
CMU 15-252 Spring 2017

Homework 6
due March 24th in class

1. Read the notes on Fields and Polynomials posted on the course webpage.

2. In this question, we explore the computational complexity of polynomial multiplication.

(a) Suppose we are given two degree-d polynomials P (x) and Q(x) as a list of their coef-
ficients. Using the definition of polynomial multiplication, what is the running time of
evaluating their product in terms of d, assuming a single field operation (addition or
multiplication) takes constant time to compute?

(b) Let’s try another method of computing the product. Given two degree-d polynomials
P (x) and Q(x) as a list of coefficients, we first evaluate them at 2d + 1 points to con-
vert them to the value representation (in a regular value representation of a degree-d
polynomial, we would evaluate the polynomial at d + 1 points, but here we will need
the evaluation at 2d + 1 points). To put it more explicitly, we pick 2d + 1 distinct field
elements a1, . . . , a2d+1, and compute (P (a1), . . . , P (a2d+1)) and (Q(a1), . . . , Q(a2d+1)).
These are the value representations of P (x) and Q(x) respectively. Then the value repre-
sentation of the product PQ(x) is (P (a1)Q(a1), . . . , P (a2d+1)Q(a2d+1)). We convert this
back to the coefficient representation using Lagrange interpolation. What is the running
time of this method in terms of d (again, assuming field operations take constant time)?
And why did we evaluate the polynomials at 2d + 1 points rather than d + 1 points?

A note for the interested: Evaluating the polynomials at a carefully chosen set of 2d+ 1
points gives rise to Fast Fourier Transform, which computes the product of two degree-d
polynomials in time O(d log d). We plan to cover this in the next 252 lecture.

3. This problem is concerned with doing a bit of a generalization of the Karatsuba multiplication
algorithm. Suppose we wish to multiply two n-bit numbers A and B. Say we break up A
into three blocks (unlike the two blocks in Karatsuba), writing A = a22

2n/3 + a12
n/3 + a0.

(Assume n is divisible by 3.) Similarly we break up B as B = b22
2n/3 + b12

n/3 + b0. Our goal
is to compute C = A ·B, which of course can be written as

C = c42
4n/3 + c32

n + c22
2n/3 + c12

n/3 + c0,

where

c4 = a2b2, c3 = a2b1 + a1b2, c2 = a2b0 + a1b1 + a0b2, c1 = a1b0 + a0b1, c0 = a0b0. (1)

(a) Explain how, if we can get a hold of c0, . . . , c4, we can write out C in O(n) time. (Hint:
the little hassle here is understanding how many bits long c0, . . . , c4 are, and handling
“overflow”.)

(b) Evidently from (1), we could get c0, . . . , c4 by doing 9 recursive multiplies of n/3-bit
numbers, plus some addition. Explain how — if we could somehow get c0, . . . , c4 using
just 5 recursive multiplies of n/3-bit numbers, plus some addition — we could multiply
n-bit numbers in time O(nlog3 5). (Hint: in analyzing the recursion, you may assume n
is a power of 3. Actually, this is not a costly assumption, since you could artificially
pretend n was the next-larger power of 3, and that would only change it by a constant
factor.)

1



(c) Explain why you can get c0, . . . , c4 by doing just 5 recursive multiplies of n/3-bit num-
bers1, plus some additional arithmetic taking O(n) time.
Hint: We’ll make use of part (b) of the previous question (Question 2). Think of the
polynomial A(x) = a2x

2 + a1x + a0 and similarly B(x). Think about polynomial in-
terpolation on 5 values, say −2,−1, 0, 1, 2. Notice that even though we’re doing integer
multiplication, somehow rational numbers get involved. . . )

1Well, maybe n/3 + 1 or n/3 + 2 bits. Who’s counting?

2


