15-252: More Great Ideas in Theoretical Computer Science Spring 2017

Fast Fourier Transform

Integer multiplication

Multiplying two n -bit integers A and B :
"Grade School" Method: O(n²) time.
Karatsuba's Algorithm: $\quad \mathrm{O}\left(\mathrm{n}^{\log _{2} 3}\right)=\mathrm{O}\left(\mathrm{n}^{1.56 \ldots}\right)$

(what Python uses)

Generalizations thereof: $O\left(n^{1+\epsilon}\right)$
Fürer 2007: circuits of size $n(\log n) 2^{O\left(\log ^{*} n\right)}$
Schönhage-Strassen late '60s : O(n) time via Fast Fourier Transform

Volker Strassen \& Arnold Schönhage, late '60s

Ideas discussed on the homework...

1. Multiplying integers reduces to multiplying polynomials with integer coefficients.
2. Multiplying polynomials is easy in the "Values Representation".
3. With a magic set of interpolation points, going between "Coefficients Representation" and "Values Representation" is super-fast.

Goal

Multiplying two polynomials with degree $<\mathrm{N}$ (and coefficients fitting in a "word") in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time.

Implies $O(n)$ time multiplication of n-bit integers.

Polynomial multiplication

Let $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ be polynomials of degree < N . Assumed in "Coefficients Representation",

$$
\begin{aligned}
& P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{N-1} x^{N-1} \\
& Q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{N-1} x^{N-1}
\end{aligned}
$$

(where a_{j} 's, b_{k} 's are ints fitting in a word).

$$
\text { Let } R(x)=P(x) \cdot Q(x) \text {, of degree }<2 N \text {. }
$$

Task is to get $R(x)$ in Coefficients Representation.

Polynomial multiplication

Let $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ be polynomials of degree $<\mathrm{N}$.
Assumed in "Coefficients Representation",

$$
\text { Let } R(x)=P(x) \cdot Q(x) \text {, of degree }<2 N \text {. }
$$

Task is to get $R(x)$ in Coefficients Representation.

If only everything were in
"Values Representation" instead...

Polynomial multiplication

Let $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ be polynomials of degree $<\mathrm{N}$. Assumed in "Coefficients Representation",

$$
\text { Let } R(x)=P(x) \cdot Q(x) \text {, of degree }<2 N \text {. }
$$

Task is to get $R(x)$ in Coefficients Representation.
If only we knew

$$
\begin{aligned}
& P(1), P(2), \ldots, P(2 N), \\
& Q(1), Q(2), \ldots, Q(2 N),
\end{aligned}
$$

$R(1), R(2), \ldots, R(2 N)$

If we could somehow pass between
Coefficients Representation \& Values Representation in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time, we'd be done.

Unfortunately, these seem to take $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time.

If we could somehow pass between
Coefficients Representation \& Values Representation in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time, we'd be done.

Unfortunately, these seem to take $\mathrm{O}(\mathrm{N}$.

If we could somehow pass between
Coefficients Representation \& Values Representation in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time, we'd be done.

Voila! $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ ops with "FFT".

Discrete Fourier Transform (\& Inverse)

Let N be a power of 2 .
$\mathrm{S}_{\mathrm{N}}=\left\{1, \omega_{N^{\prime}}^{1}, \omega_{N^{\prime}}^{2}, \omega_{N^{\prime}}^{3}, \ldots, \omega_{N}^{N-1}\right\} \quad$ is the set of N "complex roots of unity" that l'll describe shortly.

Let $\mathrm{P}(\mathrm{x})$ be a polynomial of degree $\mathrm{N}-1$.

P's coefficients $\xrightarrow[\text { evaluation }]{\text { DFT }_{N}}$ P's values on S_{N}
$\xrightarrow{\text { IDFT }_{N}}$
P's values on $S_{N} \xrightarrow[\text { interpolation }]{{ }_{N}}$
P's coefficients

Fast Fourier Transform

A recursive algorithm for
$\mathrm{DFT}_{\mathrm{N}}$ and $\mathrm{IDFT}_{\mathrm{N}}$ that uses only $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic operations.

