15-251: Great Theoretical Ideas in Computer Science
Lecture 23

Linear Algebra

In linear algebra, ‘numbers’ are called scalars.

They can actually be from any field.

i

F" = {all vectors of dimension n over field F}

If the field is R and the dimension is < 3,
you can draw pictures.

The key operation on vectors:
taking linear combinations

= multiplying them by scalars
and adding them

3 4 !
2(+1(|3[+2| -1
1 1 =.5

Linear algebra is about vectors.

Concretely, vectors look like this:

d

They are arrays of numbers.

# of numbers, n, is called the dimension.
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Remark: Even in, say, [Ff1 when the scalars
are from a finite field, geometric

intuition can be helpful.

i 861 [d

This is the definition of Matrix X Vector multiplication.

If you stack several linear combinations horizontally,

you get the definition of Matrix X Matrix multiplication:

3 4 3 4 7 292
2 3 [(1) : 1_020]= 2 3 5 194
11 11 2 98

Matrix mult is associative, but not commutative!

Application: Fun with Fibonacci

0,1,1,2, 3,5, 8,13, 21, 34, 55, 89, ...

Fibonacci sequence:
Fob=0, F,=1, F,=F_;+ F_,.

There's a direct formula for F:

om0 - 3 ()

You could prove that by induction.
But how would you come up with it?!

To take linear combinations of vectors,
E 4
say, |2| and |3/,
1 1

3 4
make them the columns of a matrix: [2 3]
11

Linear combination with scalars a,b is:

f 3J61= [

3 4
You can also think of [2 3} as a map, R? - R3
11

Fibonacci via Linear Algebra

Fibonacci sequence:
Fpb=0 F, =1, F.=F_;+ F_5

To get the next, you only need to know last two.

Let’s stack the the last two into a vector:

Fe-1] 2 Fx
Fr—2 Frk-1

=l olli=]



Fibonacci via Linear Algebra Fibonacci via Linear Algebra
o] [o]= 1] [ o] [1]= 3]
: 30-

11
We can think of A = {1 O} as a map, R? -» R2,

What does this map look like?

To the computer!

[1.00 1.00; 1.00 0.00]

Fibonacci via Linear Algebra

Two ‘interesting’ directions, which A just scales.

They satisfy [1 é] [;] =A [;]

(from the picture, A = 1.6,—0.6)

*.\ “'-}‘:/" A How can we solve for x, y, \?
! S (2 equations, 3 unknowns)
If (x,y) is a solution, sois (2x,2y), (3x,3y), (Yax,%ay)...
: : : Make A”x parallel to x WLOG, fiX y — 1.

Fibonacci via Linear Algebra Fibonacci via Linear Algebra

1+45 1-v5

Two ‘interesting’ directions, which A just scales. Define: ¢ = 5 = 1.618, ¢ = 5 = —.618

11 [e

They satisfy [1 é] [)l(] =A [ﬂ R [ 0} {1}

1)1y
WLOG, fix y = 1. X+ 1=Ax 0} H

o

X=A
© X=\ solves x2—x—1=0 (The ‘interesting’ directions are called eigenvectors
1445 and the scaling factors are called eigenvalues.)

X=X\
P




[1.00 1.00; 1.00 0.00]

RE1 -1 05 0 05 1 15
Make A"x parallel to x.

Fibonacci via Linear Algebra

Define: p = 22 ~ 1,618, y= 12"~ 618

1

We just showed: [1

Hence:

—0.618 0.382
1 ~1-0.618

[1.00 1.00; 1.00 0.00]

o

NG

RE1 -1 05 0 05 1 15
Make A"x parallel to x.

I -

Fibonacci via Linear Algebra

Define: ¢ = **7° ~ 1618, 1f <~ 618

1

We just showed: [

Hence:

1.618 2.618 4.236 854 11.090
1 |7 [1.618]"|2.618|" ~ | 6.854

Fibonacci via Linear Algebra

1+ 45 1-4/5
2

Define: ¢ = = 1.618, ¢ = 5 & —.618

We just showed: [1 (1)} {ﬂ
1] [¢
o) [3

1
0

[1.00 1.00; 1.00 0.00]

Make A°x parallel to x




Fibonacci via Linear Algebra

1+ /5

1-4/5
2 2

Define: ¢ = ~ —.618

bl

~1.618, ¢ =

More on linear combinations

A key step: expressing B} as a linear

combination of Pﬂ and {ﬂ

More generally:

We often fix a small number of vectors and ask:
What can we get by taking linear combinations?

