15-251: Great Theoretical Ideas in Computer Science Lecture 25

Quantum Computation

mage: Centre for Quantum Photonics

Let me tell you about a certain scientific theory.

It hasn't been around that long

- since about the late '60s.

Too new for your parents to have learned it when they were at school.

It's a bit hard to do direct experiments to get evidence confirming the theory.

In the AskReddit thread "What scientific 'fact' do you think may eventually be proven false?"
it was the \#1 answer (1104 points).

The commenter (a scientist in the field), wrote:
"A lot of the theories behind [its] mechanisms... seem a little tenuous to me."

I'm talking, of course, about...

Plate Tectonics

Quantum Mechanics

on the other hand...

- has been standard physics for about 90 years
- has been confirmed by zillions of experiments
- is relied upon in the engineering of hard drives, GPS devices, MRIs, etc.

Please do not be skeptical of QM.

First 1/2 of lecture: Non-quantum stuff

Late '30s: Boolean circuits

Nakashima
Shannon

Shestakov

Late '30s: Boolean circuits

Late '30s: Boolean circuits

Fact: Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is computable with DUPE $\boxed{\square} \boxed{\mathbf{\Lambda}} \quad \mathbf{V}$

Fact: Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ computable by a time-T algorithm can be computed by a circuit with poly(T) gates

Fact: Every function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is computable with DUPE $\neg \square \boxed{\wedge}$

Proof:

\equiv

Fact: Every function $\mathrm{f}:\{0,1\}^{n} \rightarrow\{0,1\}^{\mathrm{m}}$ is computable with DUPE NAND and "scratch input bits"

Proof: Suffices to get \neg

'60s: Reversible computation

(Remember Homework \#1, Problem \#4?)

NOT reversible

Apparently, this means an AND gate must dissipate energy.
(Because physics. $2^{\text {nd }}$ Law of Thermodynamics?)

Apparently, if a gate is reversible, it need not (in principle) dissipate energy.

Question: Is every function $\mathrm{f}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ computable with only reversible gates?

Answer: Yes! (As you know from homework.)

Need to allow some s scratch inputs, and g "garbage outputs". Such that $\mathrm{n}+\mathrm{s}=\mathrm{m}+\mathrm{g}$.
CCNOT
(aka
Toffoli gate)

Reversible
scratch

CCNOT
(aka
Toffoli
gate)

Reversible

If you prefer all
scratch bits to be $\langle 1| .$.

CCNOT

(aka Toffoli gate)

Reversible
sratch bits

Any circuit for $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ can efficiently be converted into a reversible circuit.

Puzzle

Consider Multiply : $\{0,1\}^{n+n} \rightarrow\{0,1\}^{2 n}$.
Takes two n-bit numbers and outputs product.
Can be done in poly(n) time.
Hence has a poly(n)-gate circuit.
Hence has a poly(n)-gate reversible circuit.

Why can't we just reverse the circuit, and get a poly(n)-gate circuit for Factoring?!

Solution: Have to know what garbage bits to feed in so that all scratch bits become <1|.

Late '70s:

Probabilistic computation

Strassen

Gill

(000| |001] $|010| \quad|011| \quad$ (100) (101] [110] (111|

$$
\left.\begin{array}{lllllllll}
\langle 000\rangle \\
\langle 001\rangle \\
\langle 010\rangle \\
\langle 100\rangle \\
\langle 101\rangle & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\langle 110\rangle & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\langle 111\rangle & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \text { Transition matrix }
$$

In general:

A k-input/output probabilistic gate can be any $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ stochastic matrix (matrix preserving prob. vectors).
l.e., each row nonnegative, sums to 1.

A probabilistic gate I just made up

$$
\begin{aligned}
& \text { if }\langle 0| \text { do } \operatorname{Bern}(.8) \\
& \text { if }\langle 1| \text { do } \operatorname{Bern}(.1)
\end{aligned}
$$

Sorta like \neg, but noisy (and asymmetric).

$$
\begin{array}{cc}
\langle 0| & \\
{ }_{\langle 1|}^{\langle 0|}\left(\begin{array}{cc}
\langle 1| \\
.2 & .8 \\
.9 & .1
\end{array}\right) \quad \text { Transition matrix }
\end{array}
$$

Here's one of the trickiest parts of the lecture.

It still has nothing to do with quantum.

Final thought on probabilistic circuits:
In n-bit circuit, to mathematically analyze the output distribution is hard: requires tracking probability vectors of length 2^{n}.