P's coefficients $\xrightarrow[\text { evaluation }]{\mathrm{DFT}_{\mathrm{N}}}$ P's values on S_{N}
P's values on $S_{N} \xrightarrow[\text { interpolation }]{\text { IDFT }_{N}}$
P's coefficients

Fast Fourier Transform

G. Strang, '94: "The most important numerical algorithm of our lifetime."

"Brigham [1974] says that [Richard] Garwin asked [John] Tukey to give him a rapid way to compute the Fourier transform during a meeting of the President's [Kennedy's] Scientific Advisory Committee.

Then Garwin went to the computing center at IBM Research in
Yorktown Heights where [James] Cooley programmed the
Fourier transform, because he had nothing better to do.
After receiving many requests for the program, Cooley and Tukey published their paper in 1965."

Fast Fourier Transform

G. Strang, '94: "The most important numerical algorithm of our lifetime."

1965

Fast Fourier Transform

G. Strang, '94: "The most important numerical algorithm of our lifetime."

"Heideman et al. [1984] note that [Carl Friedrich] Gauss discovered the fast Fourier transform in 1805
[two years before Fourier invented Fourier series!]
while computing the eccentricity of the orbit of the asteroid Juno."
-A. Terras, '99

Fast Fourier Transform

G. Strang, '94: "The most important numerical algorithm of our lifetime."

OG, 1805

Multiplying polynomials with the FFT

Let $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x})$ be polynomials of degree $<\mathrm{N}$.
Want $R(x)=P(x) \cdot Q(x)$, which has degree $<2 N$.

1. Use $D F T_{2 N}$ to get $P(w), Q(w)$ for all $w \in S_{2 N}$
2. Multiply pairs, getting $R(w)$ for all $w \in S_{2 N}$
3. Use IDFT 2 N to get R's coefficients
P's coefficients
P's values on S_{N}
$\xrightarrow[\text { evaluation }]{\mathrm{DFT}_{\mathrm{N}}}$
$\xrightarrow[\text { terpolation }]{\mathrm{IDFT}_{\mathrm{N}}}$

P's values on S_{N}

P's coefficients

Multiplying polynomials with the FFT

Let $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x})$ be polynomials of degree $<\mathrm{N}$.
Want $R(x)=P(x) \cdot Q(x)$, which has degree $<2 N$.

1. Use $D F T_{2 N}$ to get $P(w), Q(w)$ for all $w \in S_{2 N}$
2. Multiply pairs, getting $R(w)$ for all $w \in S_{2 N}$
3. Use IDFT 2 N to get R's coefficients

Time: 1. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic ops
2. $\mathrm{O}(\mathrm{N}) \quad$ arithmetic ops
3. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic ops
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic ops

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials using $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic operations.

If the coefficients are ints fitting in a word, can multiply polynomials in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time.

* Requires proving that you can compute the $\mathrm{N}^{\text {th }}$ roots of unity to $\mathrm{O}(\log \mathrm{N})$ bits of precision in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time, and that this precision is sufficient. This is fairly easy to prove, but also boring to prove.

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials using $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ arithmetic operations.

If the coefficients are ints fitting in a word, can multiply polynomials in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time.

Implies O(n)-time multiplication of n -bit integers (in the Word RAM model).

The Discrete Fourier Transform \& The Fast Fourier Transform

The complex numbers \mathbb{C}

$|z|=$ magnitude of z
$=\sqrt{(.6)^{2}+(-.8)^{2}}$
$=1$, in this case

The complex numbers \mathbb{C}

Multiplication by z = rotation by θ.

The complex numbers \mathbb{C}

Multiplication by $z=$ rotation by θ.

Unity

Square Roots of Unity

Cube Roots of Unity

Cube Roots of Unity

$\omega_{3}^{-1}=\omega_{3}^{2}=$ rotation by $\frac{2}{3}$ of a circle

$4^{\text {th }}$ Roots of Unity

$8^{\text {th }}$ Roots of Unity

$16^{\text {th }}$ Roots of Unity

Discrete Fourier Transform (\& Inverse)

Let N be a power of 2 .
Let $S_{N}=\left\{1, \omega_{N^{\prime}}^{1}, \omega_{N^{\prime}}^{2}, \omega_{N^{\prime}}^{3} \ldots, \omega_{N}^{N-1}\right\}$
Let $\mathrm{P}(\mathrm{x})$ be a polynomial of degree $\mathrm{N}-1$.

