15-251: Great Theoretical Ideas in Computer Science Lecture 20

Computational Arithmetic

Let B be a natural number. Say, a Big one.
$B=5693030020523999993479642904621911725098567020556258102766251487234031094429$

$$
B \approx 5.7 \times 10^{75} \quad \text { (5.7 "quattorvigintillion") }
$$

B's magnitude is enormous.
Roughly the number of atoms in the universe, or the age of the universe in Planck time units.

Let B be a natural number. Say, a Big one.
$B=3618502788666131106986593281521497110455743021169260358536775932020762686101$ 7237846234873269807102970128874356021481964232857782295671675021393065473695 3943653222082116941587830769649826310589717739181525033220266350650989268038 3194839273881505432422077179121838888281996148408052302196889866637200606252 6501310964926475205090003984176122058711164567946559044971683604424076996342 7183046544798021168297013490774140090476348290671822743961203698142307099664 3455133414637616824423860107889741058131271306226214208636008224651510961018 9789006815067664901594246966730927620844732714004599013904409378141724958467 7228950143608277369974692883195684314361862929679227167524851316077587207648 7845058367231603173079817471417519051357029671991152963580412838184841733782

Definition (for today's lecture):

$$
\begin{aligned}
\text { len(B) } & =\# \text { bits to write } B \\
& \approx \log _{2}(B)
\end{aligned}
$$

For our 5.7 quattorvigintillion B,

$$
\text { len }(B)=251 \text { bits } \approx 32 \text { bytes }
$$

For cryptography purposes, this B is so very small! SSH / RSA keys usually 10 times longer, 2048 bits.

Arithmetical algorithms
 on big numbers

Remember:

- Arithmetic is not free.
- Numbers are written in binary.
- If input is B, input length is len(B).
- Think of algorithms as performing
string-manipulation.
- Think about solving these problems
by hand on 20-digit numbers.

Addition

36185027886661311069865932815214971104 A $+65743021169260358536775932020762686101 \quad$ B
$=101928049055921669606641864835977657205$

Easy to check "grade school algorithm" is linear time.
l.e., assuming $\operatorname{len}(A)$, $\operatorname{len}(B) \leq n$, running time to produce C is $\mathrm{O}(\mathrm{n})$.

$\operatorname{len}(\mathrm{C})=\log (\mathrm{A} \times \mathrm{B})=\log (\mathrm{A})+\log (\mathrm{B})=\operatorname{len}(\mathrm{A})+\operatorname{len}(\mathrm{B}) \leq 2 \operatorname{len}(\mathrm{~A})$
Running time $=\mathrm{O}(\operatorname{len}(\mathrm{A})$ len $(\mathrm{B}))$.
If len (A), len $(B) \leq n$, this is $O\left(n^{2}\right)$.
Even faster algs exist, used in practice.
Running time slightly worse than $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

Division

B $5 9 0 9 2 0 2 0 7 6 2 6 8 6 1 0 1 \longdiv { 3 6 1 8 5 0 2 7 8 8 6 6 6 1 3 1 1 0 6 9 8 6 5 9 3 2 8 1 5 2 1 4 9 7 1 1 0 4 }$

This alg also runs in
O(len(A) len(B)) time.

$$
A=Q \cdot B+R
$$

$\mathrm{Q}=\left\lfloor\frac{\mathrm{A}}{\mathrm{B}}\right\rfloor$
$R=A \bmod B$
o(len(A) len(B)) time.

Prime factorization

$A=5693030020523999993479642904621911725098567020556258102766251487234031094429$
Say we even just want to find some divisor of A.

$$
\begin{aligned}
\text { for } B & =2,3,4,5, \ldots \\
& \text { test if } A \bmod B=0
\end{aligned}
$$

The solution is:
$68452332409801603635385895997250919383 \times 83167801886452917478124266362673045163$
Each factor is \approx age of universe in Planck time.

