15-251: Great Theoretical Ideas In Computer Science

Recitation 14

Announcements

- Homework Solution Sessions - Friday 5p-6p, Saturday 2p-3p in GHC 4301
- Small groups sessions this weekend - sign up if you'd like to review material for the final

Definitions

- Multiplicative set of integers modulo $N: \mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}$
- Totient function: Euler's totient function, denoted $\phi(N)$, is the number of integers in the set \mathbb{Z}_{N} that are relatively prime to $N . \phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$.

Diffie Hellman

Recall the Diffie-Hellman protocol for securely generating a secret key over a public communication channel:

$$
\begin{array}{rrr}
\text { Andrew } & \text { Benson } \\
\text { Picks a large prime } P & (1) & \\
\text { Picks a generator } B \in \mathbb{Z}_{P}^{*} & (2) & \\
\text { Randomly draws } E_{1} \in \mathbb{Z}_{\phi(P)} & (3) & \text { Receives } P, B, B^{E_{1}} \\
\text { Computes } B^{E_{1}} \in \mathbb{Z}_{P}^{*} & (4) & \text { Randomly draws } E_{2} \in \mathbb{Z}_{\phi(P)} \\
\text { Sends } P, B, B^{E_{1}} & (5) & \text { Computes } B^{E_{2}} \in \mathbb{Z}_{P}^{*} \\
& (6) & \text { Sends } B^{E_{2}} \tag{9}\\
& (7) & \text { Computes }\left(B^{E_{1}}\right)^{E_{2}}=B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*}
\end{array}
$$

- In line 2 , why must B be a generator?
- In lines 3 and 5 , why are the random exponents chosen from the set $\mathbb{Z}_{\phi(P)}$?
- Lines 4, 6, and 9 involve modular exponentiation. How can we accomplish this efficiently?
- An eavesdropper can obtain $B, B^{E_{1}}, B^{E_{2}} \in \mathbb{Z}_{P}^{*}$. Can she efficiently recover $B^{E_{1} E_{2}}$?
- Why is this protocol useful?

ElGamal

The EIGamal encryption system is a way of using the Diffie-Hellman protcol to exchange encrypted messages. Suppose Andrew wants to send a message M to Benson.

Andrew
(1)

Receives $P, B, B^{E_{1}}$
Randomly draws $E_{2} \in \mathbb{Z}_{\phi(P)}$
Encode M as an element of \mathbb{Z}_{P}^{*}
Computes $B^{E_{2}}, M B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*}$

$$
\begin{equation*}
\text { Sends }\left(B^{E_{2}}, M B^{E_{1} E_{2}}\right) \tag{8}
\end{equation*}
$$

Benson
Picks a large prime P
Picks a generator $B \in \mathbb{Z}_{P}^{*}$ Randomly draws $E_{1} \in \mathbb{Z}_{\phi(P)}$

Computes $B^{E_{1}} \in \mathbb{Z}_{P}^{*}$ Sends $P, B, B^{E_{1}}$

$$
\begin{array}{r}
\text { Receives }\left(B^{E_{2}}, M B^{E_{1} E_{2}}\right) \\
\text { Computes }\left(B^{E_{2}}\right)^{E_{1}}=B^{E_{1} E_{2}} \in \mathbb{Z}_{P}^{*} \\
\text { Computes }\left(B^{E_{1} E_{2}}\right)^{-1} \in \mathbb{Z}_{P}^{*} \\
\text { Computes }\left(M B^{E_{1} E_{2}}\right)\left(B^{E_{1} E_{2}}\right)^{-1}=M \in \mathbb{Z}_{P}^{*}
\end{array}
$$

Suppose $P=17, B=3$. Benson sends Andrew $(17,3,6)$ (line 5) (Note: $6=3^{15}$). Andrew sends back $(7,1)$ (line 9). What is the decrypted message?

RSA

Receiver Protocol

1. Choose two large distinct primes P and Q
2. Compute $N=P Q$ and $\phi(N)=(P-1)(Q-1)$
3. Choose $E \in \mathbb{Z}_{\phi(N)}^{*}$
4. Publish the public key: (N, E)
5. Compute the decyption key $D=E^{-1} \in \mathbb{Z}_{\phi(N)}^{*}$
6. Upon receipt of ciphertext C, compute $M=C^{D} \in \mathbb{Z}_{N}^{*}$

Sender Protocol

1. Encode M as an element of \mathbb{Z}_{N}^{*}
2. Send $M^{E} \in \mathbb{Z}_{N}^{*}$

- Why must P and Q be distinct?
- Why must the encrpytion key E be an element of $\mathbb{Z}_{\phi(N)}^{*}$?
- How does the receiver compute the decprytion key D ?
- Given ciphertext C, why is C^{D} equal to the original message?
- What if $M \in \mathbb{Z}_{N} \backslash \mathbb{Z}_{N}^{*}$? Is this something the receiver needs to worry about?

