
CMU 15-252 Spring 2017

Homework 8 — Due April 21 in class

In this homework you will attempt to give a “physics proof” of a lower bound on the critical
clause density for random 3SAT. Specifically, you will try to identify a number ∆u (somewhere
between 2 and 3?) such that a certain very simple algorithm has a good chance of finding a
satisfying assignment for a random 3SAT formula with clause density ∆ < ∆u. This homework
will require you to write code, produce some plots, and write some short explanations. You should
turn all of this in on paper (including code printouts!). The TAs will briefly eyeball the code to
make sure it looks plausible, but will mainly grade the plots, explanations, and quality of your
findings. You may use any programming language, and any package/software for making diagrams.

1. Write code that takes as input a parameter n ∈ N and a parameter ∆ ∈ R+. It should first set
m = b∆nc. Then it should choose and return (the representation of) a random 3CNF formula
φ with n variables x1, . . . , xn and m clauses. Each clause (independently) should consist of
3 randomly chosen variables, each possibly negated (randomly). I don’t care whether you
choose the 3 variables “without replacement” or “with replacement”; the former is usually
the “official model”, but the latter (which may lead to a clause containing a variable more
than once) is slightly easier to implement and is perfectly fine for this problem.

If you use “with replacement”, your code should immediately “simplify” all clauses that
contain repeated variables: Whenever xi and ¬xi both appear in the clause, you should delete
the whole clause, because any assignment will automatically satisfy this clause anyway. (This
means you might end up with fewer than m clauses at the end, but that’s okay.) Similarly, if
xi (or ¬xi) appears multiple times in a clause, you should just include it once. (This means
some clauses may have fewer than m literals; that’s also okay, and it’s going to happen in the
course of the upcoming algorithm anyway.)

By the way, one standard “format” for 3CNFs is a list of clause-representations, each of which
is a set of (at most) 3 integers in the range [−n, n], where +i indicates that xi appears in the
clause and −i indicates that ¬xi appears in the clause (0 is unused).

2. Write code for this algorithm, “attempting” to find a satisfying assignment for φ:

for T = 0 . . . n− 1 // counts how many variables have been set so far

if the current 3CNF has no clauses, halt and output “satisfiable”

if the current 3CNF has at least one clause of size 1, then do a “forced step”:

pick a random size-1 clause from among the set of all size-1 clauses

this size-1 clause “forces” a truth assignment for its variable1

set that forced truth value, and “simplify” the 3CNF accordingly2

else if the current 3CNF has no clauses of size 1, then do a “free step”:

pick a random variable (that hasn’t been set yet)

set that variable to a random truth value (0/1), and “simplify” the 3CNF accordingly

if the 3CNF now contains an empty clause, halt and output “fail”

output “satisfiable”

1That is, if the clause is (xi) then it’s forcing xi = 1; if the clause is (¬xi), it’s forcing xi = 0.
2That is, go through each clause: do nothing if the clause doesn’t contain the newly set variable, remove the clause

if the newly set variable satisfies it, and delete the set variable from the clause if it doesn’t help to satisfy it.

1



3. Try out your code for several choices of n (e.g., n = 100, 200, 400, . . . ), values of ∆ (e.g., 1, 1.2,
1.4, . . . ), and lots of runs. Collect statistics on how often your algorithm succeeds (outputs
“satisfiable”). Produce some plots of “success probability vs. ∆”. Write some explanation of
your findings. Does there seem to be some value ∆u with the property that the algorithm is
likely to fail when ∆ > ∆u and has a good chance of succeeding when ∆ < ∆u? (For large n.)

4. For up to one extra point, do as much as you can of the following: Define t = T/n, so
t ∈ [0, 1]. At all times in the algorithm, let s3 = s3(t) = S3/n, where S3 denotes the
number of size-3 clauses in the formula. Similarly define s2 for the number of size-2 clauses.
(Initially, s3(0) = ∆ and s2(0) = 0.) Each run of the algorithm essentially produces functions
s2, s3 : [0, 1] → R+. Make plots of “typical” outcomes for these functions, for various values
of ∆. Can you identify what these functions tend towards?

Clauses of size 1 behave somewhat differently. Whenever a free step of the algorithm generates
a size-1 clause, it may actually generate several size-1 clauses. Doing all the subsequent “forced
steps” (which themselves may in turn generate more size-1 clauses), before getting back down
to zero size-1 clauses, is called doing a “cascade”. Try to plot/analyze/describe quantities
like the following: When a cascade begins at time t, what is the “average” number of size-1
clauses λ(t) that are generated by the first free step? What is the “average” number of size-1
clauses generated in the whole cascade, Λ(t)? How do these quantities seem to depend on ∆?

2