In physical reality, Nature doesn't need to do this. Each wire carries an actual bit!

Finally: Quantum computation is exactly the same as this, except...

The state vectors can have negative entries!

Instead of being called "probabilities", the state vector entries are called "amplitudes".

Instead of the entries adding up to 1 , the squares of the entries must add up to 1 .

Bit
In theory:
〈이
〈1|
Physically: horizontally vertically polarized polarized photon photon

According to the actual laws of physics (QM), a photon's state can be any superposition:

$$
\alpha\langle 0|+\beta\langle 1|
$$

where $\alpha, \beta \in \mathbb{R}$ satisfy $\alpha^{2}+\beta^{2}=1$.

A qubit

$$
\begin{gathered}
\alpha\langle 0|+\beta\langle 1| \quad \text { where "amplitudes" } \alpha, \beta \in \mathbb{R} \\
\text { satisfy } \alpha^{2}+\beta^{2}=1 .
\end{gathered}
$$

Also written

$$
\langle 0| \quad\langle 1|
$$

as a vector $\left(\begin{array}{ll}\alpha & \beta\end{array}\right)$
satisfying: $\left\|\left(\begin{array}{ll}\alpha & \beta\end{array}\right)\right\|^{2}=1$

It's NOT a probabilistic mixture of $\langle 0|$ and $\langle 1|$. It just is what it is.

'80s and '90s:

Quantum computation

Feynman

Deutsch

Actually, according to quantum mechanics, the amplitudes can even be complex numbers.
l.e., we can have $\alpha, \beta \in \mathbb{C}$ satisfying $|\alpha|^{2}+|\beta|^{2}=1$.

However, for quantum computation purposes, it's known that real amplitudes suffice (WLOG).

So let's keep things simple.

2 qubits

In general, 2 qubits can be in any superposition

$$
\alpha\langle 00|+\beta\langle 01|+\gamma\langle 10|+\delta\langle 11|
$$

where amplitudes satisfy $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$.

Also written as a vector: $\begin{array}{ccccc}\langle 00| & \langle 01| & \langle 10| & \langle 11| \\ (\alpha & \beta & \gamma & \delta)\end{array}$

$$
\text { satisfying: }\left\|\left(\begin{array}{llll}
\alpha & \beta & \gamma & \delta
\end{array}\right)\right\|^{2}=1
$$

n qubits

State can be any 2^{n}-dimensional vector v satisfying $\|v\|^{2}=1$.

Coordinates indexed as $\mathrm{v}_{\langle\mathrm{x}|}$
for x ranging in $\{0,1\}^{n}$.

2 qubits

Example: $\quad \frac{1}{\sqrt{2}}\langle 00|+\frac{1}{\sqrt{2}}\langle 11| \quad$ ("EPR pair") aka $\begin{array}{cccc}\{00 \mid & \langle 01| & \langle 10| & \langle 11| \\ \left(\frac{1}{\sqrt{2}}\right. & 0 & 0 & \left.\frac{1}{\sqrt{2}}\right)\end{array}$

Fact: \quad Not of form $\left(\begin{array}{cccc}\langle 00| & & \text { 〔01 } & \\ \alpha \alpha^{\prime} & \alpha \beta^{\prime} & \alpha^{\prime} \beta & \beta \beta^{\prime}\end{array}\right)$

Hence these two qubits are called entangled.

Quantum gates

Unitary matrices

"Length-preserving" matrices U, meaning $\|\mathrm{vU}\|^{2}=1$ whenever $\|\mathrm{v}\|^{2}=1$, are called unitary.

Fact: An equivalent condition is:

Unitary matrices

"Length-preserving" matrices U, meaning $\|\mathrm{VU}\|^{2}=1$ whenever $\|\mathrm{v}\|^{2}=1$, are called unitary.

