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Markov Model

Andrey Markov (1856 - 1922)

Russian mathematician.

Famous for his work on
random processes.

A model for the evolution of a random system.

The future is independent of the past, given the present.



Cool Things About Markov Model

It is a very general and natural model.

Extraordinary number of applications in many 
different disciplines:

computer science, mathematics, biology, physics, 
chemistry, economics, psychology, music, baseball,...

The model is simple and neat.

A beautiful mathematical theory behind it.

Starts simple, goes deep.
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The future is independent of the past, given the present.



Some Examples of Markov Models



Example: Drunkard Walk

Home



Example: Diffusion Process



Example: Weather

A very(!) simplified model for the weather.

Pr(sunny to rainy) = 0.1

Pr(sunny to sunny) = 0.9

Pr(rainy to rainy) = 0.5

Pr(rainy to sunny) = 0.5

Probabilities on a daily basis:


0.9 0.1
0.5 0.5

�
S
R

S R

Encode more information about current state
for a more accurate model.



Example: Life Insurance
Goal of insurance company:

figure out how much to charge the clients.

Find a model for how long a client will live.

Pr(healthy to sick) = 0.3
Pr(sick to healthy) = 0.8
Pr(sick to death) = 0.1
Pr(healthy to death) = 0.01
Pr(healthy to healthy) = 0.69
Pr(sick to sick) = 0.1
Pr(death to death) = 1

Probabilistic model of health on a monthly basis:



Example: Life Insurance
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Some Applications of Markov Models



Application: Algorithmic Music Composition



Application: Image Segmentation



Application: Automatic Text Generation

“While at a conference a few weeks back, I spent an 
interesting evening with a grain of salt.”

Random text generated by a computer
(putting random words together):

Google: Mark V Shaney



Application: Speech Recognition

Speech recognition software programs use Markov 
models to listen to the sound of your voice and 
convert it into text.

test



Application: Google PageRank

1997:   Web search was horrible

Sorts webpages by number of occurrences of keyword(s).



Application: Google PageRank

Founders of Google

$20Billionaires

Sergey BrinLarry Page



Application: Google PageRank

Jon Kleinberg

Nevanlinna Prize



Application: Google PageRank

The number and reputation of links pointing to you.

How does Google order the webpages displayed after 
a search?

Reputation of the page.

Relevance of the page.

2 important factors:

Reputation is measured using PageRank.

PageRank is calculated using a Markov chain.
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The Setting

There is a system with n possible states/values.

At each time step, the state changes probabilistically.
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The next state only depends
on the current state.

Evolution of the system:  random walk on the graph.



The Setting

1

2

1

2

1

4 3

4

1

1

There is a system with n possible states/values.

At each time step, the state changes probabilistically.

1 2

3
n

Memoryless

The next state only depends
on the current state.

Evolution of the system:  random walk on the graph.



Example: Markov Model for a Lecture

Arrive

Playing with phone Paying attention

Kicked out Writing notes

1

2
1

2

1

4

1

4

3

4

1

4 1

21

2

1

2

1



The Setting

There is a system with n possible states/values.

At each time step, the state changes probabilistically.

the state of the system at time tLet Xt =

Evolution of the system: X0, X1, X2, . . . , Xt, . . .
        is the initial state.X0

The probability that        is in a certain state is 
determined by the state of          :

Memoryless:
Xt

Xt�1

Pr[Xt = x|X0 = x0, X1 = x1, . . . Xt�1 = xt�1]

= Pr[Xt = x|Xt�1 = xt�1]



Let’s say we start at state 1, i.e.,

The Setting

1
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3
n

Pr[X1 = 2|X0 = 1] =

Pr[X1 = 3|X0 = 1] =

Pr[X1 = n|X0 = 1] =

Pr[Xt = 2|Xt�1 = n] =

Pr[Xt = 3|Xt�1 = 2] =

1

2

1

2

1

4

1

0

1 2 3 4
X0 ⇠ (1, 0, 0, 0) = ⇡0

Pr[X1 = 1|X0 = 1] = 0



The Setting: Equivalent representations
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Transition Matrix

Transition Matrix
1



Simplifying assumptions for 251

Finite number of states.

The underlying graph is strongly connected.



Some Fundamental and Natural Questions

What is the probability of being in state i after t steps
(given some initial state)?

What is the expected time of having visited every state
(given some initial state)?

What is the expected time of reaching state i when 
starting at state j ?

...



Mathematical representation of the evolution
Suppose we start at state 1 and let the system evolve.

