15-251: Great Theoretical Ideas in Computer Science Lecture 20

Computational Arithmetic

Let B be a natural number. Say, a Big one.

 $3618502788666131106986593281521497110455743021169260358536775932020762686101\\7237846234873269807102970128874356021481964232857782295671675021393065473695\\9343653222082116941587830769649826310589177391815550332206635565059925803833194839273881505432422077179121838882819961484080523021964185059926873823066952650310964926475205990039841761220587111645679465590449716836044240769963427183046544798021168152059711696342906718227439612036981423070996643551341463761682442386010788974105813127130622621420863008224651510961018978090681506766490159424696673092762084473271400459901390409378141724958467722890145605273699746928831956843143618629296792271675248513160775872076487450530723160377307981747147151905135702967199115296358041283184441733782$

Let B be a natural number. Say, a Big one.

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429

 $B \approx 5.7 \times 10^{75}$ (5.7 "quattorvigintillion")

B's magnitude is enormous.

Roughly the number of atoms in the universe, or the age of the universe in Planck time units.

Definition (for today's lecture): len(B) = # bits to write B $\approx log_2(B)$

> For our 5.7 quattorvigintillion B, len(B) = 251 bits \approx 32 bytes.

For cryptography purposes, this B is so very small! SSH / RSA keys usually 10 times longer, 2048 bits.

Arithmetical algorithms on big numbers

Remember:

- Arithmetic is not free.
- Numbers are written in binary.
- If input is B, input length is len(B).
- Think of algorithms as performing string-manipulation.
- Think about solving these problems by hand on 20-digit numbers.

Addition

- 36185027886661311069865932815214971104
- + 65743021169260358536775932020762686101 E
 - 049055921009000041804855977057205

Easy to check "grade school algorithm" is **linear time**.

I.e., assuming len(A), len(B) \leq n, running time to produce C is O(n).

Prime factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

Say we even just want to find **some** divisor of A.

The solution is:

68452332409801603635385895997250919383 × 83167801886452917478124266362673045163

Each factor is \approx age of universe in Planck time.

Say we even just want to find **some** divisor of A.

for
$$B = 2, 3, 4, 5, ...$$

test if A mod $B = 0$

Can check B up to \sqrt{A} but $\sqrt{A} = \sqrt{2^{\text{len}(A)}} = 2^{\frac{1}{2}\text{len}(A)}$

Running time is **exponential** in input length.

Prime factorization

There are significantly faster known algorithms, but they're all still exponential time.

Indeed, much of **cryptography** relies on the assumption that there is no efficient factoring algorithm!

Primality testing

5693030020523999993479642904621911725098567020556258102766251487234031094429 Try the following in Maple (or Wolfram Alpha):

ifactor(5693030020523999993479642904621911725098567020556258102766251487234031094429)

It will calculate forever, until you stop it.

Then try:

isprime(5693030020523999993479642904621911725098567020556258102766251487234031094429)

It will output *false* instantly. How does it do that?!

Primality testing

An **amazing** fact: There's a poly-time algorithm for primality testing.

Agrawal, Kayal, Saxena, 2002

Primality testing

Although, that's not what Maple / WA use. The best version of AKS Algorithm is $\sim O(n^6)$ time. Not feasible when run on an n=2048 bit number. Everyone uses the **Miller-Rabin** algorithm (1975).

Primality testing

Although, that's not what Maple / WA use. The best version of AKS Algorithm is $\sim O(n^6)$ time. Not feasible when run on an n=2048 bit number. Everyone uses the **Miller-Rabin** algorithm (1975). Its running time is $\sim O(n^2)$. What's the catch?

It's a **randomized algorithm**. It errs with some tiny probability (say, 2^{-100}).

Generating a prime

Say we need an n-bit long prime number.

loop: let B be a random n-bit number test if B is prime

"Prime Number Theorem":

About 1/n fraction of n-bit numbers are prime.

⇒ Expected running time of above is $\sim O(n^3)$.

This is basically the only known algorithm! No poly-time **deterministic** alg. is known!

Primality testing again

By the end of class, you'll be able to prove:

Wilson's Theorem: B is prime ⇔ (B-1)! + 1 divisible by B.

Q: Why not use this as a primality test?Midterm 2: Cannot compute (B-1)! in poly time.

Cannot even compute 2^B in poly time. Why? If B is 5.7 quattorvigintillion (len(B)=251) answer length exceeds # of particles in universe!