Fact: An equivalent condition is:

$$
\begin{gathered}
\mathrm{UU}^{\dagger}=\mathrm{I} \\
\Leftrightarrow \\
\mathrm{U}^{-1}=\mathrm{U}^{\dagger}
\end{gathered}
$$

$$
\Rightarrow
$$

U is reversible

Example quantum gates

$$
\left(\begin{array}{ll}
\langle 0| & \langle 1| \\
\alpha & \beta
\end{array}\right) \quad \neg \quad\left(\begin{array}{ll}
\langle 0| & \langle 1| \\
\beta & \alpha
\end{array}\right)
$$

$$
\begin{gathered}
\langle 0| \\
\langle 1| \\
{ }_{\langle 1|}^{\langle 0|}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Example quantum gates

Example quantum gates

$$
\langle 0|-\mathbf{H} \quad \mathbf{H} \quad \frac{1}{\sqrt{2}}\langle 0|+\frac{1}{\sqrt{2}}\langle 1| \quad\langle 0|
$$

$$
\mathbf{H}=\begin{array}{cc}
\langle 0| & \langle 1| \\
\langle 0| & \left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\langle 1| \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{array}
$$

Example quantum gates

THESE GATES ARE ALL PHYSICALLY REALIZABLE

By, like, having lasers fired at the photons/qubits.

There are infinitely many unitary matrices／possible gates．

But，just like DUPE＋NAND for classical circuits．．． and 50／50 coin flips for randomized circuits．．．

Theorem：

Without loss of generality， quantum circuits only need CCNOT and Hadamard gates．
（It＇s convenient to also use CNOT．）

Example quantum circuit

$$
\mathbf{H}=\begin{array}{cc}
\langle 0| & \langle 1| \\
\langle 0| & \left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\langle 1| \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{array}
$$

Example quantum circuit

$$
\begin{array}{cccc}
\{00 \mid & \langle 01| & \langle 10| & \langle 11| \\
\left(\begin{array}{ccc}
1 \\
\frac{1}{2} & 0 & \frac{1}{\sqrt{2}}
\end{array} 0\right) & \begin{array}{l}
\text { They've come together } \\
\end{array} & & \\
\text { to enter a gate. We need } \\
\text { to write them in joint state. }
\end{array}
$$

Example quantum circuit

The qubits start out separated．
So it＇s okay to just apply H directly at first．

Example quantum circuit

Example quantum circuit

Example quantum circuit

In the real world, photons are only observed to be horizontally or vertical.

Quantum measurement

$$
\left(\begin{array}{ll}
\alpha 0 & \beta
\end{array}\right)=\square
$$

You observe:

$\langle 0|$ with prob. $\alpha^{2} \quad \&$ state "collapses" to $\left(\begin{array}{ll}1 & 0 \mid\end{array}\right)$
$\langle 1|$ with prob. $\beta^{2} \quad \&$ state "collapses" to $\left(\begin{array}{ll}0 & 1\end{array}\right)$

Example quantum circuit

Quantum measurement

$\langle 00|$ with prob. α^{2}
$\langle 01|$ with prob. β^{2}
$\langle 10|$ with prob. γ^{2}
And similarly for measuring 3-bit states or n-bit states.

〈11| with prob. δ^{2}
.. and state collapses.

Example quantum circuit

Example quantum circuit

Example quantum circuit

Strange but true

In n-bit quantum circuit, to mathematically analyze the output state is hard: requires tracking state vectors of length 2^{n}.

In physical reality, Nature does this.
Unlike in probabilistic circuits, the qubits are not "secretly" in some definitive state.

They're really collectively in a giant superposition! Experiments have confirmed this.

Example quantum circuit

Example quantum circuit

Alice takes first photon, Bob takes second photon, they fly light-years apart.

Spooky action at a distance.

Why quantum computers?

1. Why not? Physics allows it.
2. [Feynman] Suppose the task you want to solve is "simulate a given quantum system." Seems to require exponential complexity with classical computers, trivial with quantum.
3. Other problems can be solved efficiently with quantum circuits, even though only known classical circuits have exponential complexity!

Shor's Algorithm

Peter Shor, 1994:
You can factor an n-bit number using $O\left(n^{3}\right)$-gate quantum circuit.

And thereby also crack RSA!

At this point, a lot of people became interested in building quantum computers!

Grover's Algorithm

Lov Grover, 1996:

You can solve n-variable SAT using quantum circuit with $\approx 2^{n / 2}$ gates.

Without quantum, believed to require $\approx 2^{n}$ gates.

The essence of Grover's algorithm is
Homework \#10 problem \#5
("Reflection Across The Average").

So... where are the quantum computers?!

And the flying cars, for that matter!?

So... where are the quantum computers?!

Well, they're working on it.

It's a hard engineering problem.

In 2012 they factored the number 21.

1840's

1840's

100 years later

Moral of the story: Patience

In the meantime, Shor's algorithm is basically the only truly cool quantum algorithm we know.

So please, be a Lovelace.

