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15-251: Great Theoretical Ideas in Computer Science

Polynomials

Lecture 22

Polynomials like to live in fields.

What is a field?

Find out about the wonderful world of 

where two equals zero, plus is minus, 

and squaring is a linear operator!  

– Rich Schroeppel

Fields

Informally, it’s a number system where you can

add, subtract, multiply, and divide-by-nonzero,

with all the “usual laws of arithmetic” applying.

Examples: Real numbers ℝ

Rational numbers ℚ

Complex numbers ℂ

Integers mod prime ℤp

NON-examples: Integers ℤ

Positive reals ℝ+

division??

subtraction??

A field can be specified by its

addition and multiplication tables.

= ℤ3

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

• 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Must also check: Addition, multiplication are associative and commutative;

field contains 0 such that 0+x=x ∀x; field contains 1 such that 1•x=x ∀x;

for all x, exists −x s.t. x+(−x)=0; for all x≠0, exists x−1 s.t. x•x−1=1;

multiplication distributions over addition.

Fields Finite fields

Some familiar infinite fields:  ℚ, ℝ, ℂ

Finite fields we know:  ℤp aka     ,  for p a prime

Is there a field with 2 elements? Yes

Is there a field with 3 elements? Yes

Is there a field with 4 elements? Yes

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

• 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a
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Finite fields

Is there a field with 2 elements? Yes

Is there a field with 3 elements? Yes

Is there a field with 4 elements? Yes

Is there a field with 5 elements? Yes

Is there a field with 6 elements? No

Is there a field with 7 elements? Yes

Is there a field with 8 elements? Yes

Is there a field with 9 elements? Yes

Is there a field with 10 elements? No

Finite fields

Theorem:

There is a field with q elements 

if and only if q is a power of a prime.

Up to isomorphism, it is unique.

I.e., all fields with q elements have the 

same addition and multiplication tables,

after renaming elements.

This field is denoted     .

Finite fields

Question:

If q is a prime power but not just a prime,

what are the addition and multiplication

tables of     ?

Answer:

It’s a little hard to describe.

We’ll tell you later, but for 251’s purposes,

you only need to know about prime q.

Today’s main topic:

Polynomials

Polynomials

Informally, a polynomial is an expression 

that looks like this:

6x3 − 2.3x2 + 5x + 4.1

x is a symbol, called the variable

the ‘numbers’ standing next to 

powers of x are called the coefficients

Polynomials

Informally, a polynomial is an expression 

that looks like this:

Actually, coefficients can come from any field.

6x3 − 2.3x2 + 5x + 4.1

Can allow multiple variables; we won’t in this lecture.

The set of polynomials with variable x and 

coefficients from field F is denoted F[x].
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Polynomials – formal definition

Let F be a field and let x be a variable symbol.

F[x] is the set of polynomials over F, 

defined to be expressions of the form

where each ci is in F, and cd ≠ 0.

We call d the degree of the polynomial.

Also, the expression 0 is a polynomial.

(By convention, we call its degree −∞, but don’t get too hung up on it.)

cd xd + cd−1 xd−1 + ··· + c2 x2 + c1 x + c0

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in           :

P(x) = x2 + 5x − 1

Q(x) = 3x3 + 10x

P(x) + Q(x) = 3x3 + x2 + 15x − 1

= 3x3 + x2 + 4x − 1 

= 3x3 + x2 +   4x + 10

Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in           :

P(x) = x2 + 5x − 1

Q(x) = 3x3 + 10x

P(x) • Q(x) = (x2 + 5x − 1)(3x3 + 10x)

= 3x5 + 15x4 + 7x3 + 50x2 − 10x

= 3x5 + 4x4 + 7x3 + 6x2 +     x

Adding and multiplying polynomials

Polynomial addition is associative and commutative.

0 + P(x) = P(x) + 0 = P(x).

P(x) + (−P(x)) = 0.

Polynomial multiplication is associative and commutative.

