15-251: Great Theoretical Ideas in Computer Science Lecture 22

Polynomials

Find out about the wonderful world of $\mathbb{F}_{2 k}$ where two equals zero, plus is minus, and squaring is a linear operator!

- Rich Schroeppel

Fields

A field can be specified by its addition and multiplication tables.

$$
\left.\mathbb{F}_{3}=\mathbb{Z}_{3} \begin{array}{|c|c|c|c|}
\hline+ & 0 & 1 & 2 \\
\hline 0 & 0 & 1 & 2 \\
\hline 1 & 1 & 2 & 0 \\
\hline 2 & 2 & 0 & 1
\end{array} \right\rvert\, \begin{array}{|l|l|l|l|}
\hline \bullet & 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 \\
\hline 2 & 0 & 2 & 1 \\
\hline
\end{array}
$$

Must also check: Addition, multiplication are associative and commutative; field contains 0 such that $0+x=x \forall x$; field contains 1 such that $1 \cdot x=x \forall x$; for all x, exists $-x$ s.t. $x+(-x)=0$; for all $x \neq 0$, exists x^{-1} s.t. $x \cdot x^{-1}=1$; multiplication distributions over addition.

Fields

Informally, it's a number system where you can add, subtract, multiply, and divide-by-nonzero, with all the "usual laws of arithmetic" applying.

Examples:

Real numbers	\mathbb{R}
Rational numbers	\mathbb{Q}
Complex numbers	\mathbb{C}
Integers mod prime	\mathbb{Z}_{p}

NON-examples: Integers \mathbb{Z}
Positive reals \mathbb{R}^{+}subtraction??

Finite fields

Some familiar infinite fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
Finite fields we know: \mathbb{Z}_{p} aka \mathbb{F}_{p}, for p a prime Is there a field with 2 elements? Yes
Is there a field with 3 elements? Yes
Is there a field with 4 elements? Yes

Finite fields

Is there a field with 2 elements? Yes
Is there a field with 3 elements? Yes
Is there a field with 4 elements? Yes
Is there a field with 5 elements? Yes
Is there a field with 6 elements? No
Is there a field with 7 elements? Yes
Is there a field with 8 elements? Yes
Is there a field with 9 elements? Yes
Is there a field with 10 elements? No

Finite fields

Question:

If q is a prime power but not just a prime, what are the addition and multiplication tables of \mathbb{F}_{q} ?

Answer:
It's a little hard to describe.
We'll tell you later, but for 251's purposes, you only need to know about prime q.

Polynomials

Informally, a polynomial is an expression that looks like this:

$$
6 x^{3}-2.3 x^{2}+5 x+4.1
$$

x is a symbol, called the variable
the 'numbers' standing next to powers of x are called the coefficients

Finite fields

Theorem:
There is a field with q elements if and only if q is a power of a prime.

Up to isomorphism, it is unique.
l.e., all fields with q elements have the same addition and multiplication tables, after renaming elements.

This field is denoted \mathbb{F}_{q}.

Today's main topic: Polynomials

Polynomials

Informally, a polynomial is an expression that looks like this:

$$
6 x^{3}-2.3 x^{2}+5 x+4.1
$$

Actually, coefficients can come from any field.
Can allow multiple variables; we won't in this lecture.
The set of polynomials with variable x and coefficients from field F is denoted $F[\mathbf{x}]$.

Polynomials - formal definition

Let F be a field and let x be a variable symbol.
$F[x]$ is the set of polynomials over F, defined to be expressions of the form
$C_{d} X^{d}+C_{d-1} X^{d-1}+\cdots+c_{2} x^{2}+C_{1} x+C_{0}$ where each c_{i} is in F, and $c_{d} \neq 0$.

We call d the degree of the polynomial.
Also, the expression 0 is a polynomial.
(By convention, we call its degree $-\infty$, but don't get too hung up on it.)

