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15-251: Great Theoretical Ideas in Computer Science

Quantum Computation

Lecture 25

Image: Centre for Quantum Photonics

!
WARNING

I DO NOT KNOW ANYTHING ABOUT PHYSICS.

SERIOUSLY.

Let me tell you about a certain scientific theory.

It hasn’t been around that long 

– since about the late ’60s.

Too new for your parents to have learned it

when they were at school.

It’s a bit hard to do direct experiments 

to get evidence confirming the theory.

In the AskReddit thread “What scientific ‘fact’

do you think may eventually be proven false?”

it was the #1 answer (1104 points). 

The commenter (a scientist in the field), wrote:

“A lot of the theories behind [its] mechanisms… 

seem a little tenuous to me.”

I’m talking, of course, about…

Plate Tectonics

Quantum Mechanics

on the other hand…

• has been standard physics for about 90 years

• has been confirmed by zillions of experiments

• is relied upon in the engineering of 

hard drives, GPS devices, MRIs, etc.

Please do not be skeptical of QM.
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First 1/2 of lecture:

Non-quantum stuff

Late ’30s:  Boolean circuits

ShannonNakashima Shestakov

Late ’30s:  Boolean circuits

¬ ∧

∨

∧¬

x⊕y

(XOR)

x

y

Late ’30s:  Boolean circuits

x ¬ ∧

∨

∧¬y

x⊕y

DUPE

DUPE

Fact: Every function f : {0,1}n → {0,1}m

is computable with ¬ ∧ ∨DUPE

Fact: Every function f : {0,1}n → {0,1}m

computable by a time-T algorithm

can be computed by a circuit with

poly(T) gates

Fact: Every function f : {0,1}n → {0,1}m

is computable with ¬ ∧ ∨DUPE
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Fact: Every function f : {0,1}n → {0,1}m

is computable with DUPE

x

x

1

¬

Proof:  Suffices to get ¬

≡

NAND

and “scratch input bits”

NAND

scratch bit,

hardwired to 1

x NANDDUPE

(alternative)

〈1|

weirdo

quantum

notation

’60s:  Reversible computation

BennettLandauer

(Remember Homework #1, Problem #4?)

〈1|Bit In theory: 〈0|

In practice:
low

voltage

high

voltage

horizontally

polarized

photon

vertically

polarized

photon

Gate A physical, localized gadget that 

manipulates a few bits.

∧ 〈0|
?

?

NOT reversible

Apparently, this means an AND gate

must dissipate energy.

(Because physics.  2nd Law of Thermodynamics?)

Apparently, if a gate is reversible,

it need not (in principle) dissipate energy.

¬ Reversible

⊕ Not Reversible

•
⊕

DUPE

x

y

x

x⊕y

CNOT
(controlled

NOT)

Reversible

Not Reversible

(we require #in = #out)

Question: Is every function f : {0,1}n → {0,1}m

computable with only reversible gates?

Need to allow some s scratch inputs,

and g “garbage outputs”.

Such that  n+s = m+g.

Answer:  Yes!  (As you know from homework.)
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x

y

x

y

CCNOT
(aka

Toffoli

gate)

•

•
⊕z (x∧y)⊕z

Reversible

x

y

x

y

•

•
⊕〈1| NAND(x,y)

scratch bit

garbage bits

x

y

x

y

CCNOT
(aka

Toffoli

gate)

•

•
⊕z (x∧y)⊕z

Reversible

x

〈1|

x

•

•
⊕〈0| x

scratch bits

garbage bit

〈1|

DUPE(x)

x

y

x

y

CCNOT
(aka

Toffoli

gate)

•

•
⊕z (x∧y)⊕z

Reversible

〈1|•

•
⊕〈1|

〈1|

〈1|

〈0|

〈1|

If you prefer all

scratch bits to be 〈1|…

•
⊕

•

•

⊕

•

•

⊕

••

⊕

•

•

⊕

•

•

•

⊕

•

⊕

•

⊕

•

•

Any circuit for f : {0,1}n→{0,1} can efficiently

be converted into a reversible circuit.

x1

x2

x3

x4

⁝

xn

〈1|

〈1|

⁝

〈1|

f(x)

g1

g2

g3

⁝

⁝

gn+s−1

•

Puzzle

Consider Multiply : {0,1}n+n → {0,1}2n.

Takes two n-bit numbers and outputs product.

Can be done in poly(n) time.

Hence has a poly(n)-gate circuit.

Hence has a poly(n)-gate reversible circuit.

Why can’t we just reverse the circuit,

and get a poly(n)-gate circuit for Factoring?!

Solution: Have to know what garbage bits to feed

in so that all scratch bits become     .〈1|

Late ’70s:

Probabilistic computation

Rabin Solovay Strassen Gill
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¬Bernoulli(1/2)
•
⊕

x

y

x

x⊕y

CNOT

•
⊕

CNOT

〈0|

True, but extremely

misleading!

