15-251: Great Theoretical Ideas In Computer Science

Recitation 7

- \bullet A **matching** in G is a subset of G's edges which share no vertices.
 - A maximal matching is one which isn't a subset of any other matching.
 - A maximum matching is a matching which is at least as large as any possible matching.
 - A perfect matching is a matching such that every vertex is contained in one of its edges.
- An alternating path (with respect to some matching M) is one which alternates between edges in M and edges not in M.
 - An **augmenting path** is an alternating path which begins and ends with vertices not matched in M.
- An unstable pair is a pair who prefer each other to their assigned partners.
- A stable matching is a perfect matching (includes all vertices) which contains no unstable pairs.
- Gale Shapley algorithm:
 - While there is a man m who is not matched
 - (a) Let w be the highest ranked woman in m's list whom he hasn't proposed to yet.
 - (b) If w is unmatched: match w and m.
 - (c) If w prefers m to her current match, match w and m

A Theorem about Corridors

Recall from lecture Hall's Theorem:

For any bipartite graph G=(X,Y,E), with, G has a matching covering all the vertices of X iff for every $S\subseteq X$, $|S|\leq |N(S)|$ (where $N(S)=\{y\in Y\mid \exists\ x\in S.\{x,y\}\in E\}$). Prove Hall's Theorem.

A Misogynist Algorithm

- (a) Prove that the Gale-Shapley algorithm always matches every guy with his best valid partner. That is, show that every guy prefers the girl he is paired with by the Gale-Shapley algorithm at least as much as any girl he is paired with in any other stable matching.
- (b) Prove that the Gale-Shapley algorithm always matches every girl with her worst valid partner. That is, show that in any other stable matching, each girl is paired with a guy she likes at least as much as the one she is paired with by Gale Shapley.

Soulmates

Call a man m and a woman w "soulmates" if they are paired with each other in every stable matching.

(a) Give a polynomial time algorithm to, given a man m and a woman w, determine if they are soulmates.

(b) Give a polynomial time algoirthm to determine if an instance of the stable matching problem has a *unique* stable matching.

(Extra) Counting Couples

- (a) Find, with proof, the maximum possible number of perfect matchings in a graph on n vertices.
- (b) Find, with proof, the maximum possible number of perfect matchings in a $\it bipartite$ graph on $\it n$ vertices.
- (c) Find a way to construct an instance of the stable marriage problem with n men and n women which has at least n stable matchings (Tight bounds on the number of stable matchings for n pairs of men and women are not known).

(Bonus) A Theorem About Egyptian Kings

Prove the following theorem: A (not-necessarily bipartite) graph G=(V,E) has a perfect matching if and only if for every $S\subseteq V$, the number of connected components of $G\setminus S$ with an odd number of vertices is at most |S|. $(G\setminus S)$ is G with all the vertices of S and all edges incident to them removed)