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $\mathbb{F}_{11}[x]$:

$$
\begin{aligned}
\mathrm{P}(\mathrm{x}) & =\mathrm{x}^{2}+5 \mathrm{x}-1 \\
\mathrm{Q}(\mathrm{x}) & =3 \mathrm{x}^{3}+10 \mathrm{x} \\
\mathrm{P}(\mathrm{x})+\mathrm{Q}(\mathrm{x}) & =3 \mathrm{x}^{3}+\mathrm{x}^{2}+15 \mathrm{x}-1 \\
& =3 \mathrm{x}^{3}+\mathrm{x}^{2}+4 \mathrm{x}-1 \\
& =3 \mathrm{x}^{3}+\mathrm{x}^{2}+4 \mathrm{x}+10
\end{aligned}
$$

Adding and multiplying polynomials

Polynomial addition is associative and commutative.

$$
\begin{gathered}
0+P(x)=P(x)+0=P(x) \\
P(x)+(-P(x))=0
\end{gathered}
$$

Polynomial multiplication is associative and commutative.

$$
1 \cdot P(x)=P(x) \cdot 1=P(x)
$$

Multiplication distributes over addition:

$$
P(x) \cdot(Q(x)+R(x))=P(x) \cdot Q(x)+P(x) \cdot R(x)
$$

If $P(x) / Q(x)$ were always a polynomial, then $F[x]$ would be a field! Alas...

Dividing polynomials?

$\mathrm{P}(\mathrm{x}) / \mathrm{Q}(\mathrm{x})$ is not necessarily a polynomial.

Dividing polynomials?

\mathbb{Z} has the concept of "division with remainder": Given $a, b \in \mathbb{Z}, b \neq 0$, can write

$$
a=q \cdot b+r,
$$

where r is "smaller than" b.
$F[x]$ has the same concept:
Given $A(x), B(x) \in F[x], B(x) \neq 0$, can write

$$
A(x)=Q(x) \cdot B(x)+R(x)
$$

$$
\text { where } \operatorname{deg}(R(x))<\operatorname{deg}(B(x))
$$

"Division with remainder" for polynomials
Example: Divide $6 x^{4}+8 x+1$ by $2 x^{2}+4$ in $\mathbb{F}_{11}[x]$

$$
\begin{array}{l|l}
& 3 x^{2}+5 \\
2 x^{2}+4 & 6 x^{4}+8 x+1
\end{array}
$$

$$
-6 x^{4}+x^{2}
$$

$$
-x^{2}+8 x+1
$$

$$
--x^{2}+9
$$

$$
8 x+3
$$

Integers \mathbb{Z}
"size" = abs. value
"division":
$a=q b+r, \quad|r|<|b|$
can use Euclid's Algorithm
to find GCDs
p is "prime": no nontrivial divisors
$\mathbb{Z} \bmod p:$
a field if p is prime

Polynomials F[x]
"size" = degree
"division":

$$
A(x)=Q(x) B(x)+R(x)
$$

$$
\operatorname{deg}(R)<\operatorname{deg}(B)
$$

can use Euclid's Algorithm
to find GCDs
$\mathrm{P}(\mathrm{x})$ is "irreducible": no nontrivial divisors
$F[x] \bmod P(x)$:
a field if $P(x)$ is irreducible (with $|\mathrm{F}|^{\operatorname{deg}(P)}$ elements)

Enough algebraic theory.

Let's play with polynomials!

Evaluating polynomials

Given a polynomial $P(x) \in F[x]$,
$\mathrm{P}(\mathrm{a})$ means its evaluation at element a .
E.g., if $P(x)=x^{2}+3 x+5$ in $\mathbb{F}_{11}[x]$,
$P(6)=6^{2}+3 \cdot 6+5=36+18+5=59=4$
$P(4)=4^{2}+3 \cdot 4+5=16+12+5=33=0$

Definition: r is a root of $P(x)$ if $P(r)=0$.

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 1 .
Then $P(x)$ has exactly 1 root.

Proof:
Write $P(x)=c x+d \quad($ where $c \neq 0)$.
Then $P(r)=0 \Leftrightarrow c r+d=0$

$$
\begin{array}{rlrl}
\Leftrightarrow & c r & =-\mathrm{d} \\
\Leftrightarrow & & \mathrm{r} & =-\mathrm{d} / \mathrm{c} .
\end{array}
$$

Polynomial roots

Theorem:
Let $P(x) \in F[x]$ have degree 2 .
Then $P(x)$ has... how many roots??

```
E.g.: }\mp@subsup{x}{}{2}+1..
    # of roots over }\mp@subsup{\mathbb{F}}{2}{}[x]: 1 (namely, 1
    # of roots over F}\mp@subsup{\mathbb{F}}{3}{}[x]:
    # of roots over \mp@subsup{\mathbb{F}}{5}{}[x]: 2 (namely, 2 and 3)
    # of roots over \mathbb{R}[x] : 0
    # of roots over \mathbb{C}[x]: 2 (namely, i and -i)
```

The single most important theorem about polynomials over fields:

A nonzero degree-d polynomial has at most d roots.