Division

36185027886661311069865932815214971104 5932020762686101 B

Prime factorization

$A=5693030020523999993479642904621911725098567020556258102766251487234031094429$
Say we even just want to find some divisor of A.

$$
\begin{aligned}
\text { for } B & =2,3,4,5, \ldots \\
& \text { test if } A \bmod B=0
\end{aligned}
$$

Prime factorization

$A=5693030020523999993479642904621911725098567020556258102766251487234031094429$
Say we even just want to find some divisor of A.

$$
\begin{aligned}
\text { for } B & =2,3,4,5, \ldots \\
& \text { test if } A \bmod B=0
\end{aligned}
$$

Can check B up to \sqrt{A} but $\sqrt{A}=\sqrt{2^{\operatorname{len}(A)}}=2^{\frac{1}{2} \operatorname{len}(A)}$.
Running time is exponential in input length.

Prime factorization

There are significantly faster known algorithms, but they're all still exponential time.

Indeed, much of cryptography relies on the assumption that there is no efficient factoring algorithm!

Primality testing

An amazing fact:
There's a poly-time algorithm for primality testing
Agrawal, Kayal, Saxena, 2002

Primality testing

Although, that's not what Maple / WA use.
The best version of AKS Algorithm is $\sim O\left(n^{6}\right)$ time. Not feasible when run on an $n=2048$ bit number. Everyone uses the Miller-Rabin algorithm (1975) Its running time is $\sim \mathrm{O}\left(\mathrm{n}^{2}\right)$.

What's the catch?
It's a randomized algorithm.
It errs with some tiny probability (say, 2^{-100}).

Primality testing

$A=5693030020523999993479642904621911725098567020556258102766251487234031094429$
Try the following in Maple (or Wolfram Alpha): ifactor($_{69903030205239999994496429046219117250985670205562581027662514872340031094429)}$) It will calculate forever, until you stop it.

Then try:
isprime((693030020523999999479642904621911725095567020556258102766251487734031094429$)^{\text {) }}$
It will output false instantly. How does it do that?!

Primality testing

Although, that's not what Maple / WA use.
The best version of AKS Algorithm is $\sim O\left(n^{6}\right)$ time.
Not feasible when run on an $\mathrm{n}=2048$ bit number.
Everyone uses the Miller-Rabin algorithm (1975).

Generating a prime

Say we need an n-bit long prime number.

> loop: let B be a random n-bit number test if B is prime
"Prime Number Theorem":
About $1 / n$ fraction of n-bit numbers are prime.
\Rightarrow Expected running time of above is $\sim \mathrm{O}\left(\mathrm{n}^{3}\right)$.
This is basically the only known algorithm! No poly-time deterministic alg. is known!

Primality testing again

By the end of class, you'll be able to prove:

```
Wilson's Theorem:
\(B\) is prime \(\Leftrightarrow(B-1)!+1\) divisible by \(B\).
```

Q: Why not use this as a primality test?
Midterm 2: Cannot compute $(B-1)$! in poly time.
Cannot even compute 2^{B} in poly time. Why?
If B is 5.7 quattorvigintillion (len $(B)=251)$
answer length exceeds \# of particles in universe!

Modular Exponentiation

Example: Compute $2337^{32} \bmod 100$. By hand.

Bad idea: $\quad 2337 \times 2337=5461569$ $2337 \times 5461569=12763686753$ $2337 \times 12763686753=\cdot \cdot \cdot$
(30 more multiplications later...)

Modular Exponentiation

However, you can compute 2^{B} mod C in polynomial time.

In general, assuming len(A), len(B), len(C) $\leq n$, can compute $A^{B} \bmod C$ in poly (n) time.

Let's prove this.

Modular Exponentiation

Example: Compute $2337^{32} \bmod 100$. By hand.

Smart idea 1:
Reduce mod 100 after every step.

Smart idea 2:
Don't multiply 32 times; square 5 times.

