15-251: Great Theoretical Ideas In Computer Science

Recitation 4

Announcements

Be sure to take advantage of the following resources:

- Homework Solution Sessions - Friday 5p-6p, Saturday 2p-3p in GHC 4301
- Conceptual office hours (no HW help) - Friday 6p-8p in Gates 5 Carrel 1
- If you are struggling with course material, please come to small groups/conceptual office hours or set up a meeting with your TA as soon as possible.

These Decidable Definitions Have Undecidable Ends

- Church-Turing Thesis: Any natural/reasonable notion of computation can be simulated by a TM.
- A decider is a TM that halts on all inputs.
- A language L is undecidable if there is no TM M that halts on all inputs such that $M(x)$ accepts if and only if $x \in L$.
- $A \leq B$: It is possible to decide A using an algorithm that decides B as a subroutine.

Freeze All Automata Functions

Prove that the following languages are decidable by reducing it to EMPTY ${ }_{\text {DFA }}$.
(a) NO - ODD - ONES $=\{\langle D\rangle: D$ does not accept any string containing an odd number of 1's $\}$
(b) $\mathbf{I N F}_{\text {DFA }}=\{\langle D\rangle: D$ is a DFA with $L(D)$ infinite $\}$.

Hint: Consider a DFA with k states that accepts some string with more than k characters.

Doesn't Look Like Anything (Decidable) To Me

Prove that the following languages are undecidable (below, M, M_{1}, M_{2} refer to TMs).
(a) REGULAR $=\{\langle M\rangle: L(M)$ is regular $\}$.
(b) TOTAL $=\{\langle M\rangle: M$ halts on all inputs $\}$.
(c) DOLORES $=\left\{\left\langle M_{1}, M_{2}\right\rangle: \exists w \in \Sigma^{*}\right.$ such that both $M_{1}(w)$ and $M_{2}(w)$ accept $\}$.

(Extra) Lose All Scripted Responses. Improvisation Only

Let FINITE $=\{\langle M\rangle: M$ is a TM and $L(M)$ is finite $\}$.
Show that TOTAL \leq FINITE.

(Bonus) The Maize is not Meant For You

Josh Corn is trying to write a program P such that given a natural number $n, P(n)$ is the most number of steps a TM on n states can take before halting. Show that this is not possible.