Theorem: Over any field, a nonzero degree-d polynomial has at most d roots.

Proof by induction on $d \in \mathbb{N}$:
Base case: If $\mathrm{P}(\mathrm{x})$ is degree- 0 then $\mathrm{P}(\mathrm{x})=\mathrm{a}$ for some $\mathrm{a} \neq 0$. This has 0 roots.
Induction:
Assume true for $d \geq 0$. Let $P(x)$ have degree $d+1$.
If $\mathrm{P}(\mathrm{x})$ has 0 roots: we're done! Else let b be a root.
Divide with remainder: $P(x)=Q(x)(x-b)+R(x) .(*)$ $\operatorname{deg}(R)<\operatorname{deg}(x-b)=1$, so $R(x)$ is a constant. Say $R(x)=r$. Plug $x=b$ into $(*): 0=P(b)=Q(b)(b-b)+r=0+r=r$. So $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})(\mathrm{x}-\mathrm{b})$. Now $\operatorname{deg}(\mathrm{Q})=\mathrm{d} . \quad \therefore \mathrm{Q}$ has $\leq \mathrm{d}$ roots. $\therefore \mathrm{P}(\mathrm{x})$ has $\leq \mathrm{d}+1$ roots, completing the induction.

Theorem: Over any field, a nonzero degree-d polynomial has at most d roots.

Reminder:
This is only true over a field.
E.g., consider $P(x)=3 x$ over \mathbb{Z}_{6}.

It has degree 1, but 3 roots: 0,2 , and 4 .

Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).

Theorem:
There is exactly one polynomial $\mathrm{P}(\mathrm{x})$ of degree at most d such that $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.

Interpolation
Say you're given a bunch of "data points"

a_{1}
Can you find a (low-degree) polynomial which "fits the data"?

Interpolation

There are two things to prove.

1. There is at least one polynomial of degree \leq d passing through all d+1 data points.
2. There is at most one polynomial of degree $\leq \mathrm{d}$ passing through all d+1 data points.

Let's prove \#2 first.
E.g., thru 2 points there is a unique linear polynomial.

Interpolation

Theorem:
Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).
Then there is at most one polynomial $P(x)$
of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i.

Proof: Suppose $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ both do the trick. Let $R(x)=P(x)-Q(x)$.

Since $\operatorname{deg}(P), \operatorname{deg}(Q) \leq d$ we must have $\operatorname{deg}(R) \leq d$.
But $R\left(a_{i}\right)=b_{i}-b_{i}=0$ for all $i=1 \ldots d+1$.
$\therefore \mathrm{R}(\mathrm{x})$ is the 0 polynomial; i.e., $\mathrm{P}(\mathrm{x})=\mathrm{Q}(\mathrm{x})$.

Interpolation

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.

Rediscovered in 1795
by J.-L. Lagrange.

Lagrange Interpolation

a_{1}	b_{1}
a_{2}	b_{2}
a_{3}	b_{3}
\cdots	\cdots
a_{d}	b_{d}
a_{d+1}	b_{d+1}

Want $P(x)$
(with degree $\leq \mathrm{d}$)
such that $P\left(a_{i}\right)=b_{i} \forall i$.

Interpolation

Now let's prove the other part, that there is at least one polynomial.

Theorem:
Let pairs $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{d+1}, b_{d+1}\right)$ from a field F be given (with all a_{i} 's distinct).
Then there exists a polynomial $P(x)$ of degree at most d with $P\left(a_{i}\right)=b_{i}$ for all i.

Lagrange Interpolation

a_{1}	1
a_{2}	0
a_{3}	0
\cdots	\cdots
a_{d}	0
a_{d+1}	0

Can we do this special case?
Promise: once we solve this special case, the general case is very easy.

Lagrange Interpolation

a_{1}	1	
a_{2}	0	Just divide $P(x)$
a_{3}	0	by this number.
\cdots	\cdots	
a_{d}	0	
a_{d+1}	0	
$=\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)$		
ee is d.		
$=P\left(a_{3}\right)=\cdots=P\left(a_{d+1}\right)=0$.		
$=\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{d+1}\right)$.		