Modular Exponentiation

Smart idea 2:
Don't multiply 32 times; square 5 times.
$2337^{1} \rightarrow 2337^{2} \rightarrow 2337^{4} \rightarrow 2337^{8} \rightarrow 2337^{16} \rightarrow 2337^{32}$

Lucky (?) that exponent was a power of 2.
Q: What if we had wanted 2337^{53} ?
A: Multiply powers: $32+16+4+1$.
Here I used that binary rep. of 53 is 110101.

Modular Exponentiation

In general, to compute $A^{B} \bmod C$, where A, B, C are $\leq n$ bits long:

1. Repeatedly square A, always mod C. Do this n times.
2. Multiply together the powers of A corresponding to binary digits of B (again, always mod C).

Running time is a little more than $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$.

Greatest Common Divisor (GCD)

$A=65743021169260358536775932020762686101$
$B=36185027886661311069865932815214971104$
$B=36185027886661311069865932815214971104$

$$
\text { What is } G=\operatorname{gcd}(A, B) \text { ? }
$$

Grade school algorithm:

1. Factor A and B.
2. $\cdot($

Euclid's Algorithm finds GCD in poly-time! It's arguably the first ever algorithm.
(PS: It was not invented by Euclid.
It was invented some time in 500-375 B.C.E.)

Greatest Common Divisor (GCD)
What is $\mathrm{G}=\mathrm{GCD}(\mathrm{A}, \mathrm{B})$?

Observation 1: Suppose g is a divisor of A \& B. Then g is also a divisor of $A-B$.

Conversely: If g is a divisor of $A-B \& B$, then g is also a divisor of A .

But is $\underline{\mathbf{G C D}}(A, B)=\underline{\mathbf{G C D}}(A-B, B)$? Yes!
ut is $\underline{\mathbf{G C D}}(A, B)=\underline{\mathbf{G C D}}(A-B, B) ?$

If so, we "make progress"
by reducing the size of our two numbers.

Greatest Common Divisor (GCD)

$$
\text { What is } \mathrm{G}=\mathrm{GCD}(\mathrm{~A}, \mathrm{~B}) \text { ? }
$$

Observation 1: Suppose g is a divisor of $A \& B$. Then g is also a divisor of $A-B$.
Conversely: If g is a divisor of $A-B \& B$, then g is also a divisor of A .
Therefore: The common divisors of A \& B are exactly the same as the common divisors of $A-B \& B$ So indeed $\operatorname{GCD}(A, B)=G C D(B, A-B)$.

Warmup to Euclid's GCD Algorithm

$$
\begin{array}{rlrl}
\operatorname{GCD}(42,30) & =\operatorname{GCD}(30,12) & \text { (using } 42-30=12) \\
& =\operatorname{GCD}(18,12) & \text { (using } 30-12=18) \\
& =\operatorname{GCD}(12,6) & & \text { (using } 18-12=6) \\
& =\operatorname{GCD}(6,6) & & \text { (using } 12-6=6) \\
& =\operatorname{GCD}(6,0) & & \text { (using } 6-6=0)
\end{array}
$$

Stop when you get to 0 , as $G C D(A, 0)=A$.
Answer: $\operatorname{GCD}(42,30)=\mathbf{6}$.

Warmup to Euclid's GCD Algorithm

Cool, let's do another one!

```
GCD(6004,6) = GCD(5998,6)
    = GCD (5992,6)
    = GCD(5986,6)
    = GCD(4, 4)
```

In general:
$\operatorname{GCD}(A, B)$ eventually gets to $\operatorname{GCD}(\mathrm{A} \bmod \mathrm{B}, \mathrm{B})$.

