

Linear algebra is about vectors.

Concretely, vectors look like this:

They are arrays of numbers.

of numbers, n, is called the *dimension*.

The key operation on vectors: taking linear combinations

 multiplying them by scalars and adding them

$$2\begin{bmatrix}3\\2\\1\end{bmatrix}+1\begin{bmatrix}4\\3\\1\end{bmatrix}+2\begin{bmatrix}-1.5\\-1\\-.5\end{bmatrix}=\begin{bmatrix}7\\5\\2\end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$$

This is the definition of Matrix × Vector multiplication.

If you stack several linear combinations horizontally, you get the definition of Matrix × Matrix multiplication:

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 100 \\ 0 & 1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 7 & 292 \\ 2 & 3 & 5 & 194 \\ 1 & 1 & 2 & 98 \end{bmatrix}$$

Matrix mult is associative, but not commutative!

Application: Fun with Fibonacci

$$\label{eq:Fibonacci sequence:} \begin{split} & Fibonacci sequence: \\ F_0 = 0, \quad F_1 = 1, \quad F_k = F_{k-1} + F_{k-2}. \end{split}$$

There's a direct formula for F_k :

$$F_{k} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{k}$$

You could prove that by induction. But how would you come up with it?!

Fibonacci via Linear Algebra

$$\label{eq:Fibonacci sequence:} \begin{split} & Fibonacci sequence: \\ F_0 = 0, \quad F_1 = 1, \quad F_k = F_{k-1} + F_{k-2}. \end{split}$$

To get the next, you only need to know last two. Let's stack the the last two into a vector:

$$\begin{bmatrix} F_{k-1} \\ F_{k-2} \end{bmatrix} \xrightarrow{?} \begin{bmatrix} F_{k} \\ F_{k-1} \end{bmatrix}$$
$$\begin{bmatrix} F_{k} \\ F_{k-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k-1} \\ F_{k-2} \end{bmatrix}$$

Fibonacci via Linear Algebra

We can think of $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ as a map, $\mathbb{R}^2 \to \mathbb{R}^2$.

What does this map look like?

To the computer!

Fibonacci via Linear Algebra									
Define: $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$, $\psi = \frac{1-\sqrt{5}}{2} \approx618$									
We just showed: $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} = \varphi \cdot \begin{bmatrix} \varphi \\ 1 \end{bmatrix}$									
$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ 1 \end{bmatrix} = \psi \cdot \begin{bmatrix} \psi \\ 1 \end{bmatrix}$									
(The 'interesting' directions are called <i>eigenvectors</i>									

(The 'interesting' directions are called *eigenvectors* and the scaling factors are called *eigenvalues*.)

Fibonacci via Linear Algebra							
Define: $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$, $\psi = \frac{1-\sqrt{5}}{2} \approx618$							
We just showed: $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} = \varphi \cdot \begin{bmatrix} \varphi \\ 1 \end{bmatrix}$							
$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ 1 \end{bmatrix} = \psi \cdot \begin{bmatrix} \psi \\ 1 \end{bmatrix}$							
Hence: $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{k} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} = \varphi^{k} \cdot \begin{bmatrix} \varphi \\ 1 \end{bmatrix}$							
$\begin{bmatrix} 1.618\\1 \end{bmatrix} \mapsto \begin{bmatrix} 2.618\\1.618 \end{bmatrix} \mapsto \begin{bmatrix} 4.236\\2.618 \end{bmatrix} \mapsto \begin{bmatrix} 6.854\\4.236 \end{bmatrix} \mapsto \begin{bmatrix} 11.090\\6.854 \end{bmatrix}$							

Fibonacci via Linear Algebra Define: $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$, $\psi = \frac{1-\sqrt{5}}{2} \approx -.618$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^k \begin{bmatrix} \varphi \\ 1 \end{bmatrix} = \varphi^k \cdot \begin{bmatrix} \varphi \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^k \begin{bmatrix} \psi \\ 1 \end{bmatrix} = \psi^k \cdot \begin{bmatrix} \psi \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \begin{bmatrix} \psi \\ 1 \end{bmatrix}$ $\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^k \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^k \left(\frac{1}{\sqrt{5}} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \begin{bmatrix} \psi \\ 1 \end{bmatrix} \right)$ $= \frac{1}{\sqrt{5}} \cdot \varphi^k \begin{bmatrix} \varphi \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \cdot \psi^k \begin{bmatrix} \psi \\ 1 \end{bmatrix}$

