15-251: Great Theoretical Ideas in Computer Science Lecture 23

Linear Algebra

Linear algebra is about vectors.

Concretely, vectors look like this:

$$
\left[\begin{array}{l}
7 \\
5 \\
2
\end{array}\right]
$$

They are arrays of numbers.
\# of numbers, n , is called the dimension.

In linear algebra, 'numbers' are called scalars.

They can actually be from any field.

$$
\left[\begin{array}{l}
7 \\
5 \\
2
\end{array}\right]
$$

$\mathrm{F}^{\mathrm{n}}=\{$ all vectors of dimension n over field F$\}$

If the field is \mathbb{R} and the dimension is ≤ 3, you can draw pictures.

The key operation on vectors:
taking linear combinations
$=$ multiplying them by scalars and adding them
$2\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]+1\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right]+2\left[\begin{array}{c}-1.5 \\ -1 \\ -.5\end{array}\right]=\left[\begin{array}{l}7 \\ 5 \\ 2\end{array}\right]$

Remark: Even in, say, \mathbb{F}_{11}^{3} when the scalars are from a finite field, geometric intuition can be helpful.

To take linear combinations of vectors,

$$
\text { say, }\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]
$$

make them the columns of a matrix: $\left[\begin{array}{ll}3 & 4 \\ 2 & 3 \\ 1 & 1\end{array}\right]$
Linear combination with scalars a, b is:

$$
\left[\begin{array}{ll}
3 & 4 \\
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=a\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+b\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
3 & 4 \\
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=a\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+b\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]
$$

This is the definition of Matrix \times Vector multiplication.
If you stack several linear combinations horizontally, you get the definition of Matrix \times Matrix multiplication:

$$
\left[\begin{array}{ll}
3 & 4 \\
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 1 & 100 \\
0 & 1 & 1 & -2
\end{array}\right]=\left[\begin{array}{cccc}
3 & 4 & 7 & 292 \\
2 & 3 & 5 & 194 \\
1 & 1 & 2 & 98
\end{array}\right]
$$

Matrix mult is associative, but not commutative!

Application: Fun with Fibonacci

$0,1,1,2,3,5,8,13,21,34,55,89, \ldots$
Fibonacci sequence:

$$
F_{0}=0, \quad F_{1}=1, \quad F_{k}=F_{k-1}+F_{k-2} .
$$

There's a direct formula for F_{k} :

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

You could prove that by induction.
But how would you come up with it?!

Fibonacci via Linear Algebra

Fibonacci sequence:

$$
F_{0}=0, \quad F_{1}=1, \quad F_{k}=F_{k-1}+F_{k-2} .
$$

To get the next, you only need to know last two.
Let's stack the the last two into a vector:

$$
\begin{gathered}
{\left[\begin{array}{l}
F_{k-1} \\
F_{k-2}
\end{array}\right] \stackrel{?}{\mapsto}\left[\begin{array}{c}
F_{k} \\
F_{k-1}
\end{array}\right]} \\
{\left[\begin{array}{c}
F_{k} \\
F_{k-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{k-1} \\
F_{k-2}
\end{array}\right]}
\end{gathered}
$$

Fibonacci via Linear Algebra

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
8 \\
5
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 17^{5}[1]
\end{array}\right.}
\end{array}
$$

$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{5}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}8 \\ 5\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]
$$

Fibonacci via Linear Algebra

Two 'interesting' directions, which A just scales.

They satisfy

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(from the picture, $\lambda \approx 1.6,-0.6$)
How can we solve for x, y, λ ?
(2 equations, 3 unknowns)
If (x, y) is a solution, so is $(2 x, 2 y),(3 x, 3 y),(1 / 4 x, 1 / 4 y)$..
WLOG, fix y = 1 .

Fibonacci via Linear Algebra

We can think of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ as a map, $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

What does this map look like?

To the computer!

Rey
(from the pictu
solve for x, y, λ ?
3 unknowns)

WLOG, fix y $=1$.

Fibonacci via Linear Algebra

Define: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \psi=\frac{1-\sqrt{5}}{2} \approx-.618$ We just showed: $\quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\varphi \\ 1\end{array}\right]=\varphi \cdot\left[\begin{array}{l}\varphi \\ 1\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\psi \\
1
\end{array}\right]=\psi \cdot\left[\begin{array}{l}
\psi \\
1
\end{array}\right]
$$

(The 'interesting' directions are called eigenvectors and the scaling factors are called eigenvalues.)

