There are many different kinds of “Fourier Transforms”. The DFT we saw in class is a kind of “physics-y” one, transforming discrete sequences into discrete sequences. In this homework you will see a more “computer science-y” one. We’ll call it the DWT.¹

Let \(N = 2^n \) for some positive integer \(n \). Define a real \(N \times N \) matrix \(\text{DWT}_N \) as follows. We think of the rows/columns of \(\text{DWT}_N \) as being indexed by \(n \)-bit Boolean strings. Now for \(x, y \in \{0, 1\}^n \), the \([x, y] \) entry of \(\text{DWT}_N \) is defined by

\[
\text{DWT}_N[x, y] = (-1)^{x \cdot y},
\]

where \(x \cdot y \) denotes the “dot-product mod 2” of \(x \) and \(y \); i.e., \(\sum_{i=1}^{n} x_i y_i \pmod{2} \).

It is also sometimes convenient to define the scaled matrix \(\tilde{\text{DWT}}_N = \frac{1}{\sqrt{N}} \text{DWT}_N \).

1. (No points, do not turn in.) Explicitly write \(\text{DWT}_2 \) and \(\text{DWT}_4 \).

2. Identify the inverse matrix of \(\text{DWT}_N \), call it \(\text{IDWT}_N \), and prove it’s the inverse.

3. Prove that the matrix \(\tilde{\text{DWT}}_N \) “preserves vector lengths”. That is, for any vector \(\vec{a} \in \mathbb{R}^N \), if we write \(\vec{b} = \text{DWT}_N \cdot \vec{a} \), then \(\|\vec{a}\| = \|\vec{b}\| \), where \(\|\cdot\| \) is the usual Euclidean length of the vector (defined by \(\|\vec{c}\|^2 = \sum_{x \in \{0, 1\}^n} c_x^2 \)).

4. Describe and analyze an algorithm for computing \(\text{DWT}_N \cdot \vec{a} \), for an input vector \(\vec{a} \in \mathbb{R}^N \). Your algorithm should use \(O(N \log N) \) arithmetic operations. (You can assume adding/subtracting real numbers takes “1 step”.)

5. Let \(G \) be the \(N \times N \) matrix given by \(\text{IDWT}_N \cdot F \cdot \text{DWT}_N \), where \(F \) is the \(N \times N \) matrix (with rows/columns indexed by \(n \)-bit strings) defined by

\[
F[x, y] = \begin{cases}
1 & \text{if } x = y = 000 \ldots 0 \\
-1 & \text{if } x = y \text{ but they’re not equal to } 000 \ldots 0 \\
0 & \text{if } x \neq y.
\end{cases}
\]

Prove that \(G \) acts on vectors \(\vec{a} \in \mathbb{R}^N \) by “flipping over the average”. That is, given \(\vec{a} \in \mathbb{R}^N \), if \(\mu = \text{avg}_{x \in \{0, 1\}^n} \{a_x\} \), and \(\vec{b} = G \cdot \vec{a} \), then \(b_x \) is equal to “the value of \(a_x \) reflected across \(\mu \) on the real line”. Prove also that \(G \) “preserves vector lengths”.

¹For math nerds/lovers: We might identify the complex vector space \(\mathbb{C}^N \) with the vector space of functions \(f : \mathbb{Z}_N \to \mathbb{C} \), where \(\mathbb{Z}_N \) is the group of integer mod \(N \), and the identification is to just view a vector as the “truth table” (list of values) of the function. The DFT we saw in class can be thought of as a change-of-basis matrix from the “standard basis” of \(\mathbb{C}^N \) to the orthonormal basis \(\{\rho_0, \rho_1, \ldots, \rho_{N-1}\} \), where \(\rho_j(k) = \omega_{N}^{jk} \), the multiplication \(j \cdot k \) being mod \(N \). In this problem, we are motivated by (real-valued) Boolean functions \(f : \mathbb{Z}_2^n \to \mathbb{R} \); equivalently, real vectors (truth tables) of dimension \(N = 2^n \). The DWT in this problem can again be thought of as a change-of-basis matrix from the standard basis to the orthonormal basis of “Boolean” functions \(\{\chi_y\}_{y \in \{0, 1\}^n} \), where \(\chi_y(x) = (-1)^{x \cdot y} \), with \(x \cdot y \) being the dot-product in \(\mathbb{Z}_2^n \). Note that \(-1 = \omega_{2} \).