Fibonacci via Linear Algebra
Define:
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$
, $\psi = \frac{1-\sqrt{5}}{2} \approx -.618$
 $\therefore \qquad F_{k} = \frac{1}{\sqrt{5}}\varphi^{k} - \frac{1}{\sqrt{5}}\psi^{k}$
 $\begin{bmatrix} F_{k+1} \\ F_{k} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{k} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{k} \left(\frac{1}{\sqrt{5}}\begin{bmatrix} \varphi \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}}\begin{bmatrix} \psi \\ 1 \end{bmatrix}\right)$
 $= \frac{1}{\sqrt{5}} \cdot \varphi^{k} \begin{bmatrix} \varphi \\ 1 \end{bmatrix} - \frac{1}{\sqrt{5}} \cdot \psi^{k} \begin{bmatrix} \psi \\ 1 \end{bmatrix}$

More on linear combinations

A key step:	expressing $\begin{bmatrix} 1\\0 \end{bmatrix}$ as a linear
	combination of $\begin{bmatrix} \varphi \\ 1 \end{bmatrix}$ and $\begin{bmatrix} \psi \\ 1 \end{bmatrix}$

More generally:

We often fix a small number of vectors and ask: What can we get by taking linear combinations?

Let's do some examples in $\mathbb{R}^3.$

Vector spaces/subspaces

In \mathbb{R}^3 , a span of 2 vectors (not on the same line) is a 2D plane through the origin.

- A 2D plane is kind of 'like' a copy of \mathbb{R}^2 .
- It's a closed space where vectors can hang out.

Let's make this a bit more formal.

Vector spaces/subspaces

Definition:

Let S be a set of vectors in F^n . The set V = span(S) is called a *subspace* of F^n . We may also just call it a *vector space*.

Equivalently:

 $V \subseteq F^n$ is a subspace if and only if it is "closed under linear combinations".

(I.e., the linear combination of vectors in ${\sf V}$ is always also in ${\sf V}.)$

Vector subspace example #2

Let
$$u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3$

$$T = span(\{u, v, w\}) = \{x \in \mathbb{R}^3 : x_3 = 0\}$$

Vector subspace example #2

Let
$$u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $w = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3$

 $T = span(\{u, v, w\}) = \{x \in \mathbb{R}^3 : x_3 = 0\}$

Subspace T is also the span of any 2 of {u,v,w}. The spanning set {u,v,w} is a bit redundant. We would prefer an 'irredundant' set.

Linear independence

 $S \subseteq V$ is linearly independent if no $v \in S$ is in the span of $S \setminus \{v\}$.

$$\mathbb{R}^{3} \text{ example: Let } u = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, v = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, w = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

$$\{u,v,w\}: \text{ not linearly independent ('linearly dependent')}$$

$$\{u,v\}: \text{ linearly independent. As are } \{u,w\}, \{v,w\}$$

$$\{u\}: \text{ linearly independent } \{0\}: \text{ not linearly independent } edge cases$$

$$\emptyset: \text{ linearly independent } edge cases$$

Linear independence

Let $S = \{s_1, ..., s_d\} \subseteq F^n$ be linearly independent. Let W be the subspace span(S).

Theorem: Every v∈W is a *unique* linear combination of vectors in S.

Proof:

$$\begin{split} & \text{Suppose } v = a_1 \ s_1 + \cdots + a_d \ s_d \ \& \ v = b_1 \ s_1 + \cdots + b_d \ s_d. \\ & \text{Want to prove } a_i = b_i \ \forall i. \ \text{Suppose otherwise; say } a_k \neq b_k. \\ & \text{WLOG, } k = 1. \ \text{Now subtract the two representations of } v: \\ & 0 = (a_1 - b_1) \ s_1 + (a_2 - b_2) \ s_2 + \cdots + (a_d - b_d) \ s_d \end{split}$$

⇒ $s_1 = -\frac{a_2-b_2}{a_1-b_1}s_2 - \cdots - \frac{a_d-b_d}{a_1-b_1}s_d$, contradicting S lin. indep.

Linear independence

Let $S = \{s_1, ..., s_d\} \subseteq F^n$ be linearly independent. Let W be the subspace span(S).

Theorem: Every v∈W is a *unique* linear combination of vectors in S.

We say that S is a **basis** for W.

A basis for a vector space is a **spanning** and **linearly independent** set.

A nontrivial Linear Algebra theorem

Theorem:

Let V be a vector (sub)space. Every basis of V has the same # of vectors.

Definition: We call this V's **dimension**, dim(V).