Let’s do some examples in R3.

Fibonacci via Linear Algebra

1+ 45

1-45
2 2

Define: ¢ = ~ 1.618, ¢ = ~ —.618

Definition:

The span of a set of vectors S={v;, ..., v, },
is the set of all linear combinations of them.

€1
span({vy,vy,v3}) = Vi V2 V3 |:C2] :Cq1,Cy,C3 €F
c3

k = 0 technicality: span(®@) = {the 0 vector}

7
5] = all vectors on this line thru origin

| ;




= this 2D plane thru origin

A span example in [Fg

Here are n—1 vectors in [F;:

0 0
0 0
1 0

0
1
1

Claim: E = {all vectors with an even # of 1's}.

Vector spaces/subspaces

In R3, a span of 2 vectors (not on the same line)
is a 2D plane through the origin.

A 2D plane is kind of ‘like’ a copy of R2.

It's a closed space where vectors can hang out.

Let’s make this a bit more formal.

A span example in IFS

Remember:
F; is the 2-element field (integers mod 2).
[Fg is all length-n vectors over this field.

E.g., [Fg has 128 vectors. Here’s a linear combination:
1 1

(Note: only two possible scalars, 0 and 1.)

= this 2D plane thru origin

Vector spaces/subspaces

Definition:

Let S be a set of vectors in F".
The set V = span(S) is called a subspace of F".
We may also just call it a vector space.

Equivalently:

V € F"is a subspace if and only if it is
“closed under linear combinations”.

(l.e., the linear combination of vectors in V is always also in V.)




Vector subspace example #1
0
0
0
0
1
1
= {all vectors in F5 with an even # of 1's}.

This is a vector space.
It’s closed under linear combinations:
the sum of any set of vectors in E is in E.

Linear independence

S € Vs linearly independent if no veS
is in the span of S\ {v}.

1 (0] 1
R3 example: Let u=|{0|, v=|[1], w=|[1].
0 0 0

{u,v,w}: not linearly independent (iinearly dependent’)
{u,v}: linearly independent. As are {u,w}, {v,w
{u}: linearly independent

{0}: not linearly independent }edge cases
D: linearly independent

Vector subspace example #2

1 0 1
Let u=|0|, v=|[1|, w=|1| € B3
0 0 0

T = span({u,v,w}) = {xeR3: x3 =0}

Vector subspace example #2

1 0 1
Let u= (0], v=|1|, w=|1]| € R?
0 0 0

T = span({u,v,w}) = {xeR3: x; =0}

Subspace T is also the span of any 2 of {u,v,w}.
The spanning set {u,v,w} is a bit redundant.

We would prefer an ‘irredundant’ set.

Linear independence

Let S = {s;, ..., Sq4} € F" be linearly independent.
Let W be the subspace span(S).

Theorem: Every veW is a unique linear
combination of vectors in S.
Proof:
Suppose V=a; S; + " +a4Sq & v=>b;s; + " + bysgy.
Want to prove a; = b; Vi. Suppose otherwise; say a, # by.
WLOG, k = 1. Now subtract the two representations of v:
0 = (a;—b;) s; + (a,—by) s, + =+ + (ag—by) Sy

—:i:gi S2—-..— 20=Ddg contradicting S lin. indep.

= S1= ai—by




Linear independence

Let S = {s;, ..., sS4} € F" be linearly independent.

Let W be the subspace span(S).

Theorem: Every veW is a unique linear
combination of vectors in S.

We say that S is a basis for W.

A basis for a vector space is a
spanning and linearly independent set.

Claim: Suppose L € V is linearly independent
andS = {s;, ..., s4} € V is spanning for V.
Then |L| < [S] = d.

Proof:
Take £, €L and delete it from L.
£, is a nonzero (why?) linear combo of vectors from S:
l,=a;S;+a,sS,+ "+ aySy
WLOG, a; # 0. So s, is a linear combo of £;, s, ..., Sq-
Now redefine S = {/;, s,, ..., Sq}, still spans V.

Claim: Suppose L € V is linearly independent
andS = {s;, ..., s4} € Vis spanning for V.
Then |L| < [S] = d.

Proof:
Take £, €L and delete it from L.
£, is a linear combo of vectors from S:
lr,=byly+bys, + -+ b, sy
Some b; # 0 fori = 2 (else L not linearly independent).
WLOG, assume b, = 0.
So s, is a linear combo of £,, £, S3, ..., Sq-
Now redefine S = {/;, £,, S3, ..., Sq}, still spans V.

