Homework 7 - Due April 7 in class

There are many different kinds of "Fourier Transforms". The DFT we saw in class is a kind of "physics-y" one, transforming discrete sequences into discrete sequences. In this homework you will see a more "computer science-y" one. We'll call it the DWT. ${ }^{1}$

Let $N=2^{n}$ for some positive integer n. Define a real $N \times N$ matrix DWT_{N} as follows. We think of the rows/columns of DWT_{N} as being indexed by n-bit Boolean strings. Now for $x, y \in\{0,1\}^{n}$, the $[x, y]$ entry of DWT_{N} is defined by

$$
\operatorname{DWT}_{N}[x, y]=(-1)^{x \cdot y},
$$

where $x \cdot y$ denotes the "dot-product $\bmod 2$ " of x and y; i.e., $\sum_{i=1}^{n} x_{i} y_{i}(\bmod 2)$.
It is also sometimes convenient to define the scaled matrix $\widetilde{\mathrm{DWT}}_{N}=\frac{1}{\sqrt{N}} \mathrm{DWT}_{N}$.

1. (No points, do not turn in.) Explicitly write DWT_{2} and DWT_{4}.
2. Identify the inverse matrix of DWT_{N}, call it IDWT_{N}, and prove it's the inverse.
3. Prove that the matrix $\widetilde{\mathrm{DWT}}_{N}$ "preserves vector lengths". That is, for any vector $\vec{a} \in \mathbb{R}^{N}$, if we write $\vec{b}=\widetilde{\mathrm{DWT}}_{N} \cdot \vec{a}$, then $\|\vec{a}\|=\|\vec{b}\|$, where $\|\cdot\|$ is the usual Euclidean length of the vector (defined by $\|\vec{c}\|^{2}=\sum_{x \in\{0,1\}^{n}} c_{x}^{2}$).
4. Describe and analyze an algorithm for computing $\mathrm{DWT}_{N} \cdot \vec{a}$, for an input vector $\vec{a} \in \mathbb{R}^{N}$. Your algorithm should use $O(N \log N)$ arithmetic operations. (You can assume adding/subtracting real numbers takes " 1 step".)
5. Let G be the $N \times N$ matrix given by $\operatorname{IDWT}_{N} \cdot F \cdot \mathrm{DWT}_{N}$, where F is the $N \times N$ matrix (with rows/columns indexed by n-bit strings) defined by

$$
F[x, y]= \begin{cases}1 & \text { if } x=y=000 \cdots 0 \\ -1 & \text { if } x=y \text { but they're not equal to } 000 \cdots 0 \\ 0 & \text { if } x \neq y\end{cases}
$$

Prove that G acts on vectors $\vec{a} \in \mathbb{R}^{N}$ by "flipping over the average". That is, given $\vec{a} \in \mathbb{R}^{N}$, if $\mu=\operatorname{avg}_{x \in\{0,1\}^{n}}\left\{a_{x}\right\}$, and $\vec{b}=G \cdot \vec{a}$, then b_{x} is equal to "the value of a_{x} reflected across μ on the real line". Prove also that G "preserves vector lengths".

[^0]
[^0]: ${ }^{1}$ For math nerds/lovers: We might identify the complex vector space \mathbb{C}^{N} with the vector space of functions $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$, where \mathbb{Z}_{N} is the group of integer $\bmod N$, and the identification is to just view a vector as the "truth table" (list of values) of the function. The DFT we saw in class can be thought of as a change-of-basis matrix from the "standard basis" of \mathbb{C}^{N} to the orthonormal basis $\left\{\rho_{0}, \rho_{1}, \ldots, \rho_{N-1}\right\}$, where $\rho_{j}(k)=\omega_{N}^{j \cdot k}$, the multiplication $j \cdot k$ being $\bmod N$. In this problem, we are motivated by (real-valued) Boolean functions $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{R}$; equivalently, real vectors (truth tables) of dimension $N=2^{n}$. The DWT in this problem can again be thought of as a change-of-basis matrix from the standard basis to the orthonormal basis of "Boolean" functions $\left\{\chi_{y}\right\}_{y \in\{0,1\}^{n}}$, where $\chi_{y}(x)=(-1)^{x \cdot y}$, with $x \cdot y$ being the dot-product in \mathbb{Z}_{2}^{n}. Note that $-1=\omega_{2}$:)