1 • P(x) = P(x) • 1 = P(x).

Multiplication distributes over addition:

P(x) • (Q(x) + R(x)) = P(x) • Q(x) + P(x) • R(x)

If P(x) / Q(x) were always a polynomial, 

then F[x] would be a field!  Alas…

Dividing polynomials?

P(x) / Q(x) is not necessarily a polynomial.

So F[x] is not quite a field.

(It’s just a “commutative ring with identity”.)

Same with ℤ, the integers: 

it has everything except division.

Actually, there are many analogies between

F[x] and ℤ.

Dividing polynomials?

ℤ has the concept of “division with remainder”:

Given a,b∈ℤ, b≠0, can write

a = q•b + r,  

where r is “smaller than” b.

F[x] has the same concept:

Given A(x),B(x)∈F[x], B(x)≠0, can write

A(x) = Q(x)•B(x) + R(x),  

where deg(R(x)) < deg(B(x)).  
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“Division with remainder” for polynomials

Example: Divide 6x4+8x+1 by 2x2+4 in 

2x2+4 6x4+8x+1

3x2

6x4+x2−

−x2+8x+1

+5

−x2+9−

8x+3

Check:

6x4+8x+1 

= (3x2+5)(2x2+4)+(8x+3)

(in           )

Integers  ℤ

“division”:  

a = qb+r,   |r| < |b|

“division”:  

A(x) = Q(x)B(x)+R(x),

deg(R) < deg(B)

can use Euclid’s Algorithm

to find GCDs

can use Euclid’s Algorithm 

to find GCDs

Polynomials F[x]

“size” = abs. value “size” = degree

p is “prime”: 

no nontrivial divisors

P(x) is “irreducible”: 

no nontrivial divisors

ℤ mod p:

a field if p is prime

F[x] mod P(x):

a field if P(x) is irreducible

(with |F|deg(P) elements)

Enough algebraic theory.

Let’s play with polynomials!

Evaluating polynomials

Given a polynomial P(x) ∈ F[x],

P(a) means its evaluation at element a.

E.g., if  P(x) = x2+3x+5 in             ,

P(6) = 62+3·6+5 = 36+18+5 = 59 = 4

P(4) = 42+3·4+5 = 16+12+5 = 33 = 0

Definition: r is a root of P(x) if P(r) = 0.

Polynomial roots

Theorem: 

Let P(x) ∈ F[x] have degree 1.

Then P(x) has exactly 1 root.

Proof:

Write P(x) = cx + d   (where c≠0).

Then P(r) = 0 ⇔   cr + d = 0

⇔   cr = −d

⇔         r = −d/c.

Polynomial roots

Theorem: 

Let P(x) ∈ F[x] have degree 2.

Then P(x) has… how many roots??

E.g.:    x2+1…

# of roots over          : 1 (namely, 1)

# of roots over          : 0

# of roots over          : 2 (namely, 2 and 3)

# of roots over          : 0

# of roots over          : 2 (namely, i and −i)
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The single most important theorem 

about polynomials over fields:

A nonzero degree-d 

polynomial has 

at most d roots.

Theorem: Over any field, a nonzero degree-d 

polynomial has at most d roots.

Proof by induction on d∈ℕ:

Base case:  If P(x) is degree-0 then P(x) = a for some a≠0.  

This has 0 roots.

Induction:   

Assume true for d ≥ 0.  Let P(x) have degree d+1.

If P(x) has 0 roots: we’re done!  Else let b be a root.

Divide with remainder: P(x) = Q(x)(x−b) + R(x).  (∗)

deg(R) < deg(x−b) = 1, so R(x) is a constant.  Say R(x)=r.

Plug x = b into (∗):  0 = P(b) = Q(b)(b−b)+r = 0+r = r.

So P(x) = Q(x)(x−b).  Now deg(Q) = d.  ∴ Q has ≤ d roots.

∴ P(x) has ≤ d+1 roots, completing the induction.

