
1

Have 2 cupcakes.

15-251: Great Theoretical Ideas in Computer Science

Why Max-Cut is my
favorite problem

Lecture 29

(a TCS tale)

Faculty Course Evaluations

https://cmu.smartevals.com

Please fill one in!!

Unlike in other lectures,

I don’t necessarily expect you

to understand everything today.

I’ll be glossing over details

for the sake of the story.

Handbook on Algorithms and Theory of 
Computation [ALR99]:

“The vast majority of natural problems 
in NP have resolved themselves as being 
either in P or NP-complete. Unless you 
uncover a specific connection to one of 
[the above] intermediate problems, it is 
more likely offhand that your problem 
simply needs more work.”

Problems not known to be solvable in

polynomial time, not known to be NP-hard:

1.  Factoring

2.  Graph-Isomorphism

Output: a “bipartition”My fave problem:
Max-Cut left          right

Input: a graph

Goal: max # of crossing (“cut”) edges
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We don’t know if it’s doable in polynomial time.

We don’t know if it’s NP-hard.

My favorite problem:  Max-Cut

Problem:

Find a bipartition achieving at least 90%

of the maximum possible# of cut edges.

Similar situation for many approx. alg. problems.

But I’ll tell you about Max-Cut,

because it’s my favorite problem.

Achieving 50% of max in poly time.

We saw two algorithms for this:

Lecture 10: “Local search”.

Lecture 18:  Choose a random bipartition.

It took about 20 years to find a better algorithm.

A better algorithm for Max-Cut

Want a bipartition into left (−1) and right (+1).

Start with an arbitrary one.

ℝ

+1−1

A better algorithm for Max-Cut

“Local Search” looks at

vertices, flips them if

this improves.

ℝ

+1−1

This is too drastic.

ℝ

+1−1

If only we could “partly flip”.

This is too drastic.

A better algorithm for Max-Cut

ℝ2

+1−1

If only we could “partly flip”.

OK, just do it, using 2nd dimension.

ℝ

A better algorithm for Max-Cut
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ℝ2

+1−1

Imagine each arrow is repelled

by the other arrows it has an edge to.

ℝ

A better algorithm for Max-Cut

ℝ3

+1−1

Imagine each arrow is repelled

by the other arrows it has an edge to.

A better algorithm for Max-Cut

ℝ3

+1−1

Keep going, letting vectors repel,

into higher dimensions if necessary.

A better algorithm for Max-Cut

ℝN

End goal: a unit vector

σv for each v∈V, maximizing 

A better algorithm for Max-Cut

ℝN

End goal: a unit vector

σv for each v∈V, maximizing 

dot-product of

& vector for vertex u

& vector for vertex v

(−1 if they’re opposite, 

+1 if they’re identical)

A better algorithm for Max-Cut

Amazing: Can find the optimal vectors in poly(n) time!

How?  It’s a long and very interesting story…

Starts with a Nov. 7, 1979 New York Times headline:

“A Soviet Discovery Rocks World of Mathematics”

Ends with some awesome linear algebra.

Khachiyan Lovász Grötschel Schrijver Delorme Poljak

A better algorithm for Max-Cut



4

Last step: Pick a random hyperplane thru 0.

This gives a bipartition.

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.

This gives a bipartition.

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.

This gives a bipartition.

Not too hard analysis:

Expected # of edges cut is

≥ 87.8% of max-cut.

Michel Goemans + David Williamson 1994

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.

This gives a bipartition.

Not too hard analysis:

Expected # of edges cut is

≥ 87.8% of max-cut.

actually 87.856720578485160421730103367…%

where θ* is soln. of tan(θ/2) = θ.

(But who’s counting?)

A better algorithm for Max-Cut

We don’t know if it’s doable in polynomial time.

We don’t know if it’s NP-hard.

My favorite problem:  Max-Cut

Problem:

Find a bipartition achieving at least 90%

of the maximum possible# of cut edges.

As of 1994, we know 87.8% is doable.

What about NP-hardness?

NP-hardness for Max-Cut

1972:  NP-hard to achieve 100% of the maximum.

These days, it’s a homework-level problem.
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NP-hardness for Max-Cut

1992:  Proof of the famous “PCP Theorem”

(mentioned in Lecture 27).

PCP = Probabilistically Checkable Proofs.

Implies that 99.99999999%-approximation

for Max-Cut is NP-hard.

What do PCPs have to do with

approximation algorithms?

It’s a long and very interesting story…

NP-hardness for Max-Cut

A “PCP” can somehow be thought of as a game.

Its 2 players are somehow cooperating

“provers”, playing a Max-Cut-like game.

