Polynomials like to live in fields.

What is a field?

Find out about the wonderful world of \mathbb{F}_2^*, where two equals zero, plus is minus, and squaring is a linear operator!

- Rich Schroeppel

Informally, it’s a number system where you can add, subtract, multiply, and divide-by-nonzero, with all the “usual laws of arithmetic” applying.

Examples:
- Real numbers \mathbb{R}
- Rational numbers \mathbb{Q}
- Complex numbers \mathbb{C}
- Integers mod prime \mathbb{Z}_p

NON-examples:
- Integers \mathbb{Z}
- Positive reals \mathbb{R}^+

Fields can be specified by its addition and multiplication tables.

$\mathbb{F}_3 = \mathbb{Z}_3$

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Fields

A field can be specified by its addition and multiplication tables.

Finite fields

Some familiar infinite fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$

Finite fields we know: \mathbb{Z}_p aka \mathbb{F}_p, for p a prime

Is there a field with 2 elements? Yes
Is there a field with 3 elements? Yes
Is there a field with 4 elements? Yes
Finite fields

Is there a field with 2 elements? Yes
Is there a field with 3 elements? Yes
Is there a field with 4 elements? Yes
Is there a field with 5 elements? Yes
Is there a field with 6 elements? No
Is there a field with 7 elements? Yes
Is there a field with 8 elements? Yes
Is there a field with 9 elements? Yes
Is there a field with 10 elements? No

Finite fields

Theorem:
There is a field with \(q \) elements if and only if \(q \) is a power of a prime.
Up to isomorphism, it is unique.
I.e., all fields with \(q \) elements have the same addition and multiplication tables, after renaming elements.
This field is denoted \(\mathbb{F}_q \).

Finite fields

Question:
If \(q \) is a prime power but not just a prime, what are the addition and multiplication tables of \(\mathbb{F}_q \)?

Answer:
It’s a little hard to describe.
We’ll tell you later, but for 251’s purposes, you only need to know about prime \(q \).

Today’s main topic:
Polynomials

Informally, a polynomial is an expression that looks like this:

\[
6x^3 - 2.3x^2 + 5x + 4.1
\]

\(x \) is a symbol, called the variable
the ‘numbers’ standing next to powers of \(x \) are called the coefficients

Polynomials

Informally, a polynomial is an expression that looks like this:

\[
6x^3 - 2.3x^2 + 5x + 4.1 \in \mathbb{R}[x]
\]

Actually, coefficients can come from any field.
Can allow multiple variables; we won’t in this lecture.
The set of polynomials with variable \(x \) and coefficients from field \(F \) is denoted \(F[x] \).
Polynomials – formal definition

Let F be a field and let x be a variable symbol.

$F[x]$ is the set of polynomials over F, defined to be expressions of the form

$$c_d x^d + c_{d-1} x^{d-1} + \cdots + c_2 x^2 + c_1 x + c_0$$

where each c_i is in F, and $c_d \neq 0$.

We call d the degree of the polynomial. Also, the expression 0 is a polynomial.

(By convention, we call its degree $-\infty$, but don’t get too hung up on it.)

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in $F_{11}[x]$:

- $P(x) = x^2 + 5x - 1$
- $Q(x) = 3x^3 + 10x$

$$P(x) + Q(x) = 3x^3 + x^2 + 15x - 1 = 3x^3 + x^2 + 4x - 1 = 3x^3 + x^2 + 4x + 10$$

Dividing polynomials?

$P(x) / Q(x)$ is not necessarily a polynomial.

So $F[x]$ is not quite a field.

(It’s just a “commutative ring with identity”.)

Same with \mathbb{Z}, the integers:

it has everything except division.

Actually, there are many analogies between $F[x]$ and \mathbb{Z}.

Dividing polynomials?

\mathbb{Z} has the concept of “division with remainder”:

Given $a, b \in \mathbb{Z}$, $b \neq 0$, can write

$$a = q \cdot b + r,$$

where r is “smaller than” b.

$F[x]$ has the same concept:

Given $A(x), B(x) \in F[x]$, $B(x) \neq 0$, can write

$$A(x) = Q(x) \cdot B(x) + R(x),$$

where $\deg(R(x)) < \deg(B(x))$.

Adding and multiplying polynomials

Polynomial addition is associative and commutative.

0 + $P(x) = P(x) + 0 = P(x)$.

$P(x) + (-P(x)) = 0$.

Polynomial multiplication is associative and commutative.

1 • $P(x) = P(x) \cdot 1 = P(x)$.