Euclid's GCD

Algorithm:

```
GCD(A,B):
    if B = 0, return A
    return GCD(B, A mod B)
```

Example: $\quad \operatorname{GCD}(100,18)$
$=\operatorname{GCD}(18,10)($ using $100 \bmod 18=10)$
$=\operatorname{GCD}(10,8) \quad(u s i n g 18 \bmod 10=8)$
$=\operatorname{GCD}(8,2) \quad($ using $10 \bmod 8=2)$
$=\operatorname{GCD}(2,0) \quad($ using $8 \bmod 2=0)$
$=2$

Euclid's GCD

Algorithm:

```
GCD(A,B):
    if B = 0, return A
    return GCD(B,A mod B)
```

Run-time?
Each step computes a "mod", which is polynomial time.

So suffices to show only poly many steps.

Euclid's GCD Algorithm:

$\operatorname{GCD}(\mathrm{A}, \mathrm{B}):$

if $B=0$, return A
return $\mathbf{G C D}(\mathrm{B}, \mathrm{A} \bmod \mathrm{B})$

Run-time?

$$
\bullet \cdot
$$

Proof: If $A \geq 2 B$ then it's true, $\because(A \bmod B)<B$. If $A<2 B$ then it's true,
\because we subtracted off B, which is $\geq 1 / 2 A$.

Euclid's GCD

Algorithm:

Euclid's GCD

 Algorithm:```
GCD(A,B):
 if B = 0, return A
 return GCD(B, A mod B)
```

Run-time? $\therefore$ total \# of steps is:

$$
\leq \log (A \cdot B)=\log (A)+\log (B)=\operatorname{len}(A)+\operatorname{len}(B)
$$

$O(n)$ steps if len $(A)$, len $(B) \leq n$.
$\therefore$ total run-time is poly(n).
(In fact, roughly $O\left(n^{2}\right)$.)

The intrinsic complexity of GCD
Euclid's Algorithm computes GCD in $\sim \mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
Not so great in practice. Say $n=100,000$ ?
There are faster algorithms! $\sim \mathrm{O}(\mathrm{n} \log \mathrm{n})$, in fact.

Major open problem in computer science: Is GCD computation efficiently parallelizable?
I.e., is there a circuit family $\left(C_{n}\right)$ with poly(n) gates and polylog(n) depth that computes the GCD of two n-bit numbers?

## A bonus from Euclid's Algorithm...

## Definition:

Say that C is a miix of $A$ and $B$ if it's an integer linear combination of them:

$$
C=k \cdot A+\ell \cdot B \text { for some } k, \ell \in \mathbb{Z} .
$$

(Note: Not a real term. You are not allowed to use it. ©)

$$
\begin{array}{lc}
\text { Example: } & 2 \text { is a miix of } 14 \text { and } 10 \\
\text { because } 2=(-2) \cdot 14+3 \cdot 10
\end{array}
$$

(Hence any multiple of 2 is a miix of 14 and 10 . To get 2 m as a miix, multiply the equation by m .)

## Definition:

Say that $C$ is a milx of $A$ and $B$ if it's an integer linear combination of them:

$$
C=k \cdot A+\ell \cdot B \text { for some } k, \ell \in \mathbb{Z} .
$$

(Note: Not a real term. You are not allowed to use it. ©)

Non-example:
7 is not a miix of 55 and 40, because any miix would be divisible by 5

7 is not a miix of 55 and 40, because any miix would be divisible by 5

If $A$ and $B$ are both divisible by some $F$ then any miix of $A$ and $B$ must be too.

So if $C$ is a miix of $A$ and $B$, then $C$ must be a multiple of $G C D(A, B)$.

Conversely, is $\operatorname{GCD}(A, B)$ always a miix of $A$ and $B$ ?

Yes! It's a bonus of Euclid's GCD Algorithm.

Summary of Euclid getting $\operatorname{GCD}(100,18)=2$ :

8 is a miix of $18 \& 10$


2 is a miix of $10 \& 8$
$\therefore 2$ is a miix of $18 \& 10$

Fact \#1: If $A \bmod B=R$ then $R$ is a miix of $A$ and $B$.
Because by definition, $R=A-q B$ for some $q$.
Fact \#2: If $R$ is a miix of $A$ and $B$, and $B$ is a miix of $A$ and $C$, then $R$ is a miix of $A$ and $C$.

Summary of Euclid getting $\operatorname{GCD}(100,18)=2$ :


10 is a miix of $100 \& 18$
$\therefore 2$ is a miix of $100 \& 18$

Fact \#1: If $A \bmod B=R$ then $R$ is a miix of $A$ and $B$.
Because by definition, $R=A-q B$ for some $q$.
Fact \#2: If $R$ is a miix of $A$ and $B$, and $B$ is a miix of $A$ and $C$, then $R$ is a miix of $A$ and $C$.

## Euclid's GCD

Algorithm:

```
GCD(A,B):
 if B = 0, return A
 return GCD(B, A mod B)
```

Example:
GCD $(100,18)$
$=\operatorname{GCD}(18,10)($ using $100 \bmod 18=10)$
$=\operatorname{GCD}(10,8) \quad($ using $18 \bmod 10=8)$
$=\operatorname{GCD}(8,2) \quad($ using $10 \bmod 8=2)$
$=\operatorname{GCD}(2,0) \quad($ using $8 \bmod 2=0)$
$=2$

Summary of Euclid getting $\operatorname{GCD}(100,18)=2$ :


10 is a miix of $100 \& 18$
$\therefore 2$ is a miix of $18 \& 10$

Fact \#1: If $A \bmod B=R$ then $R$ is a miix of $A$ and $B$.
Because by definition, $R=A-q B$ for some $q$.
Fact \#2: If $R$ is a miix of $A$ and $B$,
and $B$ is a miix of $A$ and $C$,
then $R$ is a miix of $A$ and $C$.

Summary of Euclid getting $\operatorname{GCD}(100,18)=2$ :


10 is a miix of $100 \& 18$
$\therefore 2$ is a miix of $100 \& 18$

## Summary:

If $G=G C D(A, B)$, then $G$ is a miix of $A$ and $B$. And you can get the $k$ and $\ell$ such that

$$
G=k \cdot A+\ell \cdot B
$$

from Euclid's Alg. with a little bookkeeping.

Summary of arithmetical algs.

## Poly time:

Addition
Multiplication Integer division \& mod Primality testing GCD
Modular exponentiation
Believed not poly time:

Factoring

Not poly time: Factorial
Non-modular exponentiation

## Addition mod M

Addition, +, "plays nice" mod M:

$$
\begin{aligned}
A & \equiv_{M} B \\
A^{\prime} & \equiv_{M} B^{\prime} \\
\Rightarrow \quad A+A^{\prime} & \equiv_{M} B+B^{\prime}
\end{aligned}
$$

We may define a new number system

$$
\mathbb{Z}_{M}
$$

with elements $0,1,2, \ldots, M-1$, and basic operation + .

## Subtraction mod M

"What about subtraction in $\mathbb{Z}_{M}$ ?", you might say.

To define it, we first define " $-B$ ". Then " $A-B$ " just means " $A+(-B)$ ".

Given $B$, we define " $-B$ " to be "the number in $\mathbb{Z}_{M}$ such that $B+(-B)=0$ ".

## Modular arithmetic refresher

Sometimes in arithmetic we "work mod M".
E.g., on a clock, the hours go mod 12.

In computer hardware, arithmetic is often mod $2^{64}$.
" A and B are equivalent mod M ",

$$
" A \equiv{ }_{M} B ",
$$

means A, B have same remainder mod M.
mod $M$, every integer is equivalent to exactly one of $0,1,2,3, \ldots, M-1$.

## Addition mod M

E.g.: $\mathbb{Z}_{5}=\{0,1,2,3,4\}$, with this + table...

| + | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

( 0 has special property: $0+A=A+0=A$ for all $A$ )

Negatives mod M

| + | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

$\ln \mathbb{Z}_{5} \ldots$

$$
\begin{aligned}
-2 & =3 \\
-4 & =1 \\
-0 & =0
\end{aligned}
$$

Note: -B exists \& is unique because each row is a permutation of $0,1,2, \ldots, M-1$, so 0 appears exactly once.

## Multiplication mod M

Multiplication, •, also "plays nice" mod M:

$$
\begin{aligned}
A & \equiv_{M} B \\
A^{\prime} & \equiv_{M} B^{\prime} \\
\Rightarrow \quad A \cdot A^{\prime} & \equiv_{M} B \cdot B^{\prime}
