 . 2n lnn

Can we also conclude that with high probability,
number of comparisons is                  ?O(n log n)

Yes.  And it could be a good homework question…



Conclusion for Quicksort

We have a sorting algorithm that always gives the 
correct answer, and makes O(n log n) comparisons with 
high probability.



Final remarks

Another million dollar question:
Does every efficient randomized algorithm have an 
efficient deterministic counterpart?

P = BPPIs                 ?

Often, randomized algorithms are faster and much more 
elegant than their deterministic counterparts.

There are some problems for which: 
  - there is a poly-time randomized algorithm,
  - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to 
computation.