The two outputs bits

are always the same!

•
⊕

CNOT

〈0|

This captures the

correlations

between the two

output bits

•
⊕

CNOT

Transition matrix

for CNOT

•
⊕

CNOT

=
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Transition matrix

for CCNOT

x

y

x

y

CCNOT
(aka

Toffoli

gate)

•

•
⊕z (x∧y)⊕z

A probabilistic gate I just made up

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

Transition matrix

Sorta like ¬, but noisy (and asymmetric).

In general:

A k-input/output probabilistic gate

can be any 2k × 2k stochastic matrix

(matrix preserving prob. vectors).

I.e., each row nonnegative, sums to 1.

e.g., 

Here’s one of the trickiest parts of the lecture.

It still has nothing to do with quantum.

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

What is the distribution of the 2 output wires?
=

So far, we did this already.

(A few slides ago.)

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

Type

mismatch?
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•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

Even tho gate only

acts on 1 bit, to

get the correlations

right you have to

expand the matrix

to all (2 of) the bits.

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

=

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

expand

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

=

FINAL ANSWER

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

Suppose we measure just the top output bit.

Pr[〈0|] = .55 

Pr[〈1|] = .45 

& “collapse” to

& “collapse” to

•
⊕〈0|

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

if  〈0|  do  Bern(.8)

if  〈1|  do  Bern(.1)

Final thought on probabilistic circuits:

In n-bit circuit, to mathematically analyze

the output distribution is hard: requires 

tracking probability vectors of length 2n.

In physical reality, Nature doesn’t need

to do this.  Each wire carries an actual bit!
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Finally: Quantum computation

is exactly the same as this, except…

The state vectors can have negative entries!

Instead of being called “probabilities”,

the state vector entries are called “amplitudes”.

Instead of the entries adding up to 1,

the squares of the entries must add up to 1.

’80s and ’90s: 

Quantum computation

Feynman Deutsch

〈1|Bit In theory: 〈0|

Physically: horizontally

polarized

photon

vertically

polarized

photon

According to the actual laws of physics (QM),

a photon’s state can be any superposition:

α 〈0| + β 〈1|

where α, β∈ℝ satisfy α2+β2 = 1.

Actually, according to quantum mechanics,

the amplitudes can even be complex numbers.

I.e., we can have α,β∈ℂ satisfying |α|2+|β|2 = 1.

However, for quantum computation purposes,

it’s known that real amplitudes suffice (WLOG).

So let’s keep things simple.

A qubit

α 〈0| + β 〈1| where “amplitudes” α, β∈ℝ

satisfy α2+β2 = 1.

Also written

as a vector
〈0|

〈1|

satisfying:

It’s NOT a probabilistic mixture of 〈0| and 〈1|.

It just is what it is.

2 qubits

Joint state if they’re

“prepared separately”:

Same rule as if they were

independent probabilities.

Check:
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2 qubits

α 〈00| + β 〈01| + γ 〈10| + δ 〈11|

Also written as a vector:

where amplitudes satisfy α2+β2+γ2+δ2 = 1.

In general, 2 qubits can be in any superposition

satisfying:

2 qubits

Example: (“EPR pair”)

Fact: Not of form

Hence these two qubits are called entangled.

aka

State can be any 2n-dimensional vector v 

satisfying ||v||2 = 1.

Coordinates indexed as v〈x|

for x ranging in {0,1}n.

n qubits

U

Quantum gates

Gate is again represented by

some 4 × 4 matrix.
U

Can be any U satisfying

“||vU||2 = 1 whenever ||v||2 = 1”.

∙ U

Unitary matrices

“Length-preserving” matrices U,

meaning ||vU||2 = 1 whenever ||v||2 = 1,

are called unitary.

Fact:  An equivalent condition is:

matrix with 1’s 

on diagonal,

0’s elsewhere

“(conjugate) transpose” of U:

switch ij and ji entries
(and take complex conjugates)

Unitary matrices

“Length-preserving” matrices U,

meaning ||vU||2 = 1 whenever ||v||2 = 1,

are called unitary.

Fact:  An equivalent condition is:

⇔

⇒

U is reversible 
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Example quantum gates

¬
•
⊕

CNOT

Example quantum gates

Example quantum gates

CCNOT

•

•
⊕

The crucially important “Hadamard gate”:

Example quantum gates

H

H = 

Example quantum gates

H = 

H H〈0| 〈0|

Example quantum gates

¬

•
⊕

CNOT

CCNOT

•

•
⊕

H

THESE GATES ARE ALL

PHYSICALLY REALIZABLE

By, like, having lasers

fired at the photons/qubits.