Modular Exponentiation

However, you **can** compute 2^B mod C in polynomial time.

In general, assuming len(A), len(B), len(C) \leq n, can compute $A^{B} \mod C$ in poly(n) time.

Let's prove this.

Modular Exponentiation

Example: Compute 2337³² mod 100. By hand.

Bad idea: $2337 \times 2337 = 5461569$ $2337 \times 5461569 = 12763686753$ $2337 \times 12763686753 = \cdots$

(30 more multiplications later...)

Modular Exponentiation

Example: Compute 2337³² mod 100. By hand.

Smart idea 1: Reduce mod 100 after every step.

Smart idea 2:

Don't multiply 32 times; square 5 times.

 $2337^1 \rightarrow 2337^2 \rightarrow 2337^4 \rightarrow 2337^8 \rightarrow 2337^{16} \rightarrow 2337^{32}$

Modular Exponentiation

Smart idea 2:

Don't multiply 32 times; square 5 times. $2337^1 \rightarrow 2337^2 \rightarrow 2337^4 \rightarrow 2337^8 \rightarrow 2337^{16} \rightarrow 2337^{32}$

Lucky (?) that exponent was a power of 2.

- Q: What if we had wanted 2337³⁴?
- A: Multiply together 2337³² and 2337².

Modular Exponentiation

Smart idea 2:

Don't multiply 32 times; square 5 times. $2337^1 \rightarrow 2337^2 \rightarrow 2337^4 \rightarrow 2337^8 \rightarrow 2337^{16} \rightarrow 2337^{32}$

Lucky (?) that exponent was a power of 2.

Q: What if we had wanted 2337⁵³?

A: Multiply powers: 32 + 16 + 4 + 1

Here I used that binary rep. of 53 is 110101.

Modular Exponentiation

In general, to compute $A^B \mod C$, where A, B, C are $\leq n$ bits long:

- 1. Repeatedly square A, always mod C. Do this n times.
- Multiply together the powers of A corresponding to binary digits of B (again, always mod C).

Running time is a little more than $O(n^2 \log n)$.

Greatest Common Divisor (GCD)

A = 65743021169260358536775932020762686101

B = 36185027886661311069865932815214971104

What is G = gcd(A,B)?

Grade school algorithm: 1. Factor A and B. 2. ⊗

Euclid's Algorithm finds GCD in poly-time! It's arguably the **first ever algorithm**.

(PS: It was not invented by Euclid. It was invented some time in 500—375 B.C.E.)

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1: Suppose g is a divisor of A & B. Then g is also a divisor of A-B.

E.g., 6 is a divisor of 600 & 12, so 6 is also a divisor of 588.

But is <u>GCD</u>(A,B) = <u>GCD</u>(A–B,B)? Yes! If so, we "make progress" by reducing the size of our two numbers.

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1:	Suppose g is a divisor of A & B. Then g is also a divisor of A–B.
Conversely:	If g is a divisor of $A-B \& B$, then g is also a divisor of A.

But is $\underline{\mathbf{GCD}}(A,B) = \underline{\mathbf{GCD}}(A-B,B)$? Yes!

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1: Suppose g is a divisor of A & B. Then g is also a divisor of A-B.

Conversely: If g is a divisor of A–B & B, then g is also a divisor of A.

Therefore:The common divisors of A & B
are exactly the same as
the common divisors of A-B & B.

So indeed GCD(A,B) = GCD(B,A-B).

Warmup to Euclid's GCD Algorithm

GCD(42,30) = GCD(30,12)	(using 42-30=12)
= GCD(18,12)	(using 30-12=18)
= GCD(12,6)	(using 18-12=6)
= GCD(6,6)	(using 12-6=6)
= GCD(<mark>6</mark> ,0)	(using 6-6=0)
Stop when you get to 0, as	GCD(A,0) = A.
Answer: $GCD(42,30) = 6$.	

Euclid's (Algorith	GCD m: GCD(A if B retr	x,B): = 0, return A urn GCD (B, A mod B)
Example:	GCD(100,1	3)
	= GCD(18,10) (using 100 mod 18 = 10)
	= GCD(10,8)	(using 18 mod 10 = 8)
	= GCD(8,2)	(using 10 mod 8 = 2)
	= GCD(2,0)	(using 8 mod $2 = 0$)
	= 2	

Euclid's GCD Algorithm:	GCD(A,B): if B = 0, return A return GCD(B, A mod B)
Summary:	100
	18
	10
	8
	2

Euclid's GCD Algorithm:

GCD(A,B): if B = 0, return A return GCD(B, A mod B)

Run-time? ∴ total # of steps is:

 $\leq \log(A \cdot B) = \log(A) + \log(B) = \ln(A) + \ln(B)$

O(n) steps if len(A), $len(B) \le n$.

