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15-251: Great Theoretical Ideas in Computer Science

Computational Arithmetic

Lecture 20
Let B be a natural number. Say, a Big one.

B = 3618502788666131106986593281521497110455743021169260358536775932020762686101

7237846234873269807102970128874356021481964232857782295671675021393065473695

3943653222082116941587830769649826310589717739181525033220266350650989268038

3194839273881505432422077179121838888281996148408052302196889866637200606252

6501310964926475205090003984176122058711164567946559044971683604424076996342

7183046544798021168297013490774140090476348290671822743961203698142307099664

3455133414637616824423860107889741058131271306226214208636008224651510961018

9789006815067664901594246966730927620844732714004599013904409378141724958467

7228950143608277369974692883195684314361862929679227167524851316077587207648

7845058367231603173079817471417519051357029671991152963580412838184841733782

Let B be a natural number. Say, a Big one.

B = 5693030020523999993479642904621911725098567020556258102766251487234031094429

B ≈ 5.7 × 1075 (5.7 “quattorvigintillion”)

B’s magnitude is enormous.

Roughly the number of atoms in the universe,

or the age of the universe in Planck time units.

Definition (for today’s lecture):

len(B) = # bits to write B 

≈ log2(B)

For our 5.7 quattorvigintillion B, 

len(B) = 251 bits ≈ 32 bytes.

For cryptography purposes, this B is so very small!

SSH / RSA keys usually 10 times longer, 2048 bits.

Arithmetical algorithms

on big numbers

Remember:

• Arithmetic is not free.

• Numbers are written in binary.

• If input is B, input length is len(B).

• Think of algorithms as performing 

string-manipulation.

• Think about solving these problems 

by hand on 20-digit numbers.

Addition

36185027886661311069865932815214971104

+ 65743021169260358536775932020762686101

A

B

= 101928049055921669606641864835977657205 C

Easy to check “grade school algorithm”

is linear time.

I.e., assuming len(A), len(B) ≤ n, 

running time to produce C is O(n).
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Multiplication

36185027886661311069865932815214971104

× 5932020762686101

A

B

214650336722050463946651358202698404452609868137425504 C

len(B)

rows

len(C) = log(A×B) = log(A)+log(B) = len(A)+len(B) ≤ 2len(A)

Running time = O(len(A) len(B)).

If len(A), len(B) ≤ n, this is O(n2).

Even faster algs exist, used in practice.

Running time slightly worse than O(n log n).

Division

36185027886661311069865932815214971104

÷ 5932020762686101

A

B

Division

5932020762686101    36185027886661311069865932815214971104

6099949635084593037586

3960087002178918

B A

Q

R

A = Q·B+R

R = A mod B

This alg also runs in

O(len(A) len(B)) time.

Prime factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

Say we even just want to find some divisor of A.

for B = 2, 3, 4, 5, …

test if A mod B = 0

Prime factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

Say we even just want to find some divisor of A.

test if A mod B = 0

for B = 2, 3, 4, 5, …

68452332409801603635385895997250919383 × 83167801886452917478124266362673045163

The solution is:

Each factor is ≈ age of universe in Planck time.

Prime factorization

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

Say we even just want to find some divisor of A.

test if A mod B = 0

for B = 2, 3, 4, 5, …

Can check B up to  A , but                                      .

Running time is exponential in input length.
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Prime factorization

There are significantly faster known algorithms,

but they’re all still exponential time.

Indeed, much of cryptography

relies on the assumption that

there is no efficient factoring algorithm!

Primality testing

A = 5693030020523999993479642904621911725098567020556258102766251487234031094429

Try the following in Maple (or Wolfram Alpha):

ifactor(5693030020523999993479642904621911725098567020556258102766251487234031094429)

It will calculate forever, until you stop it.

Then try:

isprime(5693030020523999993479642904621911725098567020556258102766251487234031094429)

It will output false instantly.

How does it do that?!

Primality testing

An amazing fact:

There’s a poly-time algorithm for primality testing.

Agrawal, Kayal, Saxena, 2002

undergraduates, at the time

Primality testing

Although, that’s not what Maple / WA use.

The best version of AKS Algorithm is ~O(n6) time.

Not feasible when run on an n=2048 bit number.

Everyone uses the Miller–Rabin algorithm (1975).

