15-25|
 Great Theoretical Ideas in

Computer Science

Life After I5-25I

April 28,2015

Goals (from lecture I)

I. Learn about the theoretical foundations of computation
2. Learn the basic math topics, i.e. the language
3. Become better at reasoning abstractly and formally.
4. Become better problem solvers
5. Become better at expressing yourself clearly.

Real World

Abstract World
The land of rigor

What we learned

- Formalization of mathematical proof
- Formalization of computation (DFAs, TMs)
- Computability
- Computational complexity (and some interesting algorithms)
- NP-completeness and the P vs NP question
- Approximation algorithms
- Randomization

What we learned

- Cryptography
- Markov Chains
- Quantum computation
- Communication complexity
- Computer science perspective on proofs

What we learned

- Infinite sets (countable and uncountable sets)
- Graph theory
- Probability theory
- Number theory
- Fields and polynomials
- Linear algebra

Some big open questions

Relative power of resources

Relative power of resources

Resources: time, space, randomness, non-determinism.

Does non-determinism help with respect to time efficient computation?

$$
P=N P ?
$$

Relative power of resources

Resources: time, space, randomness, non-determinism.

Does non-determinism help with respect to space efficient computation?

$$
\mathrm{L}=\mathrm{NL} ?
$$

Relative power of resources

Resources: time, space, randomness, non-determinism.

Is time equivalent to space with respect to efficient computation?

$$
P=P S P A C E ?
$$

Note:

$$
P \subseteq N P \subseteq P S P A C E
$$

Relative power of resources

Resources: time, space, randomness, non-determinism.

Does randomness give us more power with respect to time efficient computation?

$$
P=B P P ?
$$

Interesting connection to circuit complexity:
certain circuit complexity lower bounds $\Longrightarrow P=B P P$
$P=B P P \Longrightarrow$ certain circuit complexity lower bounds

Relative power of resources

Resources: time, space, randomness, non-determinism.

Does randomness give us more power with respect to time efficient computation?

$$
P=B P P ?
$$

A major related result:

$$
\text { PRIMES } \in P
$$

Relative power of resources

Resources: time, space, randomness, non-determinism.

Does randomness give us more power with respect to space efficient computation?

$$
\mathrm{L}=\mathrm{BPL} ?
$$

A major related result:

$$
\text { USTCONN } \in L
$$

Relative power of resources

$$
\begin{gathered}
\mathrm{P}=\mathrm{NP} ? \\
\mathrm{~L}=\mathrm{NL} ? \\
\mathrm{P}=\mathrm{PSPACE} ? \\
\mathrm{P}=\mathrm{BPP} ?
\end{gathered}
$$

Your lower bound please.

Circuit complexity

Circuit complexity

Circuits: a clean and simple definition of computation. Just a composition of And, Or, Not gates.
(TMs are a bit messy to work with.
Not as elegant.)
poly-time TM \Longrightarrow poly-size circuits
no poly-size circuits \Longrightarrow no poly-time TM
So let's show SAT cannot be computed with poly-size circuits.

Circuit complexity

Let's restrict the circuit, make it less powerful.
What if we just allow constant depth?
Such circuits, in sub-exponential size, cannot compute parity function: $x_{1}+x_{2}+\cdots+x_{n} \quad(\bmod 2)$

Circuit complexity

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

What if we just allow $O(\log n)$ depth? parity can be computed in poly-size. we can't prove lower bounds.

Circuit complexity

What if we just allow constant depth but add parity gates to the circuit?

Circuit complexity

What if we just allow constant depth but add parity gates to the circuit?

Such circuits, in polynomial size, cannot compute

$$
\bmod _{3}(x)= \begin{cases}0 & \text { if } x_{1}+x_{2}+\cdots+x_{n} \equiv_{3} 0 \\ 1 & \text { otherwise }\end{cases}
$$

Ok, let's add $\bmod _{3}$ gates to the circuit.
Or, instead of $\bmod _{2}$ and $\bmod _{3}$ gates, just allow $\bmod _{6}$ gates.

Circuit complexity

Meanwhile...
Another restriction: remove NOT gates
(but no restriction on depth)

Alexander Razborov (1985):

Such poly-size circuits cannot compute CLIQUE.

We are so close to separating P and NP...

Circuit complexity

Alas...

Circuit complexity

Current frontier in circuit complexity:

Find a language in NP that cannot be computed by constant-depth, poly-size circuits with and, or, not, $\bmod _{6}$ gates.

In fact:
Find a language in NP that cannot be computed by depth 3, poly-size circuits with just $\bmod _{6}$ gates.

Circuit complexity

In fact:

Let's define a "generalized" mod6 gate.
For $A \subseteq\{0,1,2,3,4,5\}$

$$
\bmod _{6}^{A}(x)=\left\{\begin{array}{ll}
1 & \text { if } x_{1}+x_{2}+\cdots+x_{n} \\
0 & \text { otherwise }
\end{array} \quad(\bmod 6) \in A\right.
$$

Find a language in NP that cannot be computed by depth 2, poly-size circuits with just "generalized" mod6 gates.

Please solve this problem!