 $A \cdot B$ goes down by factor of $\frac{1}{2}$ or better at each step.

Euclid's GCD Algorithm:

GCD(A,B): if B = 0, return A return GCD(B, A mod B)

Run-time? ... total # of steps is:

 $\leq \log(A \cdot B) = \log(A) + \log(B) = \ln(A) + \ln(B)$

O(n) steps if len(A), $len(B) \le n$.

∴ total run-time is poly(n). (In fact, roughly $O(n^2)$.)

The intrinsic complexity of GCD

Euclid's Algorithm computes GCD in $\sim O(n^2)$ time. Not so great in practice. Say n = 100,000? There are faster algorithms! $\sim O(n \log n)$, in fact.

Major open problem in computer science: Is GCD computation efficiently parallelizable?

I.e., is there a circuit family (C_n) with poly(n) gates and **polylog(n) depth** that computes the GCD of two n-bit numbers? A bonus from Euclid's Algorithm...

Definition:

Say that C is a **<u>miix</u>** of A and B if it's an integer linear combination of them: $C = k \cdot A + \ell \cdot B$ for some $k, \ell \in \mathbb{Z}$.

(Note: Not a real term. You are not allowed to use it. (2)

Example: 2 is a miix of 14 and 10 because $2 = (-2) \cdot 14 + 3 \cdot 10$

(Hence **any** multiple of 2 is a miix of 14 and 10. To get 2m as a miix, multiply the equation by m.)

Definition:

Say that C is a <u>miix</u> of A and B if it's an integer linear combination of them: $C = k \cdot A + l \cdot B$ for some $k, l \in \mathbb{Z}$.

(Note: Not a real term. You are not allowed to use it. $\ensuremath{\textcircled{}}$

Non-example:

7 is **not** a miix of 55 and 40, because any miix would be divisible by 5

7 is **not** a miix of 55 and 40, because any miix would be divisible by 5

If A and B are both divisible by some F then any miix of A and B must be too.

So if C is a miix of A and B, then C must be a multiple of GCD(A,B).

Conversely, is GCD(A,B) always a miix of A and B?

Yes! It's a bonus of Euclid's GCD Algorithm.

Euclid's (Algorith	GCD m: GCD (A if B retu	,B): = 0, return A ırn GCD (B, A mod B)
Example:	GCD(100,18	3)
	= GCD(18,10)	(using 100 mod 18 = 10)
	= GCD(10,8)	(using 18 mod 10 = 8)
	= GCD(<mark>8,2</mark>)	(using 10 mod 8 = 2)
	= GCD(2,0)	(using 8 mod $2 = 0$)
	= 2	

Fact #2: If R is a miix of A and B, and B is a miix of A and C, then R is a miix of A and C.

Summary of Euclid getting $GCD(100,18) = 2$:
100 18 10 8 2
10 is a miix of 100 & 18
\therefore 2 is a miix of 18 & 10
Fact #1: If A mod B = R then R is a miix of A and B.
Because by definition, $R = A - qB$ for some q.
Fact #2: If R is a miix of A and B,
and B is a miix of A and C,
then R is a mix of A and C.

Summary of Euclid getting GCD(100,18) = 2: 100 18 10 8 2 10 is a miix of 100 & 18 \therefore 2 is a miix of 100 & 18 Fact #1: If A mod B = R then R is a miix of A and B. Because by definition, R = A - qB for some q. Fact #2: If R is a miix of A and B, and B is a miix of A and C, then R is a miix of A and C.

Summary of arithmetical algs.

Poly time:	Addition Multiplication Integer division & mod Primality testing GCD Modular exponentiation
Believed not poly time:	Factoring
Not poly time:	Factorial Non-modular exponentiation

Modular arithmetic refresher

Sometimes in arithmetic we "work mod M". E.g., on a clock, the hours go mod 12. In computer hardware, arithmetic is often mod 2⁶⁴.

