
15-252: More Great Ideas in Theoretical Computer Science

Fast Fourier Transform

Spring 2017

Integer multiplication

Multiplying two n-bit integers A and B:

“Grade School” Method: O(n2) time.

Karatsuba’s Algorithm: O(nlog23) = O(n1.58…)
(what Python uses)

Generalizations thereof: O(n1+ϵ)

Fürer 2007: circuits of size n (log n) 2O(log*n)

Schönhage−Strassen late ’60s : O(n) time

(in RAM model)

(!!)
via Fast Fourier Transform

Volker Strassen
& Arnold Schönhage,

late ’60s

Ideas discussed on the homework…

1. Multiplying integers reduces to multiplying
 polynomials with integer coefficients.

2. Multiplying polynomials is easy in the
 “Values Representation”.

3. With a magic set of interpolation points,
 going between “Coefficients Representation”
 and “Values Representation” is super-fast.

Goal

Multiplying two polynomials with degree < N
(and coefficients fitting in a “word”)

in O(N log N) time.

Implies O(n) time multiplication of n-bit integers.

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

P (x) = a0 + a1 x + a2 x2 + ··· + aN−1 xN−1

Q (x) = b0 + b1 x + b2 x2 + ··· + bN−1 xN−1

(where aj’s, bk’s are ints fitting in a word).

Let R(x) = P(x)·Q(x), of degree < 2N.
Task is to get R(x) in Coefficients Representation.

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

Let R(x) = P(x)·Q(x), of degree < 2N.
Task is to get R(x) in Coefficients Representation.

If only everything were in
“Values Representation”

instead…

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

Let R(x) = P(x)·Q(x), of degree < 2N.
Task is to get R(x) in Coefficients Representation.

If only we knew
 P (1), P (2), …, P (2N),
Q(1), Q(2), ..., Q(2N),

R(1), R(2), ..., R(2N)

uniquely
determines R(x)
by interpolation

N coefficients of P(x)

If we could somehow pass between
Coefficients Representation & Values Representation

in O(N log N) time, we’d be done.

N values of P(x),
say x = 1, 2, …, N

evaluation

interpolation

Unfortunately, these seem to take O(N2) time.

N coefficients of P(x)

If we could somehow pass between
Coefficients Representation & Values Representation

in O(N log N) time, we’d be done.

N values of P(x),
say x = 1, 2, …, N

evaluation

interpolation

Unfortunately, these seem to take O(N2) time.

N coefficients of P(x)

If we could somehow pass between
Coefficients Representation & Values Representation

in O(N log N) time, we’d be done.

N values of P(x),

evaluation

interpolation

on ‘roots of unity’

Voila! O(N log N) ops with “FFT”.

Discrete Fourier Transform (& Inverse)
Let N be a power of 2.

is the set of N

 “complex roots of unity” that I’ll describe shortly.

Let P(x) be a polynomial of degree N−1.

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Fast Fourier Transform

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

A recursive algorithm for
DFTN and IDFTN that
uses only O(N log N)
arithmetic operations.

Fast Fourier Transform

G. Strang, ’94: “The most important numerical
algorithm of our lifetime.”

“Brigham [1974] says that [Richard] Garwin asked [John] Tukey
to give him a rapid way to compute the Fourier transform during a

meeting of the President's [Kennedy’s] Scientific Advisory Committee.
Then Garwin went to the computing center at IBM Research in

Yorktown Heights where [James] Cooley programmed the
Fourier transform, because he had nothing better to do.

After receiving many requests for the program,
Cooley and Tukey published their paper in 1965.”

−A. Terras, ’99

Fast Fourier Transform

1965

G. Strang, ’94: “The most important numerical
algorithm of our lifetime.”

Fast Fourier Transform

G. Strang, ’94: “The most important numerical
algorithm of our lifetime.”

“Heideman et al. [1984] note that [Carl Friedrich] Gauss
discovered the fast Fourier transform in 1805

[two years before Fourier invented Fourier series!]
while computing the eccentricity of the orbit of the asteroid Juno.”

−A. Terras, ’99

Fast Fourier Transform

G. Strang, ’94: “The most important numerical
algorithm of our lifetime.”

OG, 1805

Multiplying polynomials with the FFT
Let P(x), Q(x) be polynomials of degree < N.
Want R(x) = P(x)·Q(x), which has degree < 2N.

1.  Use DFT2N to get P(w), Q(w) for all w∈S2N d
2.  Multiply pairs, getting R(w) for all w∈S2N d
3.  Use IDFT2N to get R’s coefficients

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Multiplying polynomials with the FFT
Let P(x), Q(x) be polynomials of degree < N.
Want R(x) = P(x)·Q(x), which has degree < 2N.