CMU

professor

Primality testing

Although, that’s not what Maple / WA use.

The best version of AKS Algorithm is ~O(n6) time.

Not feasible when run on an n=2048 bit number.

Everyone uses the Miller–Rabin algorithm (1975).

Its running time is ~O(n2).

What’s the catch?

It’s a randomized algorithm.

It errs with some tiny probability (say, 2−100).

Generating a prime

Say we need an n-bit long prime number.

loop:    let B be a random n-bit number

test if B is prime

This is basically the only known algorithm!

No poly-time deterministic alg. is known!

“Prime Number Theorem”:

About 1/n fraction of n-bit numbers are prime.

⇒ Expected running time of above is ~O(n3).
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Primality testing again

By the end of class, you’ll be able to prove:

Wilson’s Theorem:

B is prime ⇔ (B−1)! + 1 divisible by B.

Q:  Why not use this as a primality test?

Midterm 2:  Cannot compute (B−1)! in poly time.

Cannot even compute 2B in poly time.  Why?

If B is 5.7 quattorvigintillion (len(B)=251)

answer length exceeds # of particles in universe!

Modular Exponentiation

However, you can compute 2B mod C

in polynomial time.

In general, assuming len(A), len(B), len(C) ≤ n,

can compute  AB mod C  in poly(n) time.  

Let’s prove this.

Modular Exponentiation

Example:    Compute 233732 mod 100.

By hand.

Bad idea: 2337 × 2337 = 5461569

2337 × 5461569 = 12763686753

2337 × 12763686753 = · · ·

(30 more multiplications later…)

= 626727565152155511653188886668668588313475824236665607396755008905770146236635537228216696030970612828922881

Modular Exponentiation

Example:    Compute 233732 mod 100.

By hand.

Smart idea 1:

Smart idea 2:

Reduce mod 100 after every step.

Don’t multiply 32 times; square 5 times.

23371 → 23372 → 23374 → 23378 → 233716 → 233732

Modular Exponentiation

Smart idea 2:

Don’t multiply 32 times; square 5 times.

23371 → 23372 → 23374 → 23378 → 233716 → 233732

Lucky (?) that exponent was a power of 2.

Q:  What if we had wanted 233734 ?

A:  Multiply together 233732 and 23372.

Modular Exponentiation

Smart idea 2:

Don’t multiply 32 times; square 5 times.

23371 → 23372 → 23374 → 23378 → 233716 → 233732

Lucky (?) that exponent was a power of 2.

Q:  What if we had wanted 233753 ?

A:  Multiply powers:  32 + 16 + 4 + 1.

Here I used that binary rep. of 53 is 110101.
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Modular Exponentiation

In general, to compute AB mod C, 

where A, B, C are ≤ n bits long:

1.  Repeatedly square A, always mod C.

Do this n times.

2.  Multiply together the powers of A

corresponding to binary digits of B

(again, always mod C).

Running time is a little more than O(n2 log n).

Greatest Common Divisor (GCD)

A = 65743021169260358536775932020762686101

B = 36185027886661311069865932815214971104

What is G = gcd(A,B)?

Grade school algorithm:

1. Factor A and B.

2. 

Euclid’s Algorithm finds GCD in poly-time!

It’s arguably the first ever algorithm.

(PS: It was not invented by Euclid.

It was invented some time in 500—375 B.C.E.)

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1: Suppose g is a divisor of A & B.

Then g is also a divisor of A−B.

But is GCD(A,B) = GCD(A−B,B)?

If so, we “make progress” 

by reducing the size of our two numbers.

E.g., 6 is a divisor of 600 & 12,

so 6 is also a divisor of 588.

Yes!

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1: Suppose g is a divisor of A & B.

Then g is also a divisor of A−B.

But is GCD(A,B) = GCD(A−B,B)? Yes!

Conversely: If g is a divisor of A−B & B,

then g is also a divisor of A.

Greatest Common Divisor (GCD)

What is G = GCD(A,B)?

Observation 1: Suppose g is a divisor of A & B.

Then g is also a divisor of A−B.

Conversely: If g is a divisor of A−B & B,

then g is also a divisor of A.

Therefore:  The common divisors of A & B

are exactly the same as

the common divisors of A−B & B.

So indeed GCD(A,B) = GCD(B,A−B).