Multiplication distributes over addition:

$P(x) \cdot (Q(x) + R(x)) = P(x) \cdot Q(x) + P(x) \cdot R(x)$

If $P(x) / Q(x)$ were always a polynomial, then $F[x]$ would be a field! **Alas...**
"Division with remainder" for polynomials

Example: Divide $6x^4+8x+1$ by $2x^2+4$ in $\mathbb{F}_{11}[x]

\[
\begin{array}{c|c}
3x^2+5 & 6x^4+8x+1 \\
2x^2+4 & -6x^4+x^2 \\
& -x^2+8x+1 \\
& -x^2+9 \\
& \hline
& 8x+3
\end{array}
\]

Check:

\[
6x^4+8x+1 = (3x^2+5)(2x^2+4)+(8x+3)
\]

(in $\mathbb{F}_{11}[x]$)

Integers \mathbb{Z}

“size” = abs. value

"division": $a = qb+r$, $|r| < |b|

can use Euclid’s Algorithm to find GCDs

Polynomials $\mathbb{F}[x]$

“size” = degree

"division": $A(x) = Q(x)B(x)+R(x)$, deg$(R) < \text{deg}(B)$

can use Euclid’s Algorithm to find GCDs

\mathbb{Z} mod p:

p is “prime”: no nontrivial divisors

\mathbb{Z} mod p:
a field if p is prime

Evaluating polynomials

Given a polynomial $P(x) \in \mathbb{F}[x]$, $P(a)$ means its evaluation at element a.

E.g., if $P(x) = x^2+3x+5$ in $\mathbb{F}_{11}[x]$,

$P(6) = 6^2+3\cdot6+5 = 36+18+5 = 59 = 4$
$P(4) = 4^2+3\cdot4+5 = 16+12+5 = 33 = 0$

Definition: r is a root of $P(x)$ if $P(r) = 0$.

Polynomial roots

Theorem:

Let $P(x) \in \mathbb{F}[x]$ have degree 1.
Then $P(x)$ has exactly 1 root.

Proof:

Write $P(x) = cx + d$ (where $c \neq 0$).
Then $P(r) = 0$ \iff $cr + d = 0$
\iff $cr = −d$
\iff $r = −d/c$.

Polynomial roots

Theorem:

Let $P(x) \in \mathbb{F}[x]$ have degree 2.
Then $P(x)$ has... how many roots??

E.g.: x^2+1

\begin{align*}
\# \text{ of roots over } \mathbb{F}_2[x] & : 1 \text{ (namely, 1)} \\
\# \text{ of roots over } \mathbb{F}_3[x] & : 0 \\
\# \text{ of roots over } \mathbb{F}_5[x] & : 2 \text{ (namely, 2 and 3)} \\
\# \text{ of roots over } \mathbb{R}[x] & : 0 \\
\# \text{ of roots over } \mathbb{C}[x] & : 2 \text{ (namely, } i \text{ and } -i) \\
\end{align*}
The single most important theorem about polynomials over fields:

A nonzero degree-d polynomial has at most d roots.

Theorem: Over any field, a nonzero degree-d polynomial has at most d roots.

Proof by induction on $d \in \mathbb{N}$:

Base case: If $P(x)$ is degree-0 then $P(x) = a$ for some $a \neq 0$. This has 0 roots.

Induction:

Assume true for $d \geq 0$. Let $P(x)$ have degree $d+1$.

If $P(x)$ has 0 roots: we’re done! Else let b be a root.

Divide with remainder: $P(x) = Q(x)(x−b) + R(x)$. (\ast)

$\deg(R) < \deg(x−b) = 1$, so $R(x)$ is a constant. Say $R(x)=r$.

Plug $x = b$ into (\ast): $0 = P(b) = Q(b)(b−b)+r = 0+r = r$.

So $P(x) = Q(x)(x−b)$. Now $\deg(Q) = d$. $\Rightarrow Q$ has $\leq d$ roots.

$\Rightarrow P(x)$ has $\leq d+1$ roots, completing the induction.

Reminder: This is only true over a field.

E.g., consider $P(x) = 3x$ over \mathbb{Z}_6.

It has degree 1, but 3 roots: 0, 2, and 4.

Interpolation

Say you’re given a bunch of “data points” $$(a_1,b_1), (a_2,b_2), \ldots, (a_{d+1},b_{d+1})$$ from a field F be given (with all a_i’s distinct).

Theorem: There is exactly one polynomial $P(x)$ of degree at most d such that $P(a_i) = b_i$ for all $i = 1 \ldots d+1$.

E.g., thru 2 points there is a unique linear polynomial.

Interpolation

There are two things to prove.

1. There is at least one polynomial of degree $\leq d$ passing through all $d+1$ data points.

2. There is at most one polynomial of degree $\leq d$ passing through all $d+1$ data points.

Let’s prove #2 first.
Interpolation

Theorem: Let pairs \((a_1, b_1), (a_2, b_2), \ldots, (a_{d+1}, b_{d+1})\) from a field \(F\) be given (with all \(a_i\)'s distinct). Then there is at most one polynomial \(P(x)\) of degree at most \(d\) with \(P(a_i) = b_i\) for all \(i\).