"A and B are equivalent mod M",

means A, B have same remainder mod M.

mod M, every integer is equivalent to exactly one of 0, 1, 2, 3, ..., M–1.

Addition mod M Addition, +, "plays nice" mod M: $A \equiv_{M} B$ $A' \equiv_{M} B'$ $\Rightarrow A+A' \equiv_{M} B+B'$ We may define a new number system \mathbb{Z}_{M} with elements 0, 1, 2, ..., M-1, and basic operation +.

	Ad	ldit	ior	n m	od	Μ				
E.g.: $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, with this + table										
	+	0	1	2	3	4				
	0	0	1	2	3	4				
	1	1	2	3	4	0				
	2	2	3	4	0	1				
	3	3	4	0	1	2				
	4	4	0	1	2	3				
(<mark>0</mark> has spec	ial pro	pert	y:	0+4	۹ =	A+($\mathbf{D} = \mathbf{A}$ for a			

Subtraction mod M

"What about subtraction *in* \mathbb{Z}_{M} ?", you might say.

To define it, we first define "-B". Then "A-B" just means "A + (-B)".

Given B, we define "-B" to be "the number in \mathbb{Z}_M such that B + (-B) = 0".

	Negatives mod M										
	+	0	1	2	3	4	In ℤ ₅				
	0	0	1	2	3	4					
	1	1	2	3	4	0	-2 = 3				
	2	2	3	4	0	1	-4 = 1				
	3	3	4	0	1	2	-0 = 0				
	4 4 0 1 2 3										
Note: -	Note: –B exists & is unique because each row										
is a permutation of 0, 1, 2,, M–1,											

so 0 appears exactly once.

Multiplication mod M

Multiplication, •, also "plays nice" mod M:

 $A \equiv_{M} B$ $A' \equiv_{M} B'$ $\Rightarrow A \cdot A' \equiv_{M} B \cdot B'$

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Division mod M "What about division in \mathbb{Z}_M ?", you might say. Similar to subtraction, we'd like to define "B⁻¹". Then "A+B" could just mean "A•B⁻¹". So given B, can we define "B⁻¹" to be "the number in \mathbb{Z}_M such that B•B⁻¹ = 1"? There are some problems...

	Reciprocals mod 5										
	•	0	1	2	3	4					
	0	0	0	0	0	0	$0^{-1} =$ undefined				
	1	0	1	2	3	4	$1^{-1} = 1$				
Ī	2	0	2	4	1	3	$2^{-1} = 3$				
	3	0	3	1	4	2	$3^{-1} = 2$				
Ī	4	0	4	3	2	1	$4^{-1} = 4$				
	th	at'e	. al	L rid	ht						

Weir, that's all right. We're used to not being able to divide by 0.

Reciprocals mod 6										
•	0	1	2	3	4	5				
0	0	0	0	0	0	0	$0^{-1} =$ undefined			
1	0	1	2	3	4	5	$1^{-1} = 1$			
2	0	2	4	0	2	4	$2^{-1} = undefined$			
3	0	3	0	3	0	3	$3^{-1} = undefined$			
4	0	4	2	0	4	2	$4^{-1} = undefined$			
5	0	5	4	3	2	1	$5^{-1} = 5$			

Huh. We only have two #'s with reciprocals.

When does B have a reciprocal mod M?

- $\Leftrightarrow \exists k \quad \text{such that } k \cdot B \equiv_{_{M}} 1$
- $\Leftrightarrow \exists k, q \text{ such that } k \cdot B = q \cdot M + 1$
- \Leftrightarrow \exists k, q such that $1 = k \cdot B + (-q) \cdot M$
- \Leftrightarrow 1 is a "miix" of B and M

 $\Leftrightarrow \quad \mathsf{GCD}(\mathsf{B},\mathsf{M}) = 1$

Definition:

 \mathbb{Z}_{M}^{*} is the set of numbers B, mod M, which have GCD(B,M) = 1; i.e., have reciprocals.

Weird notation: $\varphi(M) = |\mathbb{Z}_{M}^{*}|$.

Important fact:

 \mathbb{Z}_{M}^{*} is "closed" under multiplication mod M. I.e., $A, B \in \mathbb{Z}_{M}^{*} \Rightarrow A \cdot B \in \mathbb{Z}_{M}^{*}$

Proof: A·B has a reciprocal, namely $B^{-1} \cdot A^{-1}$.