Lagrange Interpolation

a_{1}	0
a_{2}	1
a_{3}	0
\cdots	\cdots
a_{d}	0
a_{d+1}	0

Great! But what about this data?

$$
S_{2}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{d+1}\right)}
$$

Lagrange Interpolation

Numerator	a_{1}	1	
is a deg. d	a_{2}	0	Denominator
polynomial	a_{3}	0	is a nonzero
\cdots	\cdots	field element	
a_{d}	0		
a_{d+1}	0		
$S_{1}(x)=\frac{\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{d+1}\right)}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{d+1}\right)}$			

Call this the selector polynomial for a_{1}.

Lagrange Interpolation

a_{1}	0
a_{2}	0
a_{3}	0
\cdots	\cdots
a_{d}	0
a_{d+1}	1

Great! But what about this data?
$S_{d+1}(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d}\right)}{\left(a_{d+1}-a_{1}\right)\left(a_{d+1}-a_{2}\right) \cdots\left(a_{d+1}-a_{d}\right)}$

Lagrange Interpolation - example

Over \mathbb{F}_{11}, find a polynomial P of degree ≤ 2 such that $P(5)=1, P(6)=2, P(7)=9$.

$$
\begin{aligned}
\mathrm{S}_{5}(x) & =6(x-6)(x-7) \\
\mathrm{S}_{6}(x) & =-(x-5)(x-7) \\
S_{7}(x) & =6(x-5)(x-6) \\
P(x) & =1 S_{5}(x)+2 S_{6}(x)+9 S_{7}(x) \\
& =6\left(x^{2}-13 x+42\right)-2\left(x^{2}-12 x+35\right)+54\left(x^{2}-11 x+30\right) \\
& =3 x^{2}+x+9
\end{aligned}
$$

Recall: Interpolation

Let pairs $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{d}+1}, \mathrm{~b}_{\mathrm{d}+1}\right)$
from a field F be given (with all a_{i} 's distinct).

Theorem:
There is exactly one polynomial $\mathrm{P}(\mathrm{x})$ of degree at most d such that $P\left(a_{i}\right)=b_{i}$ for all $i=1 \ldots d+1$.

Representing Polynomials

Let $P(x) \in F[x]$ be a degree-d polynomial.
Representing $\mathrm{P}(\mathrm{x})$ using $\mathrm{d}+1$ field elements:

1. List the $d+1$ coefficients.
2. Give P's value at $\mathrm{d}+1$ different elements.

Rep 1 to Rep 2: Evaluate at $\mathrm{d}+1$ elements
Rep 2 to Rep 1: Lagrange Interpolation

Application:

Error-correcting codes

Sending messages on a noisy channel

The channel may corrupt up to k symbols.
How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from \mathbb{F}_{257}

CXQ1OD $\leftrightarrow \quad 118114120856678$
noisy channel \downarrow
118114104853578

The channel may corrupt up to k symbols.
How can Alice still get the message across?

Sending messages on a noisy channel
Let's say messages are sequences from \mathbb{F}_{257}

CXQ1OD $\leftrightarrow 118114120856678$
noisy channel \downarrow
118114104853578

How to correct the errors?
How to even detect that there are errors?

Simpler case: "Erasures"

```
118 114 120 85 66 78
erasure channel \
118 114 ?? 85 ?? 78
```

What can you do to handle up to k erasures?

Repetition code - noisy channel

Have Alice repeat each symbol $2 \mathrm{k}+1$ times.

$$
\begin{gathered}
118114120856678 \\
\text { becomes }
\end{gathered}
$$

$\begin{array}{lllllllllllllllllllll}118 & 118 & 118 & 114 & 114 & 114 & 120 & 120 & 120 & 85 & 85 & 85 & 66 & 66 & 66 & 78 & 78 & 78\end{array}$ noisy channel

118118118114223114120120120858585666666787878

At most k corruptions: Bob can take maj. of each block.

This is pretty wasteful!

To send message of $d+1$ symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

To send even 1 message symbol with k erasures, need to send $k+1$ total symbols.

Maybe for $d+1$ message symbols with k erasures, $d+k+1$ total symbols can suffice??

