15-251: Great Theoretical Ideas In Computer Science

Recitation 2

Regular Announcements

- Homework Solution Sessions Friday 5p-6p, Saturday 2p-3p in GHC 4301
- Small Groups this weekend
- Come to us if you had difficulties on Homework 1

Definitions For All

- Deterministic Finite Automaton (DFA): A DFA M is a machine that reads a finite input one character at a time in one pass, transition from state to state, and ultimately accepts or rejects. Formally, M is a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$, where
 - Q is a **finite**, **non-empty** set of states
 - Σ is the **finite**, **non-empty** alphabet
 - $\delta: Q \times \Sigma \to Q$ is the transition function
 - $q_0 \in Q$ is the starting state
 - $F \subseteq Q$ is the set of accepting states
- **Regular language**: A language L is regular if L = L(M) for some DFA M (M decides L).
- We have shown that if L_1 and L_2 are both regular languages over Σ^* , for some fixed Σ , then the following are all regular.
 - $-\overline{L_1}$
 - $L_1 \cup L_2$
 - L_1 ∩ L_2
 - L_1L_2 (the concatenation of two regular languages)

Odd Ones Out

Draw a DFA that decides the language

 $L = \{x : x \text{ has an even number of 1s and an odd number of 0s} \}$

over the alphabet $\Sigma = \{0, 1\}$.

#AllLanguagesAreBeautiful

Show that the following languages are irregular (but still beautiful).

- $L = \{a^{2^n} : n \in \mathbb{N}\}$
- $L = \{www : w \in \Sigma^*\}$

States For Days

Define $\mathcal{R}_n = \{x \mid x \in \{0,1\}^* \text{ and the } n^{\text{th}}\text{-symbol from the right is a } 1 \}$. Show that any DFA that accepts \mathcal{R}_n has at least 2^n states.

Double Trouble

Given a regular language L over some alphabet Σ , we define

$$K = \{x \mid xx \in L\}.$$

Prove that K is also regular.