\end{aligned}
$$

## Multiplication mod 5

| - | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 2 | 4 | 1 | 3 |
| 3 | 0 | 3 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 2 | 1 |

(1 has special property: $1 \cdot A=A \bullet 1=A$ for all $A$ )

## Division mod M

"What about division in $\mathbb{Z}_{M}$ ?", you might say.

Similar to subtraction, we'd like to define " $B^{-1}$ ". Then " $A \div B^{\prime \prime}$ could just mean " $A \cdot B^{-1}$ ".

So given $B$, can we define " $B^{-1}$ " to be "the number in $\mathbb{Z}_{M}$ such that $B \cdot B^{-1}=1$ "?

There are some problems...

## Reciprocals mod 6



$$
\begin{aligned}
& 0^{-1}=\text { undefined } \\
& 1^{-1}=1 \\
& 2^{-1}=\text { undefined! } \\
& 3^{-1}=\text { undefined! } \\
& 4^{-1}=\text { undefined! } \\
& 5^{-1}=5
\end{aligned}
$$

Huh. We only have two \#'s with reciprocals.

## Reciprocals mod 5



Well, that's all right.
We're used to not being able to divide by 0 .

## Reciprocals mod 7

| - | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

Every number except 0 has a multiplicative inverse.

## Reciprocals mod 8

| $\bullet$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

$\{1,3,5,7\}$ have inverses; $\{0,2,4,8\}$ don't

When does B have a reciprocal mod M?
$\Leftrightarrow \quad \exists \mathrm{k} \quad$ such that $\mathrm{k} \cdot \mathrm{B} \equiv_{\mathrm{M}} 1$
$\Leftrightarrow \quad \exists \mathrm{k}, \mathrm{q}$ such that $\mathrm{k} \cdot \mathrm{B}=\mathrm{q} \cdot \mathrm{M}+1$
$\Leftrightarrow \quad \exists \mathrm{k}, \mathrm{q}$ such that $1=k \cdot B+(-q) \cdot M$
$\Leftrightarrow \quad 1$ is a "miix" of $B$ and $M$
$\Leftrightarrow \quad \operatorname{GCD}(\mathrm{B}, \mathrm{M})=1$

When does B have a reciprocal mod M?

$$
\Leftrightarrow \quad \mathrm{GCD}(\mathrm{~B}, \mathrm{M})=1
$$

Check: $\bmod$ 5: $\{1,2,3,4\}$ had reciprocals $\bmod 6:\{1,5\} \quad$ had reciprocals $\bmod 7:\{1,2,3,4,5,6\}$ had reciprocals $\bmod 8:\{1,3,5,7\} \quad$ had reciprocals

Note: mod a prime, all nonzeros have reciprocal

## Definition:

$\mathbb{Z}_{M}^{*}$ is the set of numbers $B, \bmod M$, which have $G C D(B, M)=1$; i.e., have reciprocals.

Weird notation: $\varphi(M)=\left|\mathbb{Z}_{M}^{*}\right|$.

Important fact:
$\mathbb{Z}_{M}^{*}$ is "closed" under multiplication mod $M$.
I.e., $A, B \in \mathbb{Z}_{M}^{*} \Rightarrow A \cdot B \in \mathbb{Z}_{M}^{*}$

Proof: A•B has a reciprocal, namely $B^{-1} \cdot A^{-1}$.



## Exercise:

If $\mathrm{P}, \mathrm{Q}$ distinct primes, $\varphi(\mathrm{PQ})=(\mathrm{P}-1)(\mathrm{Q}-1)$.


## Observation:

Each row of $\mathbb{Z}_{M}^{*}$ times table is a permutation of $\mathbb{Z}_{M}^{*}$
(All entries in a row distinct: if $A \cdot B=A \cdot B^{\prime}$ then multiply by $A^{-1}$ to deduce $B=B^{\prime}$.)