Proof: Suppose \(P(x)\) and \(Q(x)\) both do the trick. Let \(R(x) = P(x) - Q(x)\). Since \(\deg(P), \deg(Q) \leq d\) we must have \(\deg(R) \leq d\). But \(R(a_i) = b_i - b_i = 0\) for all \(i = 1 \ldots d+1\). ∴ \(R(x)\) is the 0 polynomial; i.e., \(P(x) = Q(x)\).

Interpolation

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.

Rediscovered in 1795 by J.-L. Lagrange.

Lagrange Interpolation

\[
\begin{array}{cc}
 a_1 & b_1 \\
 a_2 & b_2 \\
 a_3 & b_3 \\
 \vdots & \vdots \\
 a_d & b_d \\
 a_{d+1} & b_{d+1}
\end{array}
\]

Want \(P(x)\) (with degree \(\leq d\)) such that \(P(a_i) = b_i\) ∀\(i\).

Interpolation

Now let's prove the other part, that there is at least one polynomial.

Theorem: Let pairs \((a_1, b_1), (a_2, b_2), \ldots, (a_{d+1}, b_{d+1})\) from a field \(F\) be given (with all \(a_i\)'s distinct). Then there exists a polynomial \(P(x)\) of degree at most \(d\) with \(P(a_i) = b_i\) for all \(i\).

Interpolation

Can we do this special case?

Promise: once we solve this special case, the general case is very easy.
Lagrange Interpolation

$\begin{array}{c|c}
 a_1 & 1 \\
 a_2 & 0 \\
 a_3 & 0 \\
 \vdots & \vdots \\
 a_d & 0 \\
 a_{d+1} & 0 \\
\end{array}$

Just divide $P(x)$ by this number.

Idea #1: $P(x) = (x-a_2)(x-a_3)\cdots(x-a_{d+1})$
- Degree is d. ✔
- $P(a_2) = P(a_3) = \cdots = P(a_{d+1}) = 0$. ✔
- $P(a_1) = (a_1-a_2)(a_1-a_3)\cdots(a_1-a_{d+1})$. ??

Lagrange Interpolation

$\begin{array}{c|c}
 a_1 & 1 \\
 a_2 & 0 \\
 a_3 & 0 \\
 \vdots & \vdots \\
 a_d & 0 \\
 a_{d+1} & 0 \\
\end{array}$

Denominator is a nonzero field element

Numerator is a deg. d polynomial

Call this the selector polynomial for a_1.

Idea #2:

Great! But what about this data?

$S_2(x) = \frac{(x-a_1)(x-a_3)\cdots(x-a_{d+1})}{(a_2-a_1)(a_2-a_3)\cdots(a_2-a_{d+1})}$

Great! But what about this data?

$S_{d+1}(x) = \frac{(x-a_1)(x-a_2)\cdots(x-a_d)}{(a_{d+1}-a_1)(a_{d+1}-a_2)\cdots(a_{d+1}-a_d)}$

Lagrange Interpolation – example

Over \mathbb{F}_{11}, find a polynomial P of degree ≤ 2 such that $P(5) = 1$, $P(6) = 2$, $P(7) = 9$.

$S_5(x) = \frac{6}{5-6}(x-6)(x-7)$
$S_6(x) = \frac{1}{5-5}(x-5)(x-7)$
$S_7(x) = \frac{6}{5-5}(x-5)(x-6)$

$P(x) = 1 \cdot S_5(x) + 2 \cdot S_6(x) + 9 \cdot S_7(x)$

$= 6(x^2-13x+42) - 2(x^2-12x+35) + 54(x^2-11x+30)$

$= 3x^2+x+9$
Recall: Interpolation

Let pairs \((a_1, b_1), (a_2, b_2), \ldots, (a_{d+1}, b_{d+1})\) from a field \(F\) be given (with all \(a_i\)'s distinct).

Theorem:
There is exactly one polynomial \(P(x)\) of degree at most \(d\) such that \(P(a_i) = b_i\) for all \(i = 1 \ldots d+1\).

Representing Polynomials

Let \(P(x) \in F[x]\) be a degree-\(d\) polynomial.

Representing \(P(x)\) using \(d+1\) field elements:
1. List the \(d+1\) coefficients.
2. Give \(P\)'s value at \(d+1\) different elements.

Rep 1 to Rep 2: Evaluate at \(d+1\) elements
Rep 2 to Rep 1: Lagrange Interpolation

Application: Error-correcting codes

Sending messages on a noisy channel

Let's say messages are sequences from \(F_{257}\)
\[
\text{CXQ1OD} \leftrightarrow 118 \ 114 \ 120 \ 85 \ 66 \ 78 \\
\text{noisy channel} \\
118 \ 114 \ 104 \ 85 \ 35 \ 78
\]

The channel may corrupt up to \(k\) symbols.
How can Alice still get the message across?