How can we mathematically represent the evolution?
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Mathematical representation of the evolution

2

664

0 1
2 0 1

2
0 0 1 0
0 0 0 1
0 1

4
3
4 0

3

775
⇥
1 0 0 0

⇤
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The probability of states after 1 step:

The probability of states after 2 steps:
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the new state
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Mathematical representation of the evolution

In general:

If the initial probabilistic state is
⇥
p1 p2 · · · pn

⇤

pi = probability of being in state i,

p1 + p2 + · · ·+ pn = 1 ,

after t steps, the probabilistic state is:

⇥
p1 p2 · · · pn

⇤
2

664
Transition

Matrix

3

775

t

= ⇡0

= ⇡t

⇡t[i] = probability of
being in state i

after (exactly) t steps.



Mathematical representation of the evolution

In general:

If the current probabilistic state is
⇥
p1 p2 · · · pn

⇤

pi = probability of being in state i,

p1 + p2 + · · ·+ pn = 1

Homework:
Prove this.

,

after t more steps, the probabilistic state is:

⇥
p1 p2 · · · pn

⇤
2

664
Transition

Matrix

3

775

t



Remarkable Property 1

Suppose the Markov chain is “aperiodic”.

Then, as the system evolves, the probabilistic state
converges to a limiting probabilistic state.

⇥
p1 p2 · · · pn

⇤
2

664
Transition

Matrix

3

775
!

t ! 1As
t

⇡

What happens in the long run?



Remarkable Property 1

stationary/invariant
distribution

2

664
Transition

Matrix

3

775⇡ = ⇡

This     is unique.⇡
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Remarkable Property 1

Stationary distribution is

⇥
5
6

1
6

⇤

In the long run, it is sunny 5/6 of the time,
                     it is rainy 1/6 of the time.



Remarkable Property 1

What is a “periodic” Markov chain?

1 2

1

1
⇡0 = [1 0]

⇡1 = [0 1]

⇡3 = [0 1]

⇡2 = [1 0]

⇡4 = [1 0]
…

There is still a stationary distribution.

⇡ = [1/2 1/2]

[1/2 1/2]


0 1
1 0

�
= [1/2 1/2]

But it is not a limiting distribution.



Remarkable Property 2

Then                         .E[Tii] =
1

⇡[i]

Known as the Mean Recurrence Theorem.

Let           time of reaching state j 
                when you start at state i

Tij =



Remarkable Property 2

Then                         .E[Tii] =
1

⇡[i]

Intuition:
If we walk for N steps, 
you would expect to be in state i about            times.⇡[i]N

Xt Xt+1 Xt+2 Xt+3 Xt+4 Xt+5 Xt+6 Xt+7 XN· · · · · ·

Average time between successive visits to i : 1/⇡[i]

Let           time of reaching state j 
                when you start at state i

Tij =



Summary so far

Markov chains can be characterized by the
transition matrix     .K

K[i, j] = Pr[X1 = j|X0 = i]

There is a unique invariant distribution    :    ⇡ ⇡ = ⇡K
For aperiodic Markov Chains: ⇡t ! ⇡

What is the probability of being in state i after t steps?

⇡t[i] = (⇡0K
t)[i]

E[# steps to go from i to i] = 1/⇡[i]E[Tii] =
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Outline

Applications

- Theoretical

- Practical



A Theoretical Application:

Connectivity problem



The connectivity problem

Input:  An undirected graph                   , and              . 

Output: Yes if s and t are connected. No otherwise.

G = (V,E) s, t 2 V

Easy to do in polynomial time with BFS or DFS.

How about using only O(log n) space?

Doesn’t seem possible…

Would randomness help?

Not clear.



The connectivity problem

Input:  An undirected graph                   , and              . 

Output: Yes if s and t are connected. No otherwise.

G = (V,E) s, t 2 V

v := s 
for k = 1,2,…,N: 
    v := random-neighbor(v) 
    if v = t, return YES 
return NO

For N = poly(n), this uses O(log n) space.

But what is the success probability???
If s and t are disconnected, we give correct answer.
What if s and t are connected?



Random walk on undirected graphs

Given an undirected graph with n nodes, m edges.

Start at some vertex.

At each step, go to a random neighbor.

1

4 2

3

1/3 1/3

1/3 1/3

1/3 1/3

1/2

1/2 1/2

1/2

1

4 2

3



Random walk on undirected graphs

1

4 2

3

How does the transition matrix look like?

2

664

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

3

775A =

1
2
3
4

1 2 3 4
÷ deg(1)
÷ deg(2)
÷ deg(3)
÷ deg(4)

K =

2

664

0 1/3 1/3 1/3
1/2 0 1/2 0
1/3 1/3 0 1/3
1/2 0 1/2 0

3

775

1 2 3 4
1
2
3
4



Random walk on undirected graphs

How does the stationary distribution look like?

Seems higher degree should 
imply higher limiting prob.