Repetition code

Have Alice repeat each symbol $k+1$ times.

$$
\begin{gathered}
118114120856678 \\
\text { becomes }
\end{gathered}
$$

$\begin{array}{llllllllllllllllllllll}118 & 118 & 118 & 114 & 114 & 114 & 120 & 120 & 120 & 85 & 85 & 85 & 66 & 66 & 66 & 78 & 78 & 78\end{array}$ erasure channel
$\begin{array}{llllllllllllllllllllll}118 & 118 & 118 & ? ?\end{array}$
If at most k erasures, Bob can figure out each symbol.

This is pretty wasteful!

To send message of $d+1$ symbols and guard against k erasures, we had to send $(d+1)(k+1)$ total symbols.

Can we do better?

Enter polynomials

Say Alice's message is $d+1$ elements from \mathbb{F}_{257}

$$
\begin{array}{llllll}
118 & 114 & 120 & 85 & 66 & 78
\end{array}
$$

Alice thinks of it as the coefficients of a degree-d polynomial $P(x) \in \mathbb{F}_{257}[x]$
$P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78$

Now wants to send the degree-d polynomial P(x).

Send it in the Values Representation!

$$
P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78
$$

Alice sends $P(x)$'s values on $d+k+1$ inputs:

$$
P(1), P(2), P(3), \ldots, P(d+k+1)
$$

This is called the Reed-Solomon encoding.

Example

Corruptions under Reed-Solomon

Assuming at most k corruptions, Bob will have at least $d+k+1$ 'correct' values. $P(1), P(2)$, bogus, $P(4)$, bogus, $P(6), \ldots, P(d+2 k+1)$
$P(x)$ is a poly of degree $\leq d$ which disagrees with the received data on at most k positions.

Send it in the Values Representation!
$P(x)=118 x^{5}+114 x^{4}+120 x^{3}+85 x^{2}+66 x+78$ Alice sends $P(x)$'s values on $d+k+1$ inputs: $P(1), P(2), P(3), \ldots, P(d+k+1)$

If there are at most k erasures, then Bob still knows P's value on $d+1$ points.

Bob recovers $\mathrm{P}(\mathrm{x})$ using Lagrange Interpolation!

What about corruptions, not erasures?

Trickier. So let Alice now send $P(x)$'s value on

$$
d+2 k+1 \text { inputs. }
$$

Assuming at most k corruptions,
Bob will have at least $d+k+1$ 'correct' values.
$P(1), P(2)$, bogus, $P(4)$, bogus, $P(6), \ldots, P(d+2 k+1)$
Trouble: Bob does not know which values are bogus.

Corruptions under Reed-Solomon

Theorem: $P(x)$ is the only polynomial of degree $\leq \mathrm{d}$ which disagrees with the data on $\leq k$ positions.
Proof:
Suppose $Q(x)$ is another such poly.
$P(x)$ and $Q(x)$ disagree with each other on at most 2 k positions.
\therefore they agree with each other on at least $(\mathrm{d}+2 \mathrm{k}+1)-2 \mathrm{k}=\mathrm{d}+1$ positions.
$\therefore P(x)=Q(x)$ since they are degree $\leq d$.

Corruptions under Reed-Solomon

Theorem: $P(x)$ is the only polynomial of degree $\leq \mathrm{d}$ which disagrees with the data on $\leq k$ positions.

Therefore Bob can determine P(x)!

Brute force algorithm:

Take each set of $d+1$ out of $d+2 k+1$ values.
Interpolate to get a polynomial $\mathrm{Q}(\mathrm{x})$ of deg $\leq \mathrm{d}$.
Check if it agrees with $\geq d+k+1$ values.

Reed-Solomon codes are used in practice!

Efficient Reed-Solomon

Brute-force 'decoding' takes $2^{\circ}{ }^{(d)}$ time. ©

Peterson 1960: a $\mathrm{O}\left(\mathrm{d}^{3}\right)$ decoding alg.

Berlekamp \& Massey, late '60s: key practical improvements

CMU's Prof. Guruswami: efficient algorithms to meaningfully correct more than k corruptions

Definitions:
Fields, polynomials

Theorem/proof:
Degree-d polys have at most d roots.

Algorithms:
Polynomial division with remainder
Lagrange Interpolation
Error correction and detection with Reed-Solomon