Warmup to Euclid’s GCD Algorithm

GCD(42,30) = GCD(30,12)   (using 42−30=12)

= GCD(18,12)   (using 30−12=18)

= GCD(12,6)     (using 18−12=6)

= GCD(6,6)       (using 12−6=6)

= GCD(6,0)       (using 6−6=0)

Stop when you get to 0, as GCD(A,0) = A.

Answer:  GCD(42,30) = 6.
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Warmup to Euclid’s GCD Algorithm

GCD(6004,6) = GCD(5998,6)

= GCD(5992,6)

= GCD(5986,6)

Cool, let’s do another one!

= GCD( ,6)4

In general:  

GCD(A,B) eventually gets to GCD(A mod B,B).

•••

A mod B

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

GCD(100,18)

= GCD(18,10)  (using 100 mod 18 = 10)

= GCD(10,8)    (using 18 mod 10 = 8)

= GCD(8,2)      (using 10 mod 8 = 2)

= GCD(2,0)      (using 8 mod 2 = 0)

= 2

Example:

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

GCD(100,18)

= GCD(18,10)  (using 100 mod 18 = 10)

= GCD(10,8)    (using 18 mod 10 = 8)

= GCD(8,2)      (using 10 mod 8 = 2)

= GCD(2`

Summary:

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

Run-time? Each step computes a “mod”, 

which is polynomial time.

So suffices to show only poly many steps.

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

Run-time? A

B

A mod B

Claim: 

Decreases by

factor ½ or more

Proof:  If A ≥ 2B then it’s true, ∵ (A mod B) < B.

If A < 2B then it’s true, 

∵ we subtracted off B, which is ≥ ½ A.

•••

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

Run-time? A

B

A mod B

So this

product…

…is ≤ ½ of

this product. 

A·B goes down by factor

of ½ or better at each step.
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Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

Run-time?

A·B goes down by factor

of ½ or better at each step.

∴ total # of steps is:

≤ log(A·B) = log(A) + log(B) = len(A) + len(B)

O(n) steps if len(A), len(B) ≤ n.

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

Run-time? ∴ total # of steps is:

≤ log(A·B) = log(A) + log(B) = len(A) + len(B)

O(n) steps if len(A), len(B) ≤ n.

∴ total run-time is poly(n).

(In fact, roughly O(n2).)

The intrinsic complexity of GCD

Euclid’s Algorithm computes GCD in ~O(n2) time.

Not so great in practice.  Say n = 100,000?

There are faster algorithms!  ~O(n log n), in fact.

Major open problem in computer science:

Is GCD computation efficiently parallelizable?

I.e., is there a circuit family (Cn) with

poly(n) gates and polylog(n) depth

that computes the GCD of two n-bit numbers?

A bonus from Euclid’s Algorithm…

Definition:

Say that C is a miix of A and B if

it’s an integer linear combination of them:

C = k·A +ℓ·B for some k,ℓ∈ℤ.

Example: 2 is a miix of 14 and 10

because 2 = (−2)·14 + 3·10

(Note: Not a real term. You are not allowed to use it. )

(Hence any multiple of 2 is a miix of 14 and 10.

To get 2m as a miix, multiply the equation by m.)

Non-example:

7 is not a miix of 55 and 40,

because any miix would be divisible by 5

Definition:

Say that C is a miix of A and B if

it’s an integer linear combination of them:

C = k·A +ℓ·B for some k,ℓ∈ℤ.

(Note: Not a real term. You are not allowed to use it. )
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7 is not a miix of 55 and 40,

because any miix would be divisible by 5

If A and B are both divisible by some F

then any miix of A and B must be too.

So if C is a miix of A and B, 

then C must be a multiple of GCD(A,B).

Conversely, is GCD(A,B) always a miix of A and B?

Yes!  It’s a bonus of Euclid’s GCD Algorithm.

Euclid’s GCD

Algorithm:

GCD(A,B):

if B = 0, return A

return GCD(B, A mod B)

GCD(100,18)

= GCD(18,10)  (using 100 mod 18 = 10)

= GCD(10,8)    (using 18 mod 10 = 8)

= GCD(8,2)      (using 10 mod 8 = 2)

= GCD(2,0)      (using 8 mod 2 = 0)

= 2

Example:

100     18     10     8     2

Summary of Euclid getting GCD(100,18) = 2:

Fact #1:  If A mod B = R then R is a miix of A and B.

