15-251: Great Theoretical Ideas in Computer Science Lecture 29

Why Max-Cut is my favorite problem

Have 2 cupcakes.

Problems not known to be solvable in polynomial time, not known to be NP-hard:

1. Factoring
2. Graph-Isomorphism

My fave problem: Output: a "bipartition" Max-Cut Input: a graph

[^0]
My favorite problem: Max-Cut

Problem:

Find a bipartition achieving at least 90\% of the maximum possible \# of cut edges.

We don't know if it's doable in polynomial time. We don't know if it's NP-hard.

Similar situation for many approx. alg. problems. But I'll tell you about Max-Cut, because it's my favorite problem.

A better algorithm for Max-Cut

Want a bipartition into left (-1) and right (+1). Start with an arbitrary one.

A better algorithm for Max-Cut

If only we could "partly flip".
This is too drastic.

Achieving 50\% of max in poly time.

We saw two algorithms for this:

Lecture 10: "Local search".
Lecture 18: Choose a random bipartition.

It took about 20 years to find a better algorithm.

A better algorithm for Max-Cut

"Local Search" looks at vertices, flips them if this improves.

This is too drastic.

A better algorithm for Max-Cut

If only we could "partly flip".
OK, just do it, using $2^{\text {nd }}$ dimension.

A better algorithm for Max-Cut

Imagine each arrow is repelled by the other arrows it has an edge to.

A better algorithm for Max-Cut

Imagine each arrow is repelled by the other arrows it has an edge to.

A better algorithm for Max-Cut

Keep going, letting vectors repel, into higher dimensions if necessary.

A better algorithm for Max-Cut

vector for vertex u
\& vector for vertex v
(-1 if they're opposite,
+1 if they're identical)

End goal: a unit vector
σ_{v} for each $\mathrm{v} \in \mathrm{V}$, maximizing
$(u, v) \in E$

A better algorithm for Max-Cut

Amazing: Can find the optimal vectors in poly(n) time! How? It's a long and very interesting story... Starts with a Nov. 7, 1979 New York Times headline: "A Soviet Discovery Rocks World of Mathematics"

Ends with some awesome linear algebra.

Grötschel

Schrijver

Delorme

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0. This gives a bipartition.

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.

This gives a bipartition.
Not too hard analysis:
Expected \# of edges cut is $\geq 87.8 \%$ of max-cut.

My favorite problem: Max-Cut

Problem:

Find a bipartition achieving at least 90\% of the maximum possible \# of cut edges.

We don't know if it's doable in polynomial time. We don't know if it's NP-hard.

As of 1994, we know 87.8% is doable.
What about NP-hardness?

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.
 This gives a bipartition.

A better algorithm for Max-Cut

Last step: Pick a random hyperplane thru 0.
This gives a bipartition.
Not too hard analysis: Expected \# of edges cut is $\geq 87.8 \%$ of max-cut.
actually 87.856720578485160421730103367...\%

$$
\begin{gathered}
=\frac{2}{\pi \sin \theta^{*}} \text { where } \theta^{*} \text { is soln. of } \tan (\theta / 2)=\theta . \\
\text { (But who's counting?) }
\end{gathered}
$$

NP-hardness for Max-Cut

1972: NP-hard to achieve 100\% of the maximum. These days, it's a homework-level problem.

NP-hardness for Max-Cut

1992: Proof of the famous "PCP Theorem" (mentioned in Lecture 27).

PCP = Probabilistically Checkable Proofs. Implies that 99.99999999\%-approximation for Max-Cut is NP-hard.

What do PCPs have to do with approximation algorithms?

It's a long and very interesting story...

NP-hardness for Max-Cut

A "PCP" can somehow be thought of as a game.

We want to see how hard we can make it.
Idea: Something called Parallel Repetition.

NP-hardness for Max-Cut

A "PCP" can somehow be thought of as a game.

Proved this makes game much harder. Unfortunately, it's now a weird game.

Ran Raz '94

NP-hardness for Max-Cut

A "PCP" can somehow be thought of as a game.