P's coefficients $\xrightarrow[\text { evaluation }]{\text { DFT }_{N}}$ P's values on S_{N}
IDFT
P's values on S_{N} interpolation

P's coefficients

Discrete Fourier Transform (\& Inverse)

Let N be 8 , and let $\quad \omega=\omega_{8}$
Let $S_{8}=\left\{1, \omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}\right\}$
Let $\mathrm{P}(\mathrm{x})$ be a polynomial of degree 7 .

P's coefficients $\xrightarrow[\text { evaluation }]{\mathrm{DFT}_{8}}$ P's values on S_{8}
IDFT
P's values on S_{8} interpolation

P's coefficients

Evarluat ion $\left.{ }^{3} 3^{3} t \omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}\right\}$

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \omega^{8} & \omega^{10} & \omega^{12} & \omega^{14} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \omega^{12} & \omega^{15} & \omega^{18} & \omega^{21} \\ 1 & \omega^{4} & \omega^{8} & \omega^{12} & \omega^{16} & \omega^{20} & \omega^{24} & \omega^{28} \\ 1 & \omega^{5} & \omega^{10} & \omega^{15} & \omega^{20} & \omega^{25} & \omega^{30} & \omega^{35} \\ 1 & \omega^{6} & \omega^{12} & \omega^{18} & \omega^{24} & \omega^{30} & \omega^{36} & \omega^{42} \\ 1 & \omega^{7} & \omega^{14} & \omega^{21} & \omega^{28} & \omega^{35} & \omega^{42} & \omega^{49}\end{array}\right] \cdot\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7}\end{array}\right]=\left[\begin{array}{c}P(1) \\ P(\omega) \\ P\left(\omega^{2}\right) \\ P\left(\omega^{3}\right) \\ P\left(\omega^{4}\right) \\ P\left(\omega^{5}\right) \\ P\left(\omega^{6}\right) \\ P\left(\omega^{7}\right)\end{array}\right]$

Since $\omega^{8}=1$, we can reduce all exponents mod 8.

Ervalutaioruảt $\left.\omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}\right\}$

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right] \cdot\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7}\end{array}\right]=\left[\begin{array}{c}P(1) \\ P(\omega) \\ P\left(\omega^{2}\right) \\ P\left(\omega^{3}\right) \\ P\left(\omega^{4}\right) \\ P\left(\omega^{5}\right) \\ P\left(\omega^{6}\right) \\ P\left(\omega^{7}\right)\end{array}\right]$
DFT_{8}

$$
\mathrm{DFT}_{8}[\mathrm{j}, \mathrm{k}]=\omega^{\omega^{\mathrm{k} ~ m o d ~} 8} \quad(0 \leq \mathrm{j}, \mathrm{k}<7)
$$

Multiplication modulo 8 table
$\left.4, \omega^{5}, \omega^{6}, \omega^{7}\right\}$

$\operatorname{DFT}_{8}[j, k]=\omega^{j k \bmod 8} \quad(0 \leq j, k<7)$

Evaluction ω^{3} at $\left.\omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}\right\}$

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right] \cdot\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7}\end{array}\right]=\left[\begin{array}{c}P(1) \\ P(\omega) \\ P\left(\omega^{2}\right) \\ P\left(\omega^{3}\right) \\ P\left(\omega^{4}\right) \\ P\left(\omega^{5}\right) \\ P\left(\omega^{6}\right) \\ P\left(\omega^{7}\right)\end{array}\right]$
$\operatorname{DFT}_{8}[j, k]=\omega^{\mathrm{jk} \bmod 8} \quad(0 \leq \mathrm{j}, \mathrm{k}<7)$

Evaluction ω^{3} at $\left.\omega^{4}, \omega^{5}, \omega^{6}, \omega^{7}\right\}$

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.

$$
\text { DFT }_{8} \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right]=\left[\begin{array}{c}
P(1) \\
P(\omega) \\
P\left(\omega^{2}\right) \\
P\left(\omega^{3}\right) \\
P\left(\omega^{4}\right) \\
P\left(\omega^{5}\right) \\
P\left(\omega^{6}\right) \\
P\left(\omega^{7}\right)
\end{array}\right]
$$

Interpolation?