Because by definition, R = A − qB for some q.

Fact #2:      If R is a miix of A and B, 

and B is a miix of A and C,

then R is a miix of A and C.

2 is a miix of 10 & 8
8 is a miix of 18 & 10

∴ 2 is a miix of 18 & 10

100     18     10     8     2

Summary of Euclid getting GCD(100,18) = 2:

Fact #1:  If A mod B = R then R is a miix of A and B.

Because by definition, R = A − qB for some q.

Fact #2:      If R is a miix of A and B, 

and B is a miix of A and C,

then R is a miix of A and C.

10 is a miix of 100 & 18

∴ 2 is a miix of 18 & 10

100     18     10     8     2

Summary of Euclid getting GCD(100,18) = 2:

Fact #1:  If A mod B = R then R is a miix of A and B.

Because by definition, R = A − qB for some q.

Fact #2:      If R is a miix of A and B, 

and B is a miix of A and C,

then R is a miix of A and C.

10 is a miix of 100 & 18

∴ 2 is a miix of 100 & 18

100     18     10     8     2

Summary of Euclid getting GCD(100,18) = 2:

10 is a miix of 100 & 18

∴ 2 is a miix of 100 & 18

Summary:

If G = GCD(A,B), then G is a miix of A and B.

And you can get the k and ℓ such that

G = k·A + ℓ·B

from Euclid’s Alg. with a little bookkeeping.
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Summary of arithmetical algs.

Poly time: Addition

Multiplication

Integer division & mod

Primality testing

GCD

Modular exponentiation

Believed not

poly time:
Factoring

Not poly time: Factorial

Non-modular exponentiation

Modular arithmetic refresher

Sometimes in arithmetic we “work mod M”.

E.g., on a clock, the hours go mod 12.

In computer hardware, arithmetic is often mod 264.

“A and B are equivalent mod M”,

“ A ≡M B ”,

means A, B have same remainder mod M.

mod M, every integer is equivalent to 

exactly one of 0, 1, 2, 3, …, M−1.

Addition mod M

Addition, +, “plays nice” mod M:

A ≡M B 

A’ ≡M B’

A+A’ ≡M B+B’⇒

We may define a new number system

ℤM

with elements 0, 1, 2, …, M−1,

and basic operation +.

Addition mod M

E.g.:    ℤ5 = {0, 1, 2, 3, 4}, with this + table…

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(0 has special property:  0+A = A+0 = A for all A)

Subtraction mod M

“What about subtraction in ℤM?”, you might say.

To define it, we first define “−B”.

Then “A−B” just means “A + (−B)”.

Given B, we define “−B” to be

“the number in ℤM such that B + (−B) = 0”.

Negatives mod M

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

In ℤ5 …

−2 = 3

−4 = 1

−0 = 0

Note: −B exists & is unique because each row

is a permutation of 0, 1, 2, …, M−1,

so 0 appears exactly once.           
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Multiplication mod M

Multiplication, •, also “plays nice” mod M:

A ≡M B 

A’ ≡M B’

A•A’ ≡M B•B’⇒

Multiplication mod 5

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

(1 has special property:  1•A = A•1 = A for all A)

Division mod M

“What about division in ℤM?”, you might say.

Similar to subtraction, we’d like to define “B−1”.

Then “A÷B” could just mean “A•B−1”.

So given B, can we define “B−1” to be

“the number in ℤM such that B•B−1 = 1”?

There are some problems…

Reciprocals mod 5

0−1 = undefined

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

3−1 = 2

4−1 = 4

1−1 = 1

2−1 = 3

Well, that’s all right.

We’re used to not being able to divide by 0.

Reciprocals mod 6

3−1 = undefined!

4−1 = undefined!

5−1 = 5

• 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

1−1 = 1

2−1 = undefined!

0−1 = undefined

Huh.  We only have two #’s with reciprocals.

Reciprocals mod 7

• 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Every number except 0 has

a multiplicative inverse.
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Reciprocals mod 8

• 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

{1, 3, 5, 7} have inverses;  {0, 2, 4, 8} don’t

When does B have a reciprocal mod M?