PCP Theorem somehow gives a “game” they

can win at most 99.99999999% of the time.

NP-hardness for Max-Cut

A “PCP” can somehow be thought of as a game.

We want to see how hard we can make it.

Idea:  Something called Parallel Repetition.

NP-hardness for Max-Cut

A “PCP” can somehow be thought of as a game.

Idea:  Something called Parallel Repetition.

We want to see how hard we can make it.

NP-hardness for Max-Cut

A “PCP” can somehow be thought of as a game.

Ran Raz ’94

Proved this makes game much harder.

Unfortunately, it’s now a weird game.

NP-hardness for Max-Cut

Ran Raz ’94

“Finding a 0.01% optimal solution to

WeirdParallelChess is NP-hard.”

NP-hardness

reduction

Johan Håstad ’97

“Finding a 94.1% optimal solution to

Max-Cut is NP-hard.”

16/17, but who’s counting?

(involving lots of

Fourier Analysis of

Boolean Functions)
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Max-Cut, circa 1997

Approximation Factor

1

.9999999999

Poly-time NP-hard

0

Max-Cut, circa 1997

Approximation Factor

1

.9999999999

Poly-time NP-hard

0

= .878

Max-Cut, circa 1997

Approximation Factor

1

.941 =

Poly-time NP-hard

0

= .878

???

Max-Cut, circa 1997

Approximation Factor

1

.941 =

Poly-time NP-hard

0

= .878

???

2015

You might yawn, but to me it’s awesome & terrible.

Max-Cut is maybe the simplest algorithms problem.

Not knowing if 90%-approximating can be done

in O(n) time, or that it requires 2Ω(n) time, is terrible.

That number between .878 and .941 is, to me, like,

the “fine structure constant” in theoretical physics.

Only more fundamental.

Vertex-Cover, circa 2002

Approximation Factor

1 1.36 2

Poly-time (Gavril)NP-hard (Dinur–Safra)

???

(End of Lecture 15)
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Max-Cut, circa 1997

Approximation Factor

1

.941 =

Poly-time NP-hard

0

= .878

Some interesting things did happen

in the last 18 years…
Subhash Khot ’02

WeirdParallelChess is so complicated!

Wouldn’t it be cool if a

simpler game were equally hard?

A game where, for every “move” of

one player, there is a unique

(forced) best move for the other player?

I call it… the

Unique Games Conjecture.

Unique Games Conjecture

Turns out, Khot’s simpler game is equivalent to…

+2

−3
+7

−3

−4

0

+2

−1

+6+2

Topography problem:

Input looks like this:

Think: nodes = cities, edges = elevation differences.

Goal: label cities by elevations, so that as many

elevation differences as possible are right. 

Topography problem:

Unique Games Conjecture

+2

−3
+7

−3

−4

Unique Games Conjecture ≡

Given a Topography input where it’s possible

to get  ≥ 99.99% of the differences right,

it is NP-hard to find a solution 

getting ≥ 0.01%  of the differences right.

NP-hardness for Max-Cut

Ran Raz ’94

“Finding a 0.01% optimal solution to

WeirdParallelChess is NP-hard.”

NP-hardness

reduction

Johan Håstad ’97

“Finding a 94.1% optimal solution to

Max-Cut is NP-hard.”

16/17, but who’s counting?

(involving lots of

Fourier Analysis of

Boolean Functions)

NP-hardness for Max-Cut

Conjecture:  “Finding a 0.01% optimal

solution to Unique-Games is NP-hard.”

NP-hardness

reduction

(involving lots of

Fourier Analysis of

Boolean Functions)

Subhash Khot,

2002

Johan Håstad ’97

“Finding a 94.1% optimal solution to

Max-Cut is NP-hard.”

16/17, but who’s counting?
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NP-hardness for Max-Cut

Conjecture:  “Finding a 0.01% optimal

solution to Unique-Games is NP-hard.”

NP-hardness

reduction

(involving lots of

Fourier Analysis of

Boolean Functions)

Subhash Khot,

2002

(?)

“Finding a ???% optimal solution to

Max-Cut is NP-hard.”

NP-hardness for Max-Cut

Conjecture:  “Finding a 0.01% optimal

solution to Unique-Games is NP-hard.”

NP-hardness

reduction

(involving lots of

Fourier Analysis of

Boolean Functions)

Subhash Khot,

2002

(!)

“Finding a solution better than

87.8567205784% of optimal for

Max-Cut is NP-hard.”

(involving lots of

Fourier Analysis of

Boolean Functions)

Proving the reduction worked required

proving a new theorem called

“Majority Is Stablest Theorem”.