Fibonacci via Linear Algebra

Two 'interesting' directions, which A just scales.
They satisfy $\quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ 1\end{array}\right]=\lambda\left[\begin{array}{l}x \\ 1\end{array}\right]$
WLOG, fix y $=1$.

$$
\begin{array}{cc}
& x+1=\lambda x \\
\Leftrightarrow & x=\lambda \\
\Leftrightarrow & x=\lambda \text { solves } x^{2}-x-1=0 \\
\Leftrightarrow & x=\lambda=\frac{1 \pm \sqrt{5}}{2}
\end{array}
$$

Fibonacci via Linear Algebra

Define: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \psi=\frac{1-\sqrt{5}}{2} \approx-.618$
We just showed: $\quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\varphi \\ 1\end{array}\right]=\varphi \cdot\left[\begin{array}{l}\varphi \\ 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\psi \\ 1\end{array}\right]=\psi \cdot\left[\begin{array}{l}\psi \\ 1\end{array}\right]$

Hence:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{\mathrm{k}}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]=\varphi^{\mathrm{k}} \cdot\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]
$$

$\left[\begin{array}{c}1.618 \\ 1\end{array}\right] \mapsto\left[\begin{array}{l}2.618 \\ 1.618\end{array}\right] \mapsto\left[\begin{array}{l}4.236 \\ 2.618\end{array}\right] \mapsto\left[\begin{array}{l}6.854 \\ 4.236\end{array}\right] \mapsto\left[\begin{array}{c}11.090 \\ 6.854\end{array}\right]$

Fibonacci via Linear Algebra

Define: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \psi=\frac{1-\sqrt{5}}{2} \approx-.618$
We just showed: $\quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\varphi \\ 1\end{array}\right]=\varphi \cdot\left[\begin{array}{l}\varphi \\ 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\psi \\ 1\end{array}\right]=\psi \cdot\left[\begin{array}{l}\psi \\ 1\end{array}\right]$
Hence:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{\mathrm{k}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=? ?
$$

Fibonacci via Linear Algebra

Define: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618, \psi=\frac{1-\sqrt{5}}{2} \approx-.618$

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]=\varphi^{k} \cdot\left[\begin{array}{l}
\varphi \\
1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
\psi \\
1
\end{array}\right]=\psi^{k} \cdot\left[\begin{array}{l}
\psi \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]-\frac{1}{\sqrt{5}}\left[\begin{array}{l}
\psi \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
\mathrm{F}_{\mathrm{k}+1} \\
\mathrm{~F}_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]}
\end{gathered}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]-\frac{1}{\sqrt{5}}\left[\begin{array}{l}
\psi \\
1
\end{array}\right]\right), ~=\frac{1}{\sqrt{5}} \cdot \varphi^{k}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]-\frac{1}{\sqrt{5}} \cdot \psi^{k}\left[\begin{array}{l}
\psi \\
1
\end{array}\right] .
$$

More on linear combinations

A key step: expressing $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as a linear
combination of $\left[\begin{array}{l}\varphi \\ 1\end{array}\right]$ and $\left[\begin{array}{l}\psi \\ 1\end{array}\right]$

More generally:
We often fix a small number of vectors and ask: What can we get by taking linear combinations?

Fibonacci via Linear Algebra

Define: $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \psi=\frac{1-\sqrt{5}}{2} \approx-.618$

$$
\therefore \quad F_{k}=\frac{1}{\sqrt{5}} \varphi^{k}-\frac{1}{\sqrt{5}} \psi^{k}
$$

$\left[\begin{array}{c}\mathrm{F}_{\mathrm{k}+1} \\ \mathrm{~F}_{\mathrm{k}}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{k}\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}\varphi \\ 1\end{array}\right]-\frac{1}{\sqrt{5}}\left[\begin{array}{l}\psi \\ 1\end{array}\right]\right)$

$$
=\frac{1}{\sqrt{5}} \cdot \varphi^{k}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]-\frac{1}{\sqrt{5}} \cdot \psi^{k}\left[\begin{array}{l}
\psi \\
1
\end{array}\right]
$$

Definition:

The span of a set of vectors $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$, is the set of all linear combinations of them.
$\operatorname{span}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\left\{\left[\begin{array}{llll} & & & \\ & & & \\ v_{1} & v_{2} & v_{3} \\ & & & \\ & & & \end{array}\right]\left[\begin{array}{ll}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]: c_{1}, c_{2}, c_{3} \in F\right\}$
$k=0$ technicality: $\operatorname{span}(\varnothing)=\{$ the 0 vector $\}$

Let's do some examples in \mathbb{R}^{3}.