	•	1	2	4	7	8	11	13	14		
	1	1	2	4	7	8	11	13	14		
	2	2	4	8	14	1	7	11	13		
\mathbb{Z}_{15}^*	4	4	8	1	13	2	14	7	11		
	7	7	14	13	4	11	2	1	8	$\phi(15) = 8$	
	8	8	1	2	11	4	13	14	7		
	11	11	7	14	2	13	1	8	4		
	13	13	11	7	1	14	8	4	2		
	14	14	13	11	8	7	4	2	1		
Exercise: If D Q distinct primes $\sigma(DQ) = (D - 1)(Q - 1)$											
	CTIT	er b	JT II	me.	77 Y	1	रा	- (-// -/.	

Observation:

Each row of \mathbb{Z}_{M}^{*} times table is a permutation of \mathbb{Z}_{M}^{*} .

(All entries in a row distinct: if $A \cdot B = A \cdot B'$ then multiply by A^{-1} to deduce B = B'.)

Suppose we multiply all entries in row A By definition: $(A \cdot 1)(A \cdot 2)(A \cdot 4)(A \cdot 7)(A \cdot 8)(A \cdot 11)(A \cdot 13)(A \cdot 14)$ But by permutation ppty: = (1)(2)(4)(7)(8)(11)(13)(14)Dividing thru by common factor: $A^8 = 1$

•	1	2	4	7	8	11	13	14	Observation:
L	1	2	4	7	8	11	13	14	Each row of 7 * times toh
2	2	4	8	14	1	7	11	13	Each row of Z _M times tac
4	4	8	1	13	2	14	7	11	is a permutation of \mathbb{Z}_{M}^{*}
7	7	14	13	4	11	2	1	8	
8	8	1	2	11	4	13	14	7	(All optrios in a row distinct
1	11	7	14	2	13	1	8	4	
.3	13	11	7	1	14	8	4	2	If $A \cdot B = A \cdot B'$ then multiply
14	14	13	11	8	7	4	2	1	by A^{-1} to deduce $B=B'$.)
-h	nis	w	or	ks	in	ıa	ny	∙ Z	$_{M}^{*}$ and you get $A^{\phi(M)} = 1$.

Euler's Theorem:

For any M and any A with GCD(A,M) = 1, $A^{\phi(M)} \equiv_{_M} 1$

Fermat's Little Theorem: (corollary when M is prime)

If P is prime and A is not divisible by P,

 $A^{P-1} \equiv_P 1$

Fermat's Little Theorem:

If P is prime and A is not divisible by P,

 $A^{P-1} \equiv_{_{P}} 1$

This suggests a potential Primality test...

Given M:

Pick a few random A's between 1 and M-1. For each, compute $A^{M-1} \mod M$. (Modular exponentiation.) If you ever get $\neq 1$, output "**M** is composite". Otherwise, output, "**M** is probably prime".

Given M:

Pick a few random A's between 1 and M-1. For each, compute $A^{M-1} \mod M$. (Modular exponentiation.) If you ever get $\neq 1$, output "**M is composite**". Otherwise, output, "**M is probably prime**".

This test does not work! 🛞

There are a few, extremely rare, numbers M called **Carmichael Numbers** for which $A^{M-1} \mod M = 1$ for all A, even though M is composite.

Given M:

Pick a few random A's between 1 and M-1. For each, compute $A^{M-1} \mod M$. (Modular exponentiation.) If you ever get $\neq 1$, output "**M is composite**". Otherwise, output, "**M is probably prime**".

However, this **is** the basis of the efficient Miller–Rabin primality algorithm.

It just adds a few more number-theoretic tweaks.

Given M:

Pick a few random A's between 1 and M-1. For each, compute $A^{M-1} \mod M$. (Modular exponentiation.) If you ever get $\neq 1$, output "**M** is composite". Otherwise, output, "**M** is probably prime".

Finally:

Suppose you're trying to pick a random prime.

As Carmichael numbers are so rare, the above test works with **very high prob.** for random M. In fact, just testing A = 2, 3 is (prety much) good enough!

Study Guide

+, ×, ÷, mod, GCD, modular exponent., primality, rand prime, **all efficient**

Algorithms to study:

Arithmetic:

modular exponent., Euclid's Algorithm, miix-finding extension

Modular arithmetic:

 $(\mathbb{Z}_M, +), (\mathbb{Z}_M^*, \cdot), \phi(M)$ Euler's Theorem Fermat's Little Theorem