Proof: Suppose $L \subseteq V$ is linearly independent and $S \subseteq V$ is spanning for V. We will prove $|L| \leq |S|$.

Then if T_1 , T_2 are bases (lin. indep. & spanning), we have $|T_1| \le |T_2|$ and $|T_2| \le |T_1|$; i.e., $|T_1|=|T_2|$.

Claim: Suppose L \subseteq V is linearly independent and S = {s₁, ..., s_d} \subseteq V is spanning for V. Then |L| \leq |S| = d.

Proof:

Take $l_1 \in L$ and delete it from L. l_1 is a nonzero (why?) linear combo of vectors from S: $l_1 = a_1 s_1 + a_2 s_2 + \cdots + a_d s_d$ WLOG, $a_1 \neq 0$. So s_1 is a linear combo of $l_1, s_2, ..., s_d$. Now redefine $S = \{l_1, s_2, ..., s_d\}$, still spans V. Claim: Suppose L \subseteq V is linearly independent and S = {s₁, ..., s_d} \subseteq V is spanning for V. Then |L| \leq |S| = d.

Proof:

Take $l_2 \in L$ and delete it from L. l_2 is a linear combo of vectors from S: $l_2 = b_1 l_1 + b_2 s_2 + \cdots + b_n s_d$ Some $b_i \neq 0$ for $i \ge 2$ (else L not linearly independent). WLOG, assume $b_2 \neq 0$. So s_2 is a linear combo of $l_1, l_2, s_3, ..., s_d$.

 $S = \{\ell_1, s_2, ..., s_d\} \text{ still spans V}.$

Claim: Suppose L \subseteq V is linearly independent and S = {s₁, ..., s_d} \subseteq V is spanning for V. Then |L| \leq |S| = d.

Proof:

Take $l_2 \in L$ and delete it from L. l_2 is a linear combo of vectors from S: $l_2 = b_1 l_1 + b_2 s_2 + \dots + b_n s_d$ Some $b_i \neq 0$ for $i \ge 2$ (else L not linearly independent). WLOG, assume $b_2 \neq 0$. So s_2 is a linear combo of $l_1, l_2, s_3, \dots, s_d$. Now redefine $S = \{l_1, l_2, s_3, \dots, s_d\}$, still spans V. **Repeat**, until all of L is deleted. But S always has d vectors. \therefore initially, $|L| \le d$. Enough linear algebra theory. Let's see another application.

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel

Alice wants to send an (n-1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there's been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to the parity (sum mod 2) of the message's n-1 bits.

Alice's n-bit 'encoding' always has an even number of 1's.

Bob can detect if the channel flips a bit: if he receives a string with an odd # of 1's.

1-bit error-detection for 2^{n-1} messages by sending n bits: optimal! (exercise)

Linear Algebra perspective

The Hamm	ning(7,4) Code
Alice sends 4-b	it messages using 7 bits.
$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ Alice encodes $x \in \mathbb{F}_2^4$ by Gx, which looks like x followed by 3 extra bits.

Solves 1-bit error detection, but not correction

If Bob sees z = (1, 0, 0, 0, 0, 0, 0)

did Alice send y = (0, 0, 0, 0, 0, 0, 0, 0), or y = (1, 1, 0, 0, 0, 0, 0), or y = (1, 0, 1, 0, 0, 0, 0), or...?

The Hamming(7,4) Code								
On receiving $z \in \mathbb{F}_2^7$, Bob computes Hz.								
	0	0	0	1	1	1	1]	
H =	0	1	1	0	0	1	1	
H =	1	0	1	0	1	0	1	
If no errors, $z = Gx$, so $Hz = HGx = 0$. If jth coordinate corrupted, $z = Gx+e_j$.								
If jth coordinate corrupted, $z = Gx + e_i$.								
Then $Hz = H(Gx+e_j) = HGx + He_j$								
= He _j = (jth col. of H) = bin. rep. of j								
Bob knows where the error is, can recover msg!								

The General Hamming Code

By sending n = 7 bits, Alice can communicate one of 16 messages, guarding against 1 error.

This scheme generalizes: Let $n = 2^r - 1$, take H to be the $r \times (2^r - 1)$ matrix whose columns are the numbers $1...2^r$ in binary.

The appropriate G has $2^r-1-r = n-\log_2(n+1)$ columns, meaning Alice can communicate one of $2^n/(n+1)$ messages (using n bits).

Fact: This is optimal for guarding against 1 error!

Definitions: Span

Vector (sub)space Linear independence Basis Subspace Dimension

Ideas:

Solving Fibonacci recurrence. Hamming Code.