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
Given $P(1), P(\omega), \ldots, P\left(\omega^{7}\right)$, how to get $a_{0}, a_{1}, \ldots, a_{7}$?

$$
\text { DFT }_{8} \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right]=\left[\begin{array}{c}
P(1) \\
P(\omega) \\
P\left(\omega^{2}\right) \\
P\left(\omega^{3}\right) \\
P\left(\omega^{4}\right) \\
P\left(\omega^{5}\right) \\
P\left(\omega^{6}\right) \\
P\left(\omega^{7}\right)
\end{array}\right]
$$

Interpolation?

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
Given $P(1), P(\omega), \ldots, P\left(\omega^{7}\right)$, how to get $a_{0}, a_{1}, \ldots, a_{7}$?
also known as

$$
\mathrm{IDFT}_{8}
$$

P's coefficients $\xrightarrow[\text { evaluation }]{\mathrm{DFT}_{\mathrm{N}}}$ P's values on S_{N}
P's values on $S_{N} \xrightarrow[\text { interpolation }]{I D F T_{N}}$ P's coefficients
also known as
$\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7}\end{array}\right]=D F T_{8}^{-1} \cdot\left[\begin{array}{c}P(1) \\ P(\omega) \\ P\left(\omega^{2}\right) \\ P\left(\omega^{3}\right) \\ P\left(\omega^{4}\right) \\ P\left(\omega^{5}\right) \\ P\left(\omega^{6}\right) \\ P\left(\omega^{7}\right)\end{array}\right]$

Interpolation?

Say $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$.
Given $P(1), P(\omega), \ldots, P\left(\omega^{7}\right)$, how to get $a_{0}, a_{1}, \ldots, a_{7}$?
also known as

$$
\mathrm{IDFT}_{8}
$$

DFT versus IDFT

Question:

We know what matrix DFT_{8} is.
What is its inverse matrix, IDFT_{8} ?

Answer:
It's extremely similar to DFT_{8}.

IDFT_{8}

DFT_{8}
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$
$\operatorname{DFT}_{N}[j, k]=\omega^{j k} \bmod N \quad\left(0 \leq j, k<N, \omega=\omega_{N}\right.$ is $N^{\text {th }}$ root of unity $)$
$\operatorname{IDFT}_{N}[\mathrm{j}, \mathrm{k}]=\frac{1}{\mathrm{~N}} \omega^{-\mathrm{jk} \bmod \mathrm{N}}$

IDFT_{8}

DFT_{8}
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

Proof illustration.

We'll show the product =

$$
\begin{aligned}
& {\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\
1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\
1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\
1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega
\end{array}\right]} \\
& {\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

IDFT_{8}
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$
$1 \quad 1 \quad \omega^{-3} \quad \omega^{-6} \quad \omega^{-1} \quad \omega^{-4} \quad \omega^{-7} \quad \omega^{-2} \quad \omega^{-5}$
$1 \begin{array}{lllllll}1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1\end{array} \omega^{-4}$ $1 \quad \omega^{-5} \quad \omega^{-2} \quad \omega^{-7} \quad \omega^{-4} \quad \omega^{-1} \quad \omega^{-6} \quad \omega^{-3}$ $1 \quad \omega^{-6} \quad \omega^{-4} \quad \omega^{-2} \quad 1 \quad \omega^{-6} \quad \omega^{-4} \quad \omega^{-2}$ $\left.1 \quad \omega^{-7} \quad \omega^{-6} \quad \omega^{-5} \quad \omega^{-4} \quad \omega^{-3} \quad \omega^{-2} \quad \omega\right]$
Wroof by picture. $=\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
IDFT_{8}
DFT_{8}
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]\left[\begin{array}{ccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$
IDFT_{8}

DFT_{8}

$\frac{1}{\frac{1}{8}}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

$$
\left[\begin{array}{cc|cccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\
1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\
1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\
1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega
\end{array}\right]
$$

$$
=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

IDFT_{8}
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$
Wroof by picture. $\quad\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
IDFT_{8}
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

Proof b
average is 0
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

$$
1+\omega^{1}+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}+\omega^{7}
$$

DFT_{8}
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$
$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$
$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
IDFT_{8}
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

$$
1+\omega^{2}+\omega^{4}+\omega^{6}+1+\omega^{2}+\omega^{4}+\omega^{6}
$$

average is 0

$\left[\begin{array}{cc|c|ccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$
$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$
$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