Sending messages on a noisy channel

Let's say messages are sequences from \(F_{257}\)
\[
\text{CXQ1OD} \leftrightarrow 118 \ 114 \ 120 \ 85 \ 66 \ 78 \\
\text{noisy channel} \\
118 \ 114 \ 104 \ 85 \ 35 \ 78
\]

How to correct the errors?
How to even detect that there are errors?
Simpler case: “Erasures”

What can you do to handle up to \(k\) erasures?

Repetition code

Have Alice repeat each symbol \(k+1\) times.

If at most \(k\) erasures, Bob can figure out each symbol.

Repetition code – noisy channel

Have Alice repeat each symbol \(2k+1\) times.

At most \(k\) corruptions: Bob can take maj. of each block.

This is pretty wasteful!

To send message of \(d+1\) symbols and guard against \(k\) erasures, we had to send \((d+1)(k+1)\) total symbols.

This is pretty wasteful!

To send message of \(d+1\) symbols and guard against \(k\) erasures, we had to send \((d+1)(k+1)\) total symbols.

Enter polynomials

Say Alice’s message is \(d+1\) elements from \(F_{257}\).

Alice thinks of it as the coefficients of a degree-\(d\) polynomial \(P(x) \in F_{257}[x]\)

\[P(x) = 118x^5 + 114x^4 + 120x^3 + 85x^2 + 66x + 78 \]

Now wants to send the degree-\(d\) polynomial \(P(x)\).
This is called the **Reed–Solomon encoding**.

Example

Corruptions under Reed–Solomon

Assuming at most k corruptions, Bob will have at least $d+k+1$ ‘correct’ values.

\[P(1), P(2), \text{bogus}, P(4), \text{bogus}, P(6), \ldots, P(d+2k+1) \]

\[P(x) \text{ is a poly of degree } \leq d \text{ which disagrees with the received data on at most } k \text{ positions.} \]

Theorem: It is the **only** such polynomial.

Corruptions under Reed–Solomon

Theorem: $P(x)$ is the **only** polynomial of degree $\leq d$ which disagrees with the data on $\leq k$ positions.

Proof:

Suppose $Q(x)$ is another such poly. $P(x)$ and $Q(x)$ disagree with each other on at most $2k$ positions.

\therefore they agree with each other on at least $(d+2k+1)−2k = d+1$ positions.

$\therefore P(x) = Q(x)$ since they are degree $\leq d$.

Send it in the Values Representation!

\[P(x) = 118x^5 + 114x^4 + 120x^3 + 85x^2 + 66x + 78 \]

Alice sends $P(x)$’s values on $d+k+1$ inputs:

\[P(1), P(2), P(3), \ldots, P(d+k+1) \]

If there are at most k erasures, then Bob still knows P’s value on $d+1$ points.

Bob recovers $P(x)$ using Lagrange Interpolation!

Send it in the Values Representation!

\[P(x) = 118x^5 + 114x^4 + 120x^3 + 85x^2 + 66x + 78 \]

Alice sends $P(x)$’s values on $d+k+1$ inputs:

\[P(1), P(2), P(3), \ldots, P(d+k+1) \]

What about corruptions, not erasures?

Trickier. So let Alice now send $P(x)$’s value on $d + 2k + 1$ inputs.

Assuming at most k corruptions, Bob will have at least $d+k+1$ ‘correct’ values.

\[P(1), P(2), \text{bogus}, P(4), \text{bogus}, P(6), \ldots, P(d+2k+1) \]

Trouble: Bob does not know which values are bogus.
Corruptions under Reed–Solomon

Theorem: \(P(x) \) is the **only** polynomial of degree \(\leq d \) which disagrees with the data on \(\leq k \) positions.

Therefore Bob can determine \(P(x) \)!

Brute force algorithm:

Take each set of \(d+1 \) out of \(d+2k+1 \) values. Interpolate to get a polynomial \(Q(x) \) of deg \(\leq d \). Check if it agrees with \(\geq d+k+1 \) values.

Efficient Reed–Solomon

Brute-force ‘decoding’ takes \(2^{O(d)} \) time. 😊

Peterson 1960: a \(O(d^3) \) decoding alg.

Berlekamp & Massey, late ’60s: key practical improvements

CMU’s Prof. Guruswami: efficient algorithms to meaningfully correct more than \(k \) corruptions

Reed–Solomon codes are used in practice!

These are all RS codes.

Study Guide

Definitions: Fields, polynomials

Theorem-proof:
Degree-\(d \) polys have at most \(d \) roots.

Algorithms:
Polynomial division with remainder
Lagrange Interpolation
Error correction and detection with Reed–Solomon