11

There are infinitely many 

unitary matrices / possible gates.

But, just like DUPE+NAND for classical circuits…

and 50/50 coin flips for randomized circuits…

Theorem:

Without loss of generality,

quantum circuits only need 

CCNOT and Hadamard gates.
Yaoyun Shi

(施尧耘)

(It’s convenient to also use CNOT.)

•
⊕

Example quantum circuit

〈0| H

〈0|

The qubits start out separated.

So it’s okay to just apply H directly at first.

•
⊕

Example quantum circuit

〈0| H

〈0|

H = 

•
⊕

Example quantum circuit

〈0| H

〈0|

They’ve come together

to enter a gate.  We need

to write them in joint state.

•
⊕

Example quantum circuit

〈0| H

〈0|

They’ve come together

to enter a gate.  We need

to write them in joint state.

Example quantum circuit

〈0| •
⊕〈0|

=

H
(“EPR pair”)

entangled
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Example quantum circuit

〈0| •
⊕〈0|

H

In the real world, photons

are only observed to be

horizontally or vertical.

Example quantum circuit

〈0| •
⊕〈0|

H

You observe:

〈00|  with prob.  

〈11| with prob.  

Quantum measurement

You observe:

〈0|  with prob.   α2

〈1| with prob. β2

& state “collapses” to

& state “collapses” to

Quantum measurement

You observe:

〈00|  with prob.   α2

〈01| with prob. β2

〈10| with prob.   γ2

〈11| with prob.   δ2

… and state collapses.

And similarly for

measuring 3-bit states

or n-bit states.

•
⊕

•

•

⊕

•

•

•

⊕

•

⊕

•

⊕

•

•

x1

x2

x3

x4

⁝

xn

〈1|

〈1|

⁝

〈1|

f(x)

g1

g2

g3

⁝

⁝

gn+s−1

H

H

H

A big quantum circuit

•

Example quantum circuit

〈0| •
⊕〈0|

H

H

type

mismatch?

expand
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Example quantum circuit

〈0| •
⊕〈0|

H

H

=

Example quantum circuit

〈0| •
⊕〈0|

H

H

Alice takes first photon,

Bob takes second photon,

they fly light-years apart.

Example quantum circuit

〈0| •
⊕〈0|

H

H

Bob applies gate, affects

Alice’s qubit’s state!
Alice takes first photon,

Bob takes second photon,

they fly light-years apart.

Example quantum circuit

〈0| •
⊕〈0|

H

H

Bob applies gate, affects

Alice’s qubit’s state!
Alice takes first photon,

Bob takes second photon,

they fly light-years apart.
Spooky action

at a distance.

In n-bit quantum circuit, to mathematically

analyze the output state is hard:

requires tracking state vectors of length 2n.

In physical reality, Nature does this.

Unlike in probabilistic circuits, the qubits

are not “secretly” in some definitive state.

They’re really collectively in a giant superposition!

Experiments have confirmed this.

Strange but true Why quantum computers?

1.  Why not?  Physics allows it.  

2.  [Feynman]  Suppose the task you want to

solve is “simulate a given quantum system.”

Seems to require exponential complexity

with classical computers, trivial with quantum.

3.  Other problems can be solved efficiently with

quantum circuits, even though only known

classical circuits have exponential complexity!
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Shor’s Algorithm

Peter Shor, 1994:

You can factor an n-bit number

using O(n3)-gate quantum circuit.

And thereby also crack RSA!

At this point, a lot of people became

interested in building quantum computers!

Grover’s Algorithm

Lov Grover, 1996:

You can solve n-variable SAT using

quantum circuit with ≈ 2n/2 gates.

Without quantum, believed to

require ≈ 2n gates.

The essence of Grover’s algorithm is

Homework #10 problem #5

(“Reflection Across The Average”).

So…  where are the

quantum computers?!

And the flying cars, for that matter!?

So…  where are the

quantum computers?!

Well, they’re working on it.

It’s a hard engineering problem.

In 2012 they factored the number 21.

It’s  3 × 7.

1840’s

Babbage

Hey, I have an idea for an

“Analytical Engine”

(i.e., universal computing device).

It totally works great… in theory.

You’re gonna need a lot of punch cards.

1840’s

Lovelace

I wrote some code for that machine

to compute the Bernoulli numbers.

This machine is going to be

awesome once it gets built.
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100 years later Moral of the story:  Patience

In the meantime, Shor’s algorithm is basically

the only truly cool quantum algorithm we know.

So please, be a Lovelace.

Definitions:

CNOT and CCNOT gates.

Reversible computation.

Probabilistic circuits.

Quantum states.

Quantum measurement.

Skills:

Analyzing prob’istic circuits.

Expanding gate matrices.

Analyzing quantum circuits.

Study Guide