Its 2 players are somehow cooperating "provers", playing a Max-Cut-like game.

PCP Theorem somehow gives a "game" they can win at most 99.99999999\% of the time.

NP-hardness for Max-Cut
A "PCP" can somehow be thought of as a game.

We want to see how hard we can make it.
Idea: Something called Parallel Repetition.

NP-hardness for Max-Cut

"Finding a 0.01\% optimal solution to WeirdParallelChess is NP-hard."

Johan Håstad '97
"Finding a 94.1\% optimal solution to Max-Cut is NP-hard."
$16 / 17$, but who's counting?

Max-Cut, circa 1997

Approximation Factor

Poly-time
NP-hard

Max-Cut, circa 1997

Approximation Factor

You might yawn, but to me it's awesome \& terrible.
Max-Cut is maybe the simplest algorithms problem.
Not knowing if 90\%-approximating can be done in $O(n)$ time, or that it requires $2^{\Omega(n)}$ time, is terrible.

That number between .878 and .941 is, to me, like, the "fine structure constant" in theoretical physics.

Only more fundamental.

Max-Cut, circa 1997

Approximation Factor

Max-Cut, circa 2015

Approximation Factor

Vertex-Cover, circa 2002

(End of Lecture 15)

Approximation Factor

Max-Cut, circa 1997

Approximation Factor

Poly-time
NP-hard

Some interesting things did happen in the last 18 years...

Unique Games Conjecture

Turns out, Khot's simpler game is equivalent to...
Topography problem:
Input looks like this:

Think: nodes $=$ cities, edges $=$ elevation differences. Goal: label cities by elevations, so that as many elevation differences as possible are right.

NP-hardness for Max-Cut

"Finding a 0.01\% optimal solution to WeirdParallelChess is NP-hard."

"Finding a 94.1\% optimal solution to Max-Cut is NP-hard."
$16 / 17$, but who's counting?

Unique Games Conjecture
Topography problem:

Unique Games Conjecture \equiv

Given a Topography input where it's possible to get $\geq 99.99 \%$ of the differences right,
it is NP-hard to find a solution getting $\geq 0.01 \%$ of the differences right.

NP-hardness for Max-Cut

Conjecture: "Finding a 0.01\% optimal solution to Unique-Games is NP-hard."
Subhash Khot,

Johan Håstad '97

"Finding a 94.1\% optimal solution to Max-Cut is NP-hard."

NP-hardness for Max-Cut (?)

Conjecture: "Finding a 0.01\% optimal solution to Unique-Games is NP-hard."

Subhash Khot, 2002
"Finding a ???\% optimal solution to Max-Cut is NP-hard."

Proving the reduction worked required
proving a new theorem called
"Majority Is Stablest Theorem".

It depends on the "voting scheme".
(Simple majority, "electoral college", etc...)

NP-hardness for Max-Cut (!)

Conjecture: "Finding a 0.01\% optimal solution to Unique-Games is NP-hard."

Subhash Khot, 2002

(involving lots of Fourier Analysis of Boolean Functions)

"Finding a solution better than $\mathbf{8 7 . 8 5 6 7 2 0 5 7 8 4} \%$ of optimal for Max-Cut is NP-hard."

Proving the reduction worked required proving a new theorem called "Majority Is Stablest Theorem".

Imagine a 2-party election where each vote has a small probability ε of being miscounted.

Proving the reduction worked required proving a new theorem called
"Majority Is Stablest Theorem".

Theorem:

Among "fair" voting schemes, the one

> least susceptible to miscounts is Majority.

What does voting theory have to do with NP-hardness reductions?
It's a long and very interesting story...

The Max-Cut picture

Approximation Factor

Poly-time
NP-hard
$\begin{array}{cc}1 & \frac{1}{2} \\ 0 & \frac{2}{\pi \sin \theta^{*}}=.8785672 \ldots\end{array}$

$$
\mid F \cdot .
$$

you believe the "Unique Games Conjecture"

Unique Games Conjecture

50\% of researchers believe it, try to prove it; 50% of research disbelieve it, try to disprove it.