Repeat, until all of L is deleted.
But S always has d vectors. .. initially, |L| < d. .

A nontrivial Linear Algebra theorem

Theorem:
Let V be a vector (sub)space.
Every basis of V has the same # of vectors.

Definition: We call this V's dimension, dim(V).

Proof: Suppose L €V is linearly independent
and S € V is spanning for V.
We will prove |L| < |S].

Then if T;, T, are bases (lin. indep. & spanning),
we have |T;| £ |T,| and |T,| < |T,]; i.e., [T1|=|T,].

Claim: Suppose L € V is linearly independent
andS = {s;, ..., sS4} € V is spanning for V.
Then |L| < [S]| = d.

Proof:
Take £, €L and delete it from L.
£, is a linear combo of vectors from S:
L, =byl; +bys, +: -+ b, sy
Some b; # 0 fori = 2 (else L not linearly independent).
WLOG, assume b, = 0.
So s, is a linear combo of £;, £,, S3, ..., Sg.

S = {l;, S, ..., Sq} still spans V.

Enough linear algebra theory.

Let’s see another application.




Sending messages on a noisy channel

Message: d+1 symbols from [F257

To guard against k corruptions,
Reed-Solomon: treat message as coeffs of poly P,
send P(1), P(2), ..., P(d+2k+1)

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Parity-check solution

Alice tacks on a bit, equal to the parity
(sum mod 2) of the message’s n—1 bits.

Alice’s n-bit ‘encoding’ always has
an even number of 1’s.

Bob can detect if the channel flips a bit:
if he receives a string with an odd # of 1's.

1-bit error-detection for 2"~1 messages
by sending n bits: optimal! (exercise)

Sending messages on a noisy channel

What if the noisy
channel corrupts

o e Sy against k corruptions,

essage as coeffs of poly P,
d P(1), P(2), ..., P(d+2k+1)

Sending messages on a noisy channel

Alice wants to send an (n—1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there’s been a bit-flip?

Linear Algebra perspective

X
1 Y1
X2

0

0 .- X3 Y2

1 I I
Xn-1 :

¥n

\

Alice’s ) Alice
n— .
message X€F,™"  transmits

G: annx(n-1)
‘generator’ matrix




Linear Algebra perspective

Let C be the set of strings Alice may transmit.

C is the span of the columns of G.

l.e., Cis an (n—1)-dimensional subspace of [Fg.

Solves 1-bit error detection, but not correction

If Bob sees z = (1, 0, 0, 0, 0, 0, 0),

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

Any ‘codeword’ y = Gx
satisfies some ‘parity checks’:

|

Hy = 0, because HG = 0.

RPROOCOOR
HFOHOORO

Linear Algebra perspective

111

-

H: alxn
‘parity check’
matrix Zn-1

Zn
Bob Bob checks this

. to detect if no errors
receives

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

X1
X2 Alice encodes

X3 X € [F‘z1 by Gx,
X4
which looks like
x followed by

3 extra bits.

0
0]
0
1
1
1
1

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

Columns are 1...7 in binary!

|

Hy = 0, because HG = 0.

RPHOOCOOR
RPFOrROORO QO

10



The Hamming(7,4) Code

On receiving ze[Fg, Bob computes Hz.

000111
H=]0 1 0 01
01 0

1
1 01

vector with 1 in jth
coordinate, 0's else

If no errors, z = Gx, so Hz = HGx = 0.
If jth coordinate corrupted, z = Gx+e;.
Then Hz = H(Gx+eg;) = HGX + He;
= He; = (jth col. of H) = bin. rep. of j

Bob knows where the error is, can recover msg!

Definitions:
Span
Vector (sub)space
Linear independence
Basis
Subspace
Dimension

Study Guide

Ideas:
Solving Fibonacci
recurrence.
Hamming Code.

The General Hamming Code

By sending n = 7 bits, Alice can communicate
one of 16 messages, guarding against 1 error.

This scheme generalizes: Letn =21,
take H to be the rx(2'—1) matrix whose
columns are the numbers 1...2" in binary.

The appropriate G has 2'—=1—r = n—log,(n+1)
columns, meaning Alice can communicate
one of 2"/(n+1) messages (using n bits).

Fact: This is optimal for guarding against 1 error!

11