⇔    ∃ k such that k·B ≡M 1

⇔    ∃ k, q such that k·B = q·M + 1

⇔    ∃ k, q such that 1 = k·B + (−q)·M

⇔    1 is a “miix” of B and M

⇔    GCD(B,M) = 1

When does B have a reciprocal mod M?

⇔    GCD(B,M) = 1

Check: mod 5:   {1,2,3,4}        had reciprocals

mod 6:   {1,5}              had reciprocals

mod 7:   {1,2,3,4,5,6}  had reciprocals

mod 8:   {1,3,5,7}        had reciprocals

Note: mod a prime, all nonzeros have reciprocal

Definition:

is the set of numbers B, mod M, which

have GCD(B,M) = 1; i.e., have reciprocals.

Weird notation:  φ(M) = | |.     

Important fact:

is “closed” under multiplication mod M.

I.e.,   A,B∈         ⇒  A·B∈

Proof:  A·B has a reciprocal, namely B−1·A−1.

THANKS

EULER

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

φ(5) = 4

In general, if P is prime then φ(P) = P−1.

• 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1
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• 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

φ(8) = 4

• 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

φ(15) = 8

Exercise:

If P,Q distinct primes, φ(PQ) = (P−1)(Q−1).

• 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

Observation:

Each row of ZM times table

is a permutation of .

(All entries in a row distinct:

if A·B=A·B’ then multiply

by A−1 to deduce B=B’.)

Suppose we multiply all entries in row A

By definition: (A·1)(A·2)(A·4)(A·7)(A·8)(A·11)(A·13)(A·14)

But by permutation ppty: = (1)(2)(4)(7)(8)(11)(13)(14)

Dividing thru by common factor: A8 = 1

• 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

Observation:

Each row of ZM times table

is a permutation of .

(All entries in a row distinct:

if A·B=A·B’ then multiply

by A−1 to deduce B=B’.)

Suppose we multiply all entries in row A

By definition: (A·1)(A·2)(A·4)(A·7)(A·8)(A·11)(A·13)(A·14)

But by permutation ppty: = (1)(2)(4)(7)(8)(11)(13)(14)

Dividing thru by common factor: A8 = 1

This works in any ZM and you get Aφ(M) = 1.

Euler’s Theorem:

For any M and any A with GCD(A,M) = 1,

Aφ(M) ≡M 1

Fermat’s Little Theorem:

(corollary when M is prime)

If P is prime and A is not divisible by P, 

AP−1 ≡P 1

Fermat’s Little Theorem:

If P is prime and A is not divisible by P, 

AP−1 ≡P 1

This suggests a potential Primality test…

Given M:

Pick a few random A’s between 1 and M−1.

For each, compute AM−1 mod M.  (Modular exponentiation.)

If you ever get ≠ 1, output “M is composite”.

Otherwise, output, “M is probably prime”.
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Given M:

Pick a few random A’s between 1 and M−1.

For each, compute AM−1 mod M.  (Modular exponentiation.)

If you ever get ≠ 1, output “M is composite”.

Otherwise, output, “M is probably prime”.

This test does not work! 

There are a few, extremely rare, numbers M

called Carmichael Numbers

for which AM−1 mod M = 1 for all A,

even though M is composite.

Given M:

Pick a few random A’s between 1 and M−1.

For each, compute AM−1 mod M.  (Modular exponentiation.)

If you ever get ≠ 1, output “M is composite”.

Otherwise, output, “M is probably prime”.

However, this is the basis of the efficient

Miller−Rabin primality algorithm.

It just adds a few more number-theoretic tweaks.

Given M:

Pick a few random A’s between 1 and M−1.

For each, compute AM−1 mod M.  (Modular exponentiation.)

If you ever get ≠ 1, output “M is composite”.

Otherwise, output, “M is probably prime”.

Finally:  

Suppose you’re trying to pick a random prime.

As Carmichael numbers are so rare, the above 

test works with very high prob. for random M.

In fact, just testing A = 2, 3 is  (pretty much) good enough!

Arithmetic:

+, ×, ÷, mod, GCD,
modular exponent.,
primality, rand prime,
all efficient

Algorithms to study:

modular exponent.,
Euclid’s Algorithm,
miix-finding extension

Modular arithmetic:

,          , φ(M)

Euler’s Theorem
Fermat’s Little Theorem

Study Guide


