15-251: Great Theoretical Ideas In Computer Science

Recitation 12 : Randomized Min-Cut and Interactive Proofs

- Midterm 2 in DH 2210 on Wednesday next week
- It covers weeks 6 to 11 (inclusive)
- Midterm Practice Problems have been released
- Solution Sessions for HW10 Friday 5-6pm and Saturday 2-3pm in GHC 4301
- Graph review on Saturday from 12-1:30pm, NP review on Sunday from 12-1:30pm, Approximation and Probability review on Sunday from 4-5:30pm

Lecture Review

Randomized Min-Cut

- The Min-Cut Problem: Given a connected graph $G=(V, E)$, find a non-empty subset $S \subset V$ s.t. number of edges from S to $V-S$ is minimized
- A Randomized Algorithm: On a single iteration from G_{i} to G_{i+1},
- Pick an edge (u, v) randomly
- Contract u and v into a single vertex u^{\prime}, so edges with an endpoint in u or v have that endpoint be u^{\prime} instead.
- Delete self-loops which result (edges that went from u to v in G_{i}). Note: we can have multiple edges between two vertices

Repeat until we have only two super-vertices. Note that each super-vertex represents a set of vertices in the original graph G. Output one of these sets as S.

- Analysis: $\operatorname{Pr}[$ We output a minimum cut $] \geq 1 / n^{2}$. Using repeated trials and the inequality $1+x \leq e^{x}$, we can boost success probability to $\geq 1-1 / e^{n}$

A language A is in IP if

- There is a probabilistic poly-time Verifier and a computationally unbounded Prover
- To determine if a string n is in A, the Verifier and Prover exchange $p(|n|)$ number of messages, then:
- (Completeness) If $n \in A$ there exists a sequence of messages s.t. Verifier accepts
- (Soundness) If $n \notin A$ no matter what messages are sent, Verifier rejects with at least $1 / 2$ probability

A Zero-Knowledge proof is a protocol in the IP model where the Verifier learns nothing about why $n \in A$.

Max Min-Cuts

Show that a graph can have at most $n(n-1) / 2$ distinct min-cuts. (Hint. use the analysis of min-cut from lecture)

A Simpler Algorithm

Instead of contracting edges, suppose that in each round, we pick 2 vertices at random and contract them into a single vertex. When we have two vertices left, we output one of the vertex sets represented by the final two vertices. Prove or show a counterexample: The probability that this algorithm outputs a min-cut is $1 / n^{k}$ for some constant k.

Zero-Knowledge Sudoku

Consider the following extension of the familiar Sudoku puzzle. Let $S U D O K U$ be the language of all $n^{2} \times n^{2}$ boards B with $n \in \mathbb{N}$ s.t.

- Each space $B_{i j},(i, j) \in\left[n^{2}\right] \times\left[n^{2}\right]$ is either marked with a number $\in\left[n^{2}\right]$ or is left blank.
- There exists a way to mark all the blank spaces in B with numbers $\in\left[n^{2}\right]$ s.t.
- In each row of the board, all of the numbers are unique
- In each column of the board, all of the numbers are unique
- Dividing the board evenly into $n \times n$ subsquares (so there are n^{2} subsquares total), in each subsquare all of the numbers are unique

Note that classic 9×9 sudoku is the special case where $n=3$. Show that there is a zero-knowledge proof for $S U D O K U$ (Hint: permute the numbers in $\left[n^{2}\right]$ similarly to permuting the colors in the 3-coloring zero-knowledge proof from class).

