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15-251: Great Theoretical Ideas in Computer Science

Linear Algebra

Lecture 23

fig. by Peter Dodds

Linear algebra is about vectors.

Concretely, vectors look like this:

They are arrays of numbers.

# of numbers, n, is called the dimension.

If the field is ℝ and the dimension is ≤ 3,

you can draw pictures.

In linear algebra, ‘numbers’ are called scalars.

They can actually be from any field.

Fn = {all vectors of dimension n over field F}
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The key operation on vectors:

taking linear combinations

=     multiplying them by scalars

and adding them

ℝ2

u

v

.7 v

1.5 u

1.5 u + .7 v

−v

1.5u − v



2

Remark: Even in, say,       when the scalars

are from a finite field, geometric

intuition can be helpful.

To take linear combinations of vectors, 

say,             and          ,

make them the columns of a matrix:              

Linear combination with scalars a,b is:

This is the definition of Matrix ✕ Vector multiplication.

If you stack several linear combinations horizontally, 

you get the definition of Matrix ✕ Matrix multiplication:

Matrix mult is associative, but not commutative!

You can also think of              as a map, ℝ2 → ℝ3

Application:  Fun with Fibonacci

Fibonacci sequence:  

F0 = 0,    F1 = 1,    Fk = Fk−1 + Fk−2.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

There’s a direct formula for Fk: 

You could prove that by induction.

But how would you come up with it?!

Fibonacci via Linear Algebra

To get the next, you only need to know last two.

Fibonacci sequence:  

F0 = 0,    F1 = 1,    Fk = Fk−1 + Fk−2.

Let’s stack the the last two into a vector:
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Fibonacci via Linear Algebra Fibonacci via Linear Algebra

We can think of A =              as a map, ℝ2 → ℝ2.

What does this map look like?

To the computer!

Fibonacci via Linear Algebra

Two ‘interesting’ directions, which A just scales.

They satisfy

If (x,y) is a solution, so is  (2x,2y), (3x,3y), (¼x,¼y)…

How can we solve for x, y, λ?

(2 equations, 3 unknowns)

WLOG, fix y = 1.

Fibonacci via Linear Algebra

Two ‘interesting’ directions, which A just scales.

They satisfy

⇔

⇔   x=λ solves x2−x−1=0

⇔   x = λ =

WLOG, fix y = 1.

Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

We just showed:

(The ‘interesting’ directions are called eigenvectors

and the scaling factors are called eigenvalues.)
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Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

We just showed:

Hence:

Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

We just showed:

Hence:

Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

We just showed:

Hence:
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Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

Fibonacci via Linear Algebra

Define: φ =          ≈ 1.618,   ψ =          ≈ −.618 

∴

A key step:    expressing        as a linear

combination of         and       

More generally:

We often fix a small number of vectors and ask:

What can we get by taking linear combinations?

More on linear combinations Definition:

The span of a set of vectors S={v1, …, vk},

is the set of all linear combinations of them.

k = 0 technicality: span(∅) = {the 0 vector}

span({v1,v2,v3}) =                                         : c1,c2,c3 ∈F

Let’s do some examples in ℝ3.

ℝ3

all vectors on this line thru originspan             =
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ℝ3

span         ,        = this 2D plane thru origin
A span example in F2

E.g.,      has 128 vectors. Here’s a linear combination:

Remember:

𝔽2 is the 2-element field (integers mod 2).

F2 is all length-n vectors over this field.

(Note:  only two possible scalars, 0 and 1.)

A span example in F2

E = span = ??

Here are n−1 vectors in F2:

Claim:  E = {all vectors with an even # of 1’s}.

ℝ3

span         ,        = this 2D plane thru origin

In ℝ3, a span of 2 vectors  (not on the same line)

is a 2D plane through the origin.

A 2D plane is kind of ‘like’ a copy of ℝ2.

It’s a closed space where vectors can hang out.

Vector spaces/subspaces

Let’s make this a bit more formal.

Vector spaces/subspaces

V ⊆ Fn is a subspace if and only if it is

“closed under linear combinations”.      

(I.e., the linear combination of vectors in V is always also in V.)

Definition:

Let S be a set of vectors in Fn.

The set V = span(S) is called a subspace of Fn.

We may also just call it a vector space.

Equivalently:
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Vector subspace example #1

E = span

= {all vectors in     with an even # of 1’s}.

This is a vector space.

It’s closed under linear combinations:

the sum of any set of vectors in E is in E.

Vector subspace example #2

T = span({u,v,w}) = {x∈ℝ3 : x3 = 0}

∈

ℝ3

T

Vector subspace example #2

T = span({u,v,w}) = {x∈ℝ3 : x3 = 0}

∈

The spanning set {u,v,w} is a bit redundant.

We would prefer an ‘irredundant’ set.

Subspace T is also the span of any 2 of {u,v,w}.

Linear independence

S ⊆ V is linearly independent if no v∈S

is in the span of S \ {v}.

ℝ3 example:

{u,v,w}: not linearly independent  (‘linearly dependent’)

{u,v}: linearly independent. As are {u,w}, {v,w}

{u}: linearly independent

{0}: not linearly independent

∅: linearly independent
edge cases

Linear independence

Let S = {s1, …, sd} ⊆ Fn be linearly independent.

Let W be the subspace span(S).

Theorem:  Every v∈W is a unique linear 

combination of vectors in S.

Suppose v = a1 s1 + ∙∙∙ + ad sd &  v = b1 s1 + ∙∙∙ + bd sd.

Want to prove ai = bi ∀i.  Suppose otherwise; say ak ≠ bk.

WLOG, k = 1.  Now subtract the two representations of v:

0 = (a1−b1) s1 + (a2−b2) s2 + ∙∙∙ + (ad−bd) sd

Proof:
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We say that S is a basis for W.