Reminder:

This is only true over a field.

E.g., consider P(x) = 3x  over ℤ6.

It has degree 1, but 3 roots:  0, 2, and 4.

Theorem: Over any field, a nonzero degree-d 

polynomial has at most d roots.
Interpolation

Say you’re given a bunch of “data points”

a1

b1

(a2,b2)
(a3,b3)

(a4,b4)

(a5,b5)

Can you find a (low-degree) 

polynomial which “fits the data”?

Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Theorem:  

There is exactly one polynomial P(x)

of degree at most d such that 

P(ai) = bi for all i = 1…d+1.

E.g., thru 2 points there is a unique linear polynomial.

Interpolation

There are two things to prove.

1. There is at least one polynomial of degree

≤ d passing through all d+1 data points.

2. There is at most one polynomial of degree

≤ d passing through all d+1 data points.

Let’s prove #2 first.
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Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Then there is at most one polynomial P(x)

of degree at most d with P(ai) = bi for all i.

Theorem:

Proof: Suppose P(x) and Q(x) both do the trick.

Let R(x) = P(x)−Q(x).  

Since deg(P), deg(Q) ≤ d we must have deg(R) ≤ d.

But R(ai) = bi−bi = 0 for all i = 1…d+1.

∴ R(x) is the 0 polynomial; i.e., P(x)=Q(x).

Interpolation

Now let’s prove the other part,

that there is at least one polynomial.

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Then there exists a polynomial P(x) of 

degree at most d with P(ai) = bi for all i.

Theorem:

Interpolation

The method for constructing the polynomial

is called Lagrange Interpolation.

Discovered in 1779 

by Edward Waring.

Rediscovered in 1795 

by J.-L. Lagrange.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Want P(x)
(with degree ≤ d) 

such that  P(ai) = bi ∀i.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Can we do this special case?

Promise: once we solve this special case,

the general case is very easy.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0
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Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Idea #1: P(x) = (x−a2)(x−a3)···(x−ad+1)

Degree is d.  ✔

P(a2) = P(a3) = · · · = P(ad+1) = 0.  ✔

P(a1) = (a1−a2)(a1−a3)···(a1−ad+1).  ??

Just divide P(x)

by this number.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Idea #2:

Denominator

is a nonzero

field element

Numerator 

is a deg. d 

polynomial

Call this the selector polynomial for a1.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

0

1

0

···

0

0

Great!  But what about this data?

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

0

0

0

···

0

1

Great!  But what about this data?

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Great!  But what about this data?

Lagrange Interpolation – example

Over   11, find a polynomial P of degree ≤ 2

such that P(5) = 1, P(6) = 2, P(7) = 9.

S5(x) = 6 (x−6)(x−7)6

S6(x) = 6 (x−5)(x−7)−

S7(x) = 6 (x−5)(x−6)6

P(x) = 1 S5(x) + 2 S6(x) + 9 S7(x)

P(x) = 6(x2−13x+42) − 2(x2−12x+35) + 54(x2−11x+30)

P(x) = 3x2+x+9
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Recall:  Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai’s distinct).

Theorem:  

There is exactly one polynomial P(x)

of degree at most d such that 

P(ai) = bi for all i = 1…d+1.

Representing Polynomials

Let P(x)∈F[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1.

2.

List the d+1 coefficients.

Give P’s value at d+1 different elements.

Rep 1 to Rep 2:  

Rep 2 to Rep 1:  

Evaluate at d+1 elements

Lagrange Interpolation

Application:

Error-correcting codes

Sending messages on a noisy channel

Alice Bob

“ goo.gl/CXQ1OD ”

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a noisy channel

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Let’s say messages are sequences from 

CXQ1OD      ↔    118  114  120  85  66  78

vrxUBN ↔     118  114  104 85  35 78

noisy channel

Sending messages on a noisy channel

How to correct the errors?

How to even detect that there are errors?