Suppose we multiply all entries in row A
By definition: (A•1)(A•2)(A•4)(A•7)(A•8)(A•11)(A•13)(A•14)
But by permutation ppty: $=(1)(2)(4)(7)(8)(11)(13)(14)$
Dividing thru by common factor: $A^{8}=1$

## Euler's Theorem:

$$
\begin{aligned}
& \text { For any } \mathrm{M} \text { and any } \mathrm{A} \text { with } \mathrm{GCD}(\mathrm{~A}, \mathrm{M})=1, \\
& \qquad \mathrm{~A}^{\varphi(\mathrm{M})} \equiv_{\mathrm{M}} 1
\end{aligned}
$$

## Fermat's Little Theorem:

(corollary when M is prime)
If $P$ is prime and $A$ is not divisible by $P$,

$$
A^{P-1} \equiv_{p} 1
$$

## Observation:

Each row of $\mathbb{Z}_{M}^{*}$ times table is a permutation of $\mathbb{Z}_{M}^{*}$.
(All entries in a row distinct: if $A \cdot B=A \cdot B^{\prime}$ then multiply by $A^{-1}$ to deduce $B=B^{\prime}$.)

This works in any $\mathbb{Z}_{M}^{*}$ and you get $A^{\varphi(M)}=1$.

Dividing thru by common factor: $A^{8}=1$

## Fermat's Little Theorem:

If $P$ is prime and $A$ is not divisible by $P$,

$$
\mathrm{A}^{\mathrm{P}-1} \equiv_{\mathrm{p}} 1
$$

This suggests a potential Primality test...
Given M:
Pick a few random A's between 1 and $\mathrm{M}-1$.
For each, compute $A^{M-1} \bmod M$. (Modular exponentiation.) If you ever get $\neq 1$, output " $M$ is composite". Otherwise, output, "M is probably prime".

Given M:
Pick a few random A's between 1 and $\mathrm{M}-1$.
For each, compute $A^{M-1} \bmod M$. (Modular exponentiation.) If you ever get $\neq 1$, output " $M$ is composite". Otherwise, output, "M is probably prime".

This test does not work! ©
There are a few, extremely rare, numbers $M$ called Carmichael Numbers
for which $A^{M-1} \bmod M=1$ for all $A$, even though $M$ is composite.

Given M:
Pick a few random A's between 1 and $\mathrm{M}-1$.
For each, compute $A^{M-1} \bmod M$. (Modular exponentiation.)
If you ever get $\neq 1$, output "M is composite".
Otherwise, output, "M is probably prime".

## Finally:

Suppose you're trying to pick a random prime. As Carmichael numbers are so rare, the above test works with very high prob. for random M. In fact, just testing $A=2,3$ is (prety much) good enough!

## Given M:

Pick a few random A's between 1 and $\mathrm{M}-1$.
For each, compute $A^{M-1} \bmod M$. (Modular exponentiation.)
If you ever get $\neq 1$, output " $\mathbf{M}$ is composite".
Otherwise, output, "M is probably prime".

However, this is the basis of the efficient
Miller-Rabin primality algorithm.
It just adds a few more number-theoretic tweaks.

## Study Guide

Arithmetic:
,$+ \times, \div$, mod, GCD, modular exponent., primality, rand prime, all efficient


Algorithms to study:
modular exponent.,
Euclid's Algorithm,
miix-finding extension
Modular arithmetic:
$\left(\mathbb{Z}_{M},+\right),\left(\mathbb{Z}_{M^{\prime}}^{*} \cdot\right), \varphi(M)$
Euler's Theorem
Fermat's Little Theorem