A span example in \mathbb{F}_{2}^{n}

Here are $n-1$ vectors in \mathbb{F}_{2}^{n} :
$\mathrm{E}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \cdots \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \cdots \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ \cdots \\ 0 \\ 0 \\ 1\end{array}\right], \cdots,\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \cdots \\ 0 \\ 1 \\ 1\end{array}\right]\right\}=? ?$

Claim: $\mathrm{E}=$ \{all vectors with an even \# of 1's $\}$.

Vector spaces/subspaces

In \mathbb{R}^{3}, a span of 2 vectors (not on the same line) is a 2D plane through the origin.

A 2D plane is kind of 'like' a copy of \mathbb{R}^{2}.

It's a closed space where vectors can hang out.

Let's make this a bit more formal.

A span example in \mathbb{F}_{2}^{n}

Remember:
\mathbb{F}_{2} is the 2-element field (integers mod 2). \mathbb{F}_{2}^{n} is all length- n vectors over this field.
E.g., \mathbb{F}_{2}^{7} has 128 vectors. Here's a linear combination: $1 \cdot\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]+1 \cdot\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right]$
(Note: only two possible scalars, 0 and 1.)

Vector spaces/subspaces

Definition:

Let S be a set of vectors in F^{n}.
The set $V=\operatorname{span}(\mathrm{S})$ is called a subspace of F^{n}.
We may also just call it a vector space.

Equivalently:

$\mathrm{V} \subseteq \mathrm{F}^{\mathrm{n}}$ is a subspace if and only if it is "closed under linear combinations".
(I.e., the linear combination of vectors in V is always also in V .)

Vector subspace example \#1

$$
\mathbf{E}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
\cdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
\cdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
\cdots \\
0 \\
0 \\
1
\end{array}\right], \cdots,\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cdots \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
=\left\{\text { all vectors in } \mathbb{F}_{2}^{n} \text { with an even } \# \text { of } 1 \text { 's }\right\}
$$

This is a vector space.
It's closed under linear combinations:
the sum of any set of vectors in E is in E.

Linear independence

$\mathrm{S} \subseteq \mathrm{V}$ is linearly independent if no $\mathrm{v} \in \mathrm{S}$
is in the span of $\mathrm{S} \backslash\{\mathrm{v}\}$.
\mathbb{R}^{3} example: Let $\mathrm{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{w}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
$\{u, v, w\}$: not linearly independent ('linearly dependent') $\{u, v\}$: linearly independent. As are $\{u, w\},\{v, w\}$
\{u\}: linearly independent
\{0\}: not linearly independent
Ø: linearly independent

Vector subspace example \#2

$$
\begin{array}{r}
\text { Let } u=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \in \mathbb{R}^{3} \\
T=\operatorname{span}(\{u, v, w\})=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\}
\end{array}
$$

Vector subspace example \#2

$$
\begin{array}{r}
\text { Let } u=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \in \mathbb{R}^{3} \\
T=\operatorname{span}(\{u, v, w\})=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\}
\end{array}
$$

Subspace T is also the span of any 2 of $\{u, v, w\}$.
The spanning set $\{u, v, w\}$ is a bit redundant.
We would prefer an 'irredundant' set.

Linear independence

Let $S=\left\{S_{1}, \ldots, S_{d}\right\} \subseteq F^{n}$ be linearly independent. Let W be the subspace span(S).