NP-hardness

reduction

Proving the reduction worked required

proving a new theorem called

“Majority Is Stablest Theorem”.

Imagine a 2-party election where each vote

has a small probability ϵ of being miscounted.

Proving the reduction worked required

proving a new theorem called

“Majority Is Stablest Theorem”.

Imagine a 2-party election where each vote

has a small probability ϵ of being miscounted.

What’s the chance miscounts

affect the outcome of the election?

It depends on the “voting scheme”.

(Simple majority, “electoral college”, etc…)

Proving the reduction worked required

proving a new theorem called

“Majority Is Stablest Theorem”.

Theorem:

Among “fair” voting schemes, the one

least susceptible to miscounts is Majority.

What does voting theory have to do with

NP-hardness reductions?

It’s a long and very interesting story…
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The Max-Cut picture

Approximation Factor

1

Poly-time NP-hard

0

= .8785672…

IF…
you believe the “Unique Games Conjecture”

Unique Games Conjecture

If you believe it, we get perfect understanding

of the approximability of Max-Cut, Vertex-Cover.

And in fact ALL Constraint Satisfaction Problems.

Prasad Raghavendra, 2009

However, many people disbelieve it!

Unique Games Conjecture

50% of researchers believe it, try to prove it;

50% of research disbelieve it, try to disprove it.

Unique Games Conjecture

50% of researchers believe it, try to prove it;

50% of research disbelieve it, try to disprove it.

Unique Games Conjecture

50% of researchers believe it, try to prove it;

50% of research disbelieve it, try to disprove it.

Because of this, I actually think it’s

more interesting than P vs. NP.

Because, except for weirdos like Anıl,

pretty much everyone agrees P ≠ NP.

jk, Anıl

Final story:

The time Guy Kindler, Uri Feige, and I tried to

prove the Unique Games Conjecture.



10

It was 2005–2006, we were all working

at Microsoft Research.

We had some plan to prove it via

a twist on Parallel Repetition.

Everything boiled down to a problem about

foam.

Why?  It’s a long and very interesting story.

The cubical foam problem: 

Say that a shape ‘tiles d-dim. space cubically’

if, when you shift it by all integer amounts in

all d directions in ℝd, it exactly covers space.

How small can its surface area / perimeter be?

the integer points

in ℝ2

perimeter: 4

the integer points

in ℝ2

perimeter:

The cubical foam problem: 

Say that a shape ‘tiles d-dim. space cubically’

if, when you shift it by all integer amounts in

all d directions in ℝd, it exactly covers space.

How small can its surface area / perimeter be?

the integer points

in R2

perimeter:

This is the optimal solution in 2 dimensions.

What about 3 dimensions?

Tiles ℝ3 cubically,

has surface area 6.
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Tiles ℝ3 cubically,

has surface area 

Guy Kindler, Anup Rao, Avi Wigderson and I 

It has surface area…

≈ 5.6121

came up with the following,

several years later:

It indeed tiles ℝ3 cubically. 
Now imagine that’s a foam made

out of soap, and let the bubbles “relax”

according to Plateau’s Laws.

(Well, simulate that on a computer.)

Taking it to the next level:
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New surface area:

≈ 5.602

(Best solution I know.)

Back to the Unique Games Conjecture story.

For that, we cared about

the high-dimensional version.

What can you say about the surface area

of shapes that tile ℝd cubically?

What can you say about surface area

of shapes which tile ℝd cubically?

You can always use the cube:

surface area 2d.  

Any tiling shape will have volume 1.  

Any volume-1 shape has at least as 

much surface area as vol.-1 sphere.

Which in d dimensions is  

OTOH…

Let A(d) be the least surface area of

a shape which tiles ℝd cubically.

We know 

For our Unique Games Conjecture plan to work,

all we needed was that the correct answer

was NOT                    

We really believed that A(d) = Θ(d).

I mean, come on:  

How can a shape tile space in a cubical pattern 

without kind of looking like a cube??

Well, uh, apparently it can.

The gang & I proved that                     

Only consolation:  we got to write a paper

called “Spherical Cubes”.
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Theoretical Computer Science

Max-Cut: it’s the most basic algorithms problem.

That’s what’s cool about Theoretical Comp. Science:

beautiful intersections with all of math and science.

But understanding its computational complexity

took us from geometry, 

to probabilistic proofs,

to voting theory,

to foams… 

Lectures 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13,

14, 15, 17, 18, 19, 20,

21, 22, 23, 24.

Reminder:   Faculty Course Evaluations

https://cmu.smartevals.com

Study Guide