Circuit complexity and communication

"Number on the Forehead" (NOF) model $x_{1} \in\{0,1\}^{n}$

Number on the forehead: Player i sees all strings except x_{i}
Compute $F\left(x_{1}, x_{2}, x_{3}\right)$
$\mathbf{D}_{k}(F), \mathbf{R}_{k}^{\epsilon}(F)$

Circuit complexity and communication

Current frontier in circuit complexity:

Find a language in NP that cannot be computed by constant-depth, poly-size circuits with
and, or, not, $\bmod _{6}$ gates.

Suffices to:

Find a function that cannot be computed efficiently in the NOF model with poly-log(n) many players.

The $\log n$ Barrier: No lower bounds when $k=\log n$

Circuit complexity

Best known lower bound

For circuits with AND, OR, NOT gates:
Best known lower bound for an "explicit" function is

$$
5 n-\text { peanuts }
$$

Circuit complexity

Another interesting type of circuit:
Circuits with threshold gates.
For $w_{0}, w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}$
$\operatorname{thr}_{w}(x)= \begin{cases}1 & \text { if } w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}>w_{0} \\ 0 & \text { otherwise }\end{cases}$

Another major open problem:
Find a function that cannot be computed by poly-size, dept-2 circuits composed of only threshold gates.

Circuit complexity

Why are circuit lower bounds so hard to prove?

Steven Rudich (CMU professor)

Current techniques are unlikely to work!
"Natural Proof barrier"

Algorithms

Algorithms

Matrix Multiplication

1978: $O\left(n^{2.796}\right)$ by Pan
1979: $O\left(n^{2.78}\right)$ by Bini, Capovani, Romani, Lotti
1981: $O\left(n^{2.522}\right)$ by Schönhage
1981: $O\left(n^{2.517}\right)$ by Romani
1981: $O\left(n^{2.496}\right)$ by Coppersmith,Winograd 1986: $O\left(n^{2.479}\right)$ by Strassen 1990: $O\left(n^{2.376}\right)$ by Coppersmith,Winograd 2010: $O\left(n^{2.374}\right) \quad$ by Andrew Stothers (PhD thesis) 201 I: $O\left(n^{2.373}\right) \quad$ by Virginia Vassilevska Williams

Algorithms

Matrix Multiplication

2014: $O\left(n^{2.372}\right)$ by François Le Gall

2014: Ambainis, Filmus, Le Gall
These techniques are not going to let you go below

$$
O\left(n^{2.3}\right)
$$

Can we go down to $O\left(n^{2}\right)$?

Algorithms

Graph Isomorphism

Given two n-vertex graphs, are they isomorphic?

One of few problems not known to be in P nor NP-complete.

Best known algorithm: $\quad 2^{O(\sqrt{n \log n})}$

Algorithms

Factoring

Given a composite number, output a non-trivial factor.

One of few problems not known to be in P nor NP-complete.

Best known algorithm: roughly $2^{O\left(n^{1 / 3}\right)}$
There is a poly-time quantum algorithm.

Algorithms

Finding an n-bit prime

Given n , output a prime number with at least n digits.

Find a poly(n) time deterministic algorithm.
poly(n) time randomized algorithm exists.

Quantum computation

Quantum computation

The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative.

-Richard Feynman

Quantum computation

$B Q P=$ quantum analog of $B P P$

$$
\begin{aligned}
& \mathrm{BQP}=\mathrm{BPP} ? \\
& \mathrm{BQP}=\mathrm{NP} ?
\end{aligned}
$$

Quantum computation

The parity game

randomly picks

They win if:

$$
a \oplus b=x \wedge y
$$

Quantum computation

The parity game

With best classical strategy:
They win with probability 0.75
With best quantum strategy:
They win with probability ~ 0.854
"Quantum entanglement enables two separated parties to exhibit classically impossible correlations."

Open question: Why is the best strategy ~ 0.854 ?

Quantum computation

The parity game

Open question: Why is the best strategy ~ 0.854 ?

Wim van Dam (2005):
If we could achieve success probability I, then $\mathbf{D}(F) \leq 2$ for any F.

Brassard et al. (2005):
If we could achieve success probability ~ 0.908 or more, then $\mathbf{R}^{\epsilon}(F) \leq 2$ for any F.

What about success probability $0.854 \leq p \leq 0.908$?

How are we going to tackle these tough questions?

Tackling math problems

(SOLO)

Proved Fermat's Last Theorem 1995

(was open for 358 years)

Spent 7 years on it in secrecy.

Andrew Wiles

Tackling math problems

(GROUP)

1913-1996

More than 500 collaborators

Erdős number: degree of separation from Erdős

Paul Erdős
(he referred to children as "epsilons")

Tackling math problems

(OPEN)

Polymath projects:

Massively collaborative online mathematical projects

Gowers's Weblog

Mathematics related discussions

Timothy Gowers

Tackling math problems

(COMP)

4-Color Theorem

Reduce the problem to checking ~ 2000 cases.
Let the machine check those cases.

Can expect more meaningful interactions between humans and computers in the future.

Tackling math problems

(SOLO FOR COMP)

Whatever the case may be, we need your help to make progress.

David Hilbert, I 900

The Problems of Mathematics

"Who among us would not be happy to lift the veil behind which is hidden the future; to gaze at the coming developments of our science and at the secrets of its development in the centuries to come? What will be the ends toward which the spirit of future generations of mathematicians will tend? What methods, what new facts will the new century reveal in the vast and rich field of mathematical thought?"