 1. O(N log N) arithmetic ops
 2. O(N) arithmetic ops
 3. O(N log N) arithmetic ops

 O(N log N) arithmetic ops

Time:

1.  Use DFT2N to get P(w), Q(w) for all w∈S2N d
2.  Multiply pairs, getting R(w) for all w∈S2N d
3.  Use IDFT2N to get R’s coefficients

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials
using O(N log N) arithmetic operations.

If the coefficients are ints fitting in a word,
can multiply polynomials in O(N log N) time.

* Requires proving that you can compute the Nth roots of unity to
 O(log N) bits of precision in O(N log N) time, and that this precision
 is sufficient. This is fairly easy to prove, but also boring to prove.

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials
using O(N log N) arithmetic operations.

If the coefficients are ints fitting in a word,
can multiply polynomials in O(N log N) time.

Implies O(n)-time multiplication of
n-bit integers (in the Word RAM model).

The Discrete Fourier Transform
& The Fast Fourier Transform

The complex numbers ℂ

z = .6−.8i
.6

−.8

 |z| = magnitude of z

= 1, in this case

The complex numbers ℂ
complex #’s

of magnitude 1

θ≈53°

defined by
angle θ from

x-axis

Key Rule:
 Multiplication by z = rotation by θ.

z = .6−.8i

The complex numbers ℂ

Key Rule:
 Multiplication by z = rotation by θ.

z2 = −.28−.96i

θ≈53°

z = .6−.8i

complex #’s
of magnitude 1

defined by
angle θ from

x-axis

Unity

1 +0i
(angle θ = 0)

Square Roots of Unity

1 −1
(angle θ = 180°)

Cube Roots of Unity

1

of a circle = rotation by

Cube Roots of Unity

1

of a circle = rotation by

of a circle = rotation by

=

4th Roots of Unity

1

of a circle by

= −i

= rotation

8th Roots of Unity

16th Roots of Unity

Discrete Fourier Transform (& Inverse)

Let N be a power of 2.

 Let .

Let P(x) be a polynomial of degree N−1.

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Discrete Fourier Transform (& Inverse)

Let N be 8, and let .

Let P(x) be a polynomial of degree 7.

Let .

P’s values on S8 P’s coefficients

P’s coefficients P’s values on S8

IDFT8

DFT8

interpolation

evaluation

Evaluation at
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Since ω8 = 1, we can reduce all exponents mod 8.

Evaluation at
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

 DFT8[j,k] =
DFT8

(0 ≤ j, k < 7) ωjk mod 8

Evaluation at
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. • 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Multiplication modulo 8 table

 DFT8[j,k] = (0 ≤ j, k < 7) ωjk mod 8

Evaluation at
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

 DFT8[j,k] = (0 ≤ j, k < 7) ωjk mod 8

Evaluation at
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

 DFT8 ·

Interpolation?
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

 DFT8 ·

Interpolation?
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

 DFT8
−1

 ·
also known as

IDFT8

Interpolation?
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

 DFT8
−1

 ·
also known as

IDFT8

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Interpolation?
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

 DFT8
−1

 ·
also known as

IDFT8

DFT versus IDFT

Question:
 We know what matrix DFT8 is.
 What is its inverse matrix, IDFT8?

Answer:
 It’s extremely similar to DFT8.

DFT8 IDFT8

 DFTN[j,k] = (0 ≤ j, k < N, ω = ωN is Nth root of unity) ωjk mod N

 IDFTN[j,k] = ω−jk mod N

DFT8 IDFT8

Proof illustration.

 We’ll show the product =

DFT8 IDFT8

Proof by picture.

 We’ll show the product =

DFT8 IDFT8

Proof by picture.

 We’ll show the product =

DFT8 IDFT8

Proof by picture.

 We’ll show the product =

DFT8 IDFT8

Proof by picture.

 We’ll show the product =

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
average

is 0

DFT8 IDFT8

Proof by picture.

 We’ll show the product =
Well, looks pretty true.

Proof is an exercise. J

 DFTN ·

Last piece of the puzzle: FFT

Computing this in O(N log N) ops

Terminology:

sequence transformed sequence

 DFTN ·

 DFTN ·

Claim: DFTN reduces to 2 applications of DFTN/2,
 plus O(N) additional operations.

⇒ T(N) = 2T(N/2) + O(N) ⇒ T(N) = O(N log N)

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,
 plus “O(8)” additional operations.

Computable with 1
application of DFT4

to (a0,a2,a4,a6),
and some copying.

Now to get this,
apply the above to

(a1,a3,a5,a7),
and then multiply the

jth row by ωj, for 0 ≤ j < 7.

Total: 2 applications of DFT4,
plus “O(8)” more operations.

Summary
•  Multiplying two n-bit integers is doable

 in O(n) time in the Word RAM model

•  It reduces to multiplying two polynomials
 of degree < N in O(N log N) time.

•  DFTN reduces Coefficients Representation to
 Values Representation over roots of unity.

•  FFTN computes DFTN (and inverse)
 in O(N log N) time.

•  DFTN has myriad uses in CS & Engineering.