Let’s say messages are sequences from 

vrxUBN ↔     118  114  104 85  35 78

noisy channel

CXQ1OD      ↔    118  114  120  85  66  78
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Simpler case:  “Erasures”

What can you do to handle up to k erasures?

118  114  120  85  66  78

118  114   ?? 85  ?? 78

erasure channel

Repetition code

118  114  120  85  66  78

erasure channel

Have Alice repeat each symbol k+1 times.

118  118   118  114  114  114  120  120  120  85  85  85  66  66  66  78  78  78

becomes

118  118   118   ?? ?? 114  120  120  120  85  85  85  66  66  66  78  78  78

If at most k erasures, Bob can figure out each symbol.

Repetition code – noisy channel

118  114  120  85  66  78

noisy channel

Have Alice repeat each symbol 2k+1 times.

118  118   118  114  114  114  120  120  120  85  85  85  66  66  66  78  78  78

becomes

118  118   118  114  223 114  120  120  120  85  85  85  66  66  66  78  78  78

At most k corruptions:  Bob can take maj. of each block.

This is pretty wasteful!

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Can we do better?

This is pretty wasteful!

To send even 1 message symbol with
k erasures, need to send k+1 total symbols.

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Maybe for d+1 message symbols with k erasures, 
d+k+1 total symbols can suffice??

Enter polynomials

Say Alice’s message is d+1 elements from

118  114  120  85  66  78

Alice thinks of it as the coefficients of a 

degree-d polynomial P(x) ∈        [x]

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

Now wants to send the degree-d polynomial P(x).
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Send it in the Values Representation!

Alice sends P(x)’s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

This is called the Reed–Solomon encoding.

Send it in the Values Representation!

Alice sends P(x)’s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

If there are at most k erasures, then

Bob still knows P’s value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!

Example What about corruptions, not erasures?

Trickier.  So let Alice now send P(x)’s value on

d + 2k + 1 inputs.

Assuming at most k corruptions,

Bob will have at least d+k+1 ‘correct’ values.

P(1),  P(2), bogus, P(4), bogus, P(6), …, P(d+2k+1)

Trouble: Bob does not know which

values are bogus.

Corruptions under Reed–Solomon

Assuming at most k corruptions,

Bob will have at least d+k+1 ‘correct’ values.

P(1),  P(2), bogus, P(4), bogus, P(6), …, P(d+2k+1)

P(x) is a poly of degree ≤ d 

which disagrees with the received 

data on at most k positions.

Theorem:  It is the only such polynomial.

Corruptions under Reed–Solomon

Theorem:  P(x) is the only polynomial of

degree ≤ d which disagrees with

the data on ≤ k positions.

Suppose Q(x) is another such poly.

P(x) and Q(x) disagree with each other

on at most 2k positions.

∴ they agree with each other on at least

(d+2k+1)−2k = d+1 positions.

∴ P(x) = Q(x) since they are degree ≤ d.

Proof:
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Corruptions under Reed–Solomon

Theorem:  P(x) is the only polynomial of

degree ≤ d which disagrees with

the data on ≤ k positions.

Therefore Bob can determine P(x)!

Brute force algorithm:

Take each set of d+1 out of d+2k+1 values.

Interpolate to get a polynomial Q(x) of deg ≤ d.

Check if it agrees with ≥ d+k+1 values.

Efficient Reed–Solomon

Brute-force ‘decoding’ takes 2O(d) time.  

Peterson 1960: a O(d3) decoding alg.

Berlekamp & Massey, late ‘60s:

key practical improvements

CMU’s Prof. Guruswami:

efficient algorithms to meaningfully

correct more than k corruptions

Reed−Solomon codes are used in practice!

These

are all

RS codes.

Definitions:

Fields, polynomials

Theorem/proof:

Degree-d polys have
at most d roots.

Algorithms:

Polynomial division 
with remainder

Lagrange Interpolation

Error correction and
detection with
Reed−Solomon

Study Guide