Unique Games Conjecture

50\% of researchers believe it, try to prove it; 50% of research disbelieve it, try to disprove it.

Because of this, I actually think it's more interesting than P vs. NP.

Because, except for weirdos like Anıl, pretty much everyone agrees $\mathbf{P} \neq \mathbf{N}$.

> jk, Anıl

Unique Games Conjecture

If you believe it, we get perfect understanding of the approximability of Max-Cut, Vertex-Cover.

And in fact ALL Constraint Satisfaction Problems.

Prasad Raghavendra, 2009
However, many people disbelieve it!

Unique Games Conjecture

50% of researchers believe it, try to prove it; 50% of research disbelieve it, try to disprove it.

Final story:

The time Guy Kindler, Uri Feige, and I tried to prove the Unique Games Conjecture.

It was 2005-2006, we were all working

The cubical foam problem:
Say that a shape 'tiles d-dim. space cubically' if, when you shift it by all integer amounts in all d directions in \mathbb{R}^{d}, it exactly covers space.

How small can its surface area / perimeter be?

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet			
\bullet	\bullet	\bullet	\bullet

the integer points
in \mathbb{R}^{2}
perimeter: 4

Why? It's a long and very interesting story.

This is the optimal solution in 2 dimensions.
What about 3 dimensions?
all d directions in \mathbb{R}^{d}, it exactly covers space.
How small can its surface area / perimeter be?

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

Tiles \mathbb{R}^{3} cubically, has surface area 6.

Tiles \mathbb{R}^{3} cubically, has surface area $\sqrt{6}+\sqrt{2}+2 \approx 5.84$

Guy Kindler, Anup Rao, Avi Wigderson and I came up with the following, several years later:

It has surface area...

$$
\approx 5.6121
$$

It indeed tiles \mathbb{R}^{3} cubically.
Taking it to the next level:
Now imagine that's a foam made out of soap, and let the bubbles "relax" according to Plateau's Laws.

(Well, simulate that on a computer.)
New surface area:

$$
\approx 5.602
$$

(Best solution I know.)

Back to the Unique Games Conjecture story.

For that, we cared about the high-dimensional version.

What can you say about the surface area of shapes that tile $\mathbb{R}^{\mathbf{d}}$ cubically?

Let $A(d)$ be the least surface area of a shape which tiles \mathbb{R}^{d} cubically.

$$
\text { We know } \sqrt{\mathrm{d}} \lesssim \mathrm{~A}(\mathrm{~d}) \leq 2 \mathrm{~d}
$$

For our Unique Games Conjecture plan to work, all we needed was that the correct answer

$$
\text { was NOT } A(d)=\Theta(\sqrt{d}) \text {. }
$$

What can you say about surface area of shapes which tile $\mathbb{R}^{\text {d }}$ cubically?

You can always use the cube: surface area 2d. OTOH...

Any tiling shape will have volume 1. Any volume-1 shape has at least as much surface area as vol.-1 sphere. Which in d dimensions is $\approx \sqrt{d}$

We really believed that $A(d)=\Theta(d)$.

I mean, come on:
How can a shape tile space in a cubical pattern without kind of looking like a cube??

Well, uh, apparently it can.
The gang \& I proved that $\mathrm{A}(\mathrm{d})=\Theta(\sqrt{\mathrm{d}})$.

Only consolation: we got to write a paper called "Spherical Cubes".

Theoretical Computer Science

Max-Cut: it's the most basic algorithms problem.
But understanding its computational complexity
took us from geometry,
to probabilistic proofs,
to voting theory,
to foams

That's what's cool about Theoretical Comp. Science: beautiful intersections with all of math and science.

Reminder: Faculty Course Evaluations https://cmu.smartevals.com

Study Guide

Lectures 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13,
$14,15,17,18,19,20$,
21, 22, 23, 24.

[^0]: Goal: max \# of crossing ("cut") edges