A basis for a vector space is a 

spanning and linearly independent set.

Linear independence

Let S = {s1, …, sd} ⊆ Fn be linearly independent.

Let W be the subspace span(S).

Theorem:  Every v∈W is a unique linear 

combination of vectors in S.

A nontrivial Linear Algebra theorem

Theorem:  

Let V be a vector (sub)space.

Every basis of V has the same # of vectors.

Definition:  We call this V’s dimension, dim(V).

Proof:  Suppose  L ⊆ V  is linearly independent 

and S ⊆ V  is spanning for V.

We will prove |L| ≤ |S|.

Then if T1, T2 are bases (lin. indep. & spanning),

we have |T1| ≤ |T2| and |T2| ≤ |T1|; i.e., |T1|=|T2|.

Claim: Suppose L ⊆ V is linearly independent 

and S = {s1, …, sd} ⊆ V is spanning for V.

Then |L| ≤ |S| = d.

Proof:   

Take ℓ1∈L and delete it from L.

ℓ1 is a nonzero (why?) linear combo of vectors from S:

ℓ1 = a1 s1 + a2 s2 + ∙ ∙ ∙ + ad sd

WLOG, a1 ≠ 0.  So s1 is a linear combo of ℓ1, s2, …, sd.

Now redefine S = {ℓ1, s2, …, sd}, still spans V.

Proof:   

Take ℓ2∈L and delete it from L.

ℓ2 is a linear combo of vectors from S:

ℓ2 = b1 ℓ1 + b2 s2 + ∙ ∙ ∙ + bn sd

Some bi ≠ 0 for i ≥ 2 (else L not linearly independent).

WLOG, assume b2 ≠ 0. 

So s2 is a linear combo of ℓ1, ℓ2, s3, …, sd.

S = {ℓ1, s2, …, sd} still spans V.

Claim: Suppose L ⊆ V is linearly independent 

and S = {s1, …, sd} ⊆ V is spanning for V.

Then |L| ≤ |S| = d.

Proof:   

Take ℓ2∈L and delete it from L.

ℓ2 is a linear combo of vectors from S:

ℓ2 = b1 ℓ1 + b2 s2 + ∙ ∙ ∙ + bn sd

Some bi ≠ 0 for i ≥ 2 (else L not linearly independent).

WLOG, assume b2 ≠ 0. 

So s2 is a linear combo of ℓ1, ℓ2, s3, …, sd.

Now redefine S = {ℓ1, ℓ2, s3, …, sd}, still spans V.

Repeat, until all of L is deleted.  

But S always has d vectors.  ∴ initially, |L| ≤ d.

Claim: Suppose L ⊆ V is linearly independent 

and S = {s1, …, sd} ⊆ V is spanning for V.

Then |L| ≤ |S| = d.

Enough linear algebra theory.

Let’s see another application.
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Sending messages on a noisy channel

Alice Bob

Message:  d+1 symbols from  

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

Sending messages on a noisy channel

Alice Bob

Message:  d+1 symbols from  

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

What if the noisy 

channel corrupts 

bits, not bytes?

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an (n−1)-bit message to Bob.

The channel may flip up to 1 bit.s

How can Alice get the message across?

Q1:  How can Bob detect if there’s been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to the parity

(sum mod 2) of the message’s n−1 bits.

Alice’s n-bit ‘encoding’ always has

an even number of 1’s.

Bob can detect if the channel flips a bit:

if he receives a string with an odd # of 1’s.

1-bit error-detection for 2n−1 messages 

by sending n bits:  optimal! (exercise)

Linear Algebra perspective

G: an n×(n−1)

‘generator’ matrix
Alice’s

message x∈

=

Alice

transmits
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Linear Algebra perspective

Let C be the set of strings Alice may transmit.

C is the span of the columns of G.

I.e., C is an (n−1)-dimensional subspace of     .

Linear Algebra perspective

Bob

receives

H:   a 1×n 

‘parity check’ 

matrix

=
?

0

Bob checks this

to detect if no errors

Solves 1-bit error detection, but not correction

If Bob sees z = (1, 0, 0, 0, 0, 0, 0),

did Alice send y = (0, 0, 0, 0, 0, 0, 0),

or y = (1, 1, 0, 0, 0, 0, 0),

or y = (1, 0, 1, 0, 0, 0, 0),

or… ?

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

G = 

Alice encodes

x∈     by Gx,

which looks like

x followed by

3 extra bits.

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

G = Any ‘codeword’ y = Gx

satisfies some ‘parity checks’:

H = 

Hy = 0, because HG = 0.

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

G = 

H = 

Hy = 0, because HG = 0.

Columns are 1…7 in binary!
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The Hamming(7,4) Code

H = 

On receiving z∈    , Bob computes Hz.

If no errors, z = Gx, so Hz = HGx = 0.

If jth coordinate corrupted, z = Gx+ej.  

Then Hz = H(Gx+ej) = HGx + Hej

= Hej = (jth col. of H) = bin. rep. of j

Bob knows where the error is, can recover msg!

vector with 1 in jth

coordinate, 0’s else

The General Hamming Code

By sending n = 7 bits, Alice can communicate 

one of 16 messages, guarding against 1 error.

This scheme generalizes:  Let n = 2r−1,  

take H to be the r×(2r−1) matrix whose 

columns are the numbers 1…2r in binary.

The appropriate G has 2r−1−r = n−log2(n+1)

columns, meaning Alice can communicate

one of 2n/(n+1) messages (using n bits).

Fact: This is optimal for guarding against 1 error!

Definitions:

Span

Vector (sub)space

Linear independence

Basis

Subspace

Dimension

Ideas:

Solving Fibonacci
recurrence.

Hamming Code.

Study Guide