Theorem: Every $v \in W$ is a unique linear combination of vectors in S .
Proof:
Suppose $v=a_{1} \mathrm{~s}_{1}+\cdots+\mathrm{a}_{\mathrm{d}} \mathrm{S}_{\mathrm{d}} \& \mathrm{v}=\mathrm{b}_{1} \mathrm{~s}_{1}+\cdots+\mathrm{b}_{\mathrm{d}} \mathrm{s}_{\mathrm{d}}$.
Want to prove $a_{i}=b_{i} \forall i$. Suppose otherwise; say $a_{k} \neq b_{k}$.
WLOG, $k=1$. Now subtract the two representations of v :

$$
0=\left(a_{1}-b_{1}\right) s_{1}+\left(a_{2}-b_{2}\right) s_{2}+\cdots+\left(a_{d}-b_{d}\right) s_{d}
$$

$\Rightarrow S_{1}=-\frac{a_{2}-b_{2}}{a_{1}-b_{1}} S_{2}-\cdots-\frac{a_{d}-b_{d}}{a_{1}-b_{1}} S_{d}$, contradicting S lin. indep.

Linear independence

Let $S=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~S}_{\mathrm{d}}\right\} \subseteq \mathrm{F}^{\mathrm{n}}$ be linearly independent. Let W be the subspace span(S).

Theorem: Every $v \in W$ is a unique linear combination of vectors in S .

We say that S is a basis for W .
A basis for a vector space is a spanning and linearly independent set.

A nontrivial Linear Algebra theorem

Theorem:

Let V be a vector (sub)space.
Every basis of V has the same \# of vectors.
Definition: We call this V's dimension, $\operatorname{dim}(\mathrm{V})$.
Proof: Suppose $\mathrm{L} \subseteq \mathrm{V}$ is linearly independent
and $\quad \mathrm{S} \subseteq \mathrm{V}$ is spanning for V .
We will prove \mid ㄴ| $\leq|S|$.
Then if $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are bases (lin. indep. \& spanning), we have $\left|T_{1}\right| \leq\left|T_{2}\right|$ and $\left|T_{2}\right| \leq\left|T_{1}\right|$; i.e., $\left|T_{1}\right|=\left|T_{2}\right|$.

Claim: Suppose $\mathrm{L} \subseteq \mathrm{V}$ is linearly independent and $S=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{d}}\right\} \subseteq \mathrm{V}$ is spanning for V . Then $|L| \leq|S|=d$.

Proof:
Take $\ell_{1} \in L$ and delete it from L.
ℓ_{1} is a nonzero (why?) linear combo of vectors from S :

$$
\ell_{1}=a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{d} s_{d}
$$

WLOG, $a_{1} \neq 0$. So s_{1} is a linear combo of $\ell_{1}, s_{2}, \ldots, s_{d}$.
Now redefine $S=\left\{\ell_{1}, S_{2}, \ldots, S_{d}\right\}$, still spans V.

Claim: Suppose $L \subseteq V$ is linearly independent
and $S=\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{d}}\right\} \subseteq \mathrm{V}$ is spanning for V . Then \mid ㄴ $\leq|S|=d$.

Proof:
Take $\ell_{2} \in L$ and delete it from L.
ℓ_{2} is a linear combo of vectors from S :

$$
\ell_{2}=b_{1} \ell_{1}+b_{2} s_{2}+\cdots+b_{n} s_{d}
$$

Some $b_{i} \neq 0$ for $\mathrm{i} \geq 2$ (else L not linearly independent).
WLOG, assume $b_{2} \neq 0$.
So s_{2} is a linear combo of $\ell_{1}, \ell_{2}, s_{3}, \ldots, s_{d}$.
$\mathrm{S}=\left\{\ell_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{d}}\right\}$ still spans V .

Claim: Suppose $\mathrm{L} \subseteq \mathrm{V}$ is linearly independent and $S=\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{d}}\right\} \subseteq \mathrm{V}$ is spanning for V . Then $|\mathrm{L}| \leq|S|=\mathrm{d}$.