Is        proportional to           ?⇡[i] deg(i)

Yes! ⇡ =


deg(1)

2m
,
deg(2)

2m
,
deg(3)

2m
, · · · , deg(n)

2m

�

So: E[Tii] =
2m

deg(i)



Random walk on undirected graphs

How about                (when i and j are connected)E[Tij ]?

Pick a path from i to j : i = i1, i2, i3, . . . , ir = j (r  n)

E[Tij ] E[Ti1i2 + Ti2i3 + · · ·+ Tir�1ir ]

E[Ti1i2 ] + E[Ti2i3 ] + · · ·+ E[Tir�1ir ]=

 2m+ 2m+ · · ·+ 2m = 2mn

because                        when E[Tuv]  2m (u, v) 2 E

 n3

E[Tij ]  n3



Random walk on undirected graphs

                                   when                 :E[Tuv]  2m (u, v) 2 E

u1

u

v

= u0
u2

u3uk

2m

deg(v)
= E[Tvv]

=

kX

i=0

Pr[first step v to ui] · E[Tvv|first step v to ui]

=
kX

i=0

1

deg(v)
· (1 + E[Tuiv])

� 1

deg(v)
· (1 + E[Tu0v]) =) 2m � 1 + E[Tuv]



The connectivity problem

v := s 
for k = 1,2,…,1000n^3: 
    v := random-neighbor(v) 
    if v = t, return YES 
return NO

If s and t are disconnected, we give correct answer.

What if s and t are connected?

Coming back to the algorithm:

E[Tst]  n3 =) Pr[Tst > 1000n3]  1

1000
Pr[error] =

Markov’s inequality: Pr[X > cE[X]]  1

c



The connectivity problem

For a long time was one of the canonical problems that:

- had a space efficient randomized alg.

- didn’t know if it had a space efficient deterministic alg.

Omer Reingold

2004: 
“Undirected connectivity in log-space”

Until:



Some Practical Applications



How are Markov chains applied ?

2 common types of applications

Use the Markov chain to simulate the process.

e.g. text generation, music composition.

e.g. Google PageRank, image segmentation

Build a Markov chain as a statistical model of a 
real-world process.

1.

Use a measure associated with a Markov chain
to approximate a quantity of interest.

2.
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Automatic Text Generation

Generate a superficially real-looking text given a 
sample document.

Idea:

From the sample document, create a Markov chain.

Use a random walk on the Markov chain to generate 
text.

Example:

Collect speeches of Obama, create a Markov chain.

Use a random walk to generate new speeches.



Automatic Text Generation

From the sample document, create a Markov chain.

For each word in the document, create a node/state. 

Put an edge word1 ---> word2  
if there is a sentence in which word2 comes after word1.

Edge probabilities reflect frequency of the pair of words.

like

a

the

to

like a 3 times

like the 4 times

like to 2 times

3/9
4/9

2/9



Automatic Text Generation

“I jumped up. I don't know what's going on so I am coming 
down with a road to opportunity. I believe we can agree on 

or do about the major challenges facing our country.”



Automatic Text Generation

Another use:

Build a Markov chain based on speeches of Obama.

Build a Markov chain based on speeches of Bush.

Given a new quote, can predict if it is by
Obama or Bush.

(by testing which Markov model the quote fits best)



Image Segmentation

Simple version

Given an image of an object, figure out: 
   which pixels correspond to the object,
   which pixels correspond to the background

i.e.,  label each pixel “object” or “background”

User labels a small number of pixels with known labels



Image Segmentation

Each pixel is a node/state. 
Underlying Markov Model

There is an edge between adjacent pixels.

“background” “object”

Edge probabilities reflect similarity between pixels.

Which one is more likely:

random walker first visits
“background”
    or
“object” ?



Google PageRank

The number and reputation of links pointing to you.
PageRank is a measure of reputation:

The Markov Chain

Every webpage is a node/state. (In total n webpages)

Each hyperlink is an edge.

if webpage A has a link to webpage B,   A ---> B

If A has m outgoing edges, each gets label  1/m

If A has no outgoing edges, put an edge A ---> B for all B
(jump to a random page)



Google PageRank

A little tweak:

Random surfer jumps to a random page with 15% prob.



Google PageRank

PageRank of a webpage 
= 

The stationary probability corresponding to the webpage

Google: 
     “PageRank continues to be the heart of our software”

Stationary distribution: 
      probability of being in state i in the long run



How are Markov models applied ?

2 common types of applications

Build a Markov model as a statistical model of a 
real-world process.

Use a measure associated with a Markov model
to approximate a quantity of interest.

Use the Markov model to simulate the process.

e.g. text generation, music composition.

e.g. Google PageRank, image segmentation

1.

2.



Outline

Motivating examples and applications

Basic mathematical representation and properties

Applications