Proof:
Take $\ell_{2} \in L$ and delete it from L.
ℓ_{2} is a linear combo of vectors from S :

$$
\ell_{2}=b_{1} \ell_{1}+b_{2} s_{2}+\cdots+b_{n} s_{d}
$$

Some $b_{i} \neq 0$ for $i \geq 2$ (else L not linearly independent). WLOG, assume $b_{2} \neq 0$.
So s_{2} is a linear combo of $\ell_{1}, \ell_{2}, s_{3}, \ldots, s_{d}$.
Now redefine $\mathrm{S}=\left\{\ell_{1}, \ell_{2}, \mathrm{~S}_{3}, \ldots, \mathrm{~S}_{\mathrm{d}}\right\}$, still spans V .
Repeat, until all of L is deleted.
But S always has d vectors. \therefore initially, $|\mathrm{L}| \leq \mathrm{d}$.

Enough linear algebra theory.
Let's see another application.

Sending messages on a noisy channel

Message: $d+1$ symbols from \mathbb{F}_{257}
To guard against k corruptions,
Reed-Solomon: treat message as coeffs of poly P , send $P(1), P(2), \ldots, P(d+2 k+1)$

Sending messages on a noisy channel

Parity-check solution

Alice tacks on a bit, equal to the parity (sum mod 2) of the message's $n-1$ bits.

Alice's n-bit 'encoding' always has an even number of 1's.

Bob can detect if the channel flips a bit: if he receives a string with an odd \# of 1's.

1-bit error-detection for 2^{n-1} messages by sending n bits: optimal! (exercise)

Sending messages on a noisy channel

Alice wants to send an ($n-1$)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there's been a bit-flip?

Linear Algebra perspective

Let C be the set of strings Alice may transmit.

C is the span of the columns of G .
l.e., C is an $(n-1)$-dimensional subspace of \mathbb{F}_{2}^{n}.

Solves 1-bit error detection, but not correction

If Bob sees $z=(1,0,0,0,0,0,0)$,

did Alice send $y=(0,0,0,0,0,0,0)$,
or $y=(1,1,0,0,0,0,0)$, or $y=(1,0,1,0,0,0,0)$, or... ?

Alice sends 4-bit messages using 7 bits.
$G=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
Alice encodes
$x \in \mathbb{F}_{2}^{4}$ by $G x$, which looks like x followed by 3 extra bits.

The Hamming $(7,4)$ Code

The Hamming $(7,4)$ Code

Alice sends 4-bit messages using 7 bits.

$$
\begin{gathered}
\text { Columns are } 1 \ldots .7 \text { in binary! } \\
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
\end{gathered} \begin{aligned}
& H y=0 \text {, because } \mathrm{HG}=0 .
\end{aligned}
$$

Alice sends 4-bit messages using 7 bits.

Any 'codeword' y = Gx

$$
\mathrm{G}=
$$

satisfies some 'parity checks':
$H=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$

$$
\mathrm{Hy}=0, \text { because } \mathrm{HG}=0
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Linear Algebra perspective

Bob checks this to detect if no errors
receives

The Hamming $(7,4)$ Code

On receiving $z \in \mathbb{F}_{2}^{7}$, Bob computes Hz .

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

If no errors, $\mathrm{z}=\mathrm{Gx}$, so Hz $=\mathrm{HGx}=0$.
If jth coordinate corrupted, $\mathrm{z}=\mathrm{Gx}+\mathrm{e}_{\mathrm{j}}$.
Then $\mathrm{Hz}=\mathrm{H}\left(\mathrm{Gx}+\mathrm{e}_{\mathrm{j}}\right)=\mathrm{HGx}+\mathrm{He}_{\mathrm{j}}$

$$
=\mathrm{He}_{\mathrm{j}}=(\mathrm{jth} \text { col. of } \mathrm{H})=\text { bin. rep. of } \mathrm{j}
$$

Bob knows where the error is, can recover msg!

The General Hamming Code

By sending $\mathrm{n}=7$ bits, Alice can communicate one of 16 messages, guarding against 1 error.

This scheme generalizes: Let $n=2^{r}-1$,
take H to be the $r \times\left(2^{r}-1\right)$ matrix whose columns are the numbers $1 . . .2^{r}$ in binary.

The appropriate G has $2^{r}-1-r=n-\log _{2}(n+1)$ columns, meaning Alice can communicate one of $2^{n} /(n+1)$ messages (using n bits).

Fact: This is optimal for guarding against 1 error!

Study Guide	Definitions: Span Vector (sub)space Linear independence Basis Subspace Dimension
Ideas:	
Solving Fibonacci	
recurrence.	
Hamming Code.	