DFT_{8}

$\frac{1}{8}\left[\begin{array}{cccccccc}1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$ $1+\omega^{2}+\omega^{4}+\omega^{-2}+1+\omega^{2}+\omega^{-4}+\omega^{-2}$
average is 0

$$
\mathrm{DFT}_{8}
$$

IDFT_{8}

DFT_{8}

$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

$$
1+\omega^{2}+\omega^{4}+\omega^{-2}+1+\omega^{2}+\omega^{-4}+\omega^{-2}
$$

average

 is 0
$\left[\begin{array}{ccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$
$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0

$\left.\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

IDFT_{8}

DFT_{8}
$\frac{1}{8}\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} & \omega^{-5} \\ 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} \\ 1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} & \omega^{-3} \\ 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & \omega^{-4} & \omega^{-2} \\ 1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} & \omega\end{array}\right]$

Well, looks pretty true.
Proof is an exercise. ©
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\ 1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\ 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\ 1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\ 1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\ 1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega\end{array}\right]$

Last piece of the puzzle: FFT

$$
\mathrm{DFT}_{\mathbf{N}} \cdot\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots \\
a_{N-2} \\
a_{N-1}
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
\vdots \\
b_{N-2} \\
b_{N-1}
\end{array}\right]
$$

Computing this in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ ops

$$
\operatorname{DFT}_{\mathbf{N}} \cdot\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots \\
a_{N-2} \\
a_{N-1}
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
\vdots \\
b_{N-2} \\
b_{N-1}
\end{array}\right]
$$

Claim: $\mathrm{DFT}_{\mathrm{N}}$ reduces to 2 applications of $\mathrm{DFT}_{\mathrm{N} / 2}$, plus $\mathrm{O}(\mathrm{N})$ additional operations.
$\Rightarrow \mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{O}(\mathrm{N}) \quad \Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{N} \log \mathrm{N})$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\
1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\
1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega & \omega^{6} & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\
1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right]
$$

$=a_{0} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \\ 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ \omega^{2} \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ 1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{4} \\ \omega^{2}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{6} \\ \omega^{5} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.
$=a_{0} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \\ 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ 1 \\ \omega^{2} \\ \omega^{6} \\ \omega^{4} \\ \omega^{2}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus "O(8)" additional operations.

$$
=a_{0} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+a_{1} \cdot\left[\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3} \\
\omega^{4} \\
\omega^{5} \\
\omega^{6} \\
\omega^{7}
\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6} \\
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6}
\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}
1 \\
\omega^{3} \\
\omega^{6} \\
\omega \\
\omega^{4} \\
\omega^{7} \\
\omega^{2} \\
\omega^{5}
\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4}
\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
\omega^{4} \\
\omega \\
\omega^{2} \\
\omega^{6} \\
\omega^{3}
\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{4} \\
\omega^{4} \\
\omega^{2}
\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}
1 \\
\omega^{7} \\
\omega^{6} \\
\omega^{5} \\
\omega^{4} \\
\omega^{3} \\
\omega^{2} \\
\omega
\end{array}\right]
$$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.

$$
\begin{aligned}
& =a_{0} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6} \\
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6}
\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4}
\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2} \\
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2}
\end{array}\right]=a_{0} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6}
\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
1 \\
\omega^{4}
\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2}
\end{array}\right] \\
& +a_{1} \cdot\left[\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3} \\
\omega^{4} \\
\omega^{5} \\
\omega^{6} \\
\omega^{7}
\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}
1 \\
\omega^{3} \\
\omega^{6} \\
\omega \\
\omega^{4} \\
\omega^{7} \\
\omega^{2} \\
\omega^{5}
\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}
1 \\
\omega^{5} \\
\omega^{2} \\
\omega^{7} \\
\omega^{4} \\
\omega \\
\omega^{6} \\
\omega^{3}
\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}
1 \\
\omega^{7} \\
\omega^{6} \\
\omega^{5} \\
\omega^{4} \\
\omega^{3} \\
\omega^{2} \\
\omega
\end{array}\right]
\end{aligned}
$$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.
$=a_{0} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \\ 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2} \\ 1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2}\end{array}\right]=a_{0} \cdot\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega^{4} \\ 1 \\ \omega^{4}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2}\end{array}\right]$
$+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ \omega^{2} \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{6} \\ \omega^{5} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.
$=a_{0} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \\ 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2} \\ 1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2}\end{array}\right]=a_{0} \cdot\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}1 \\ \omega_{4}^{1} \\ \omega_{4}^{2} \\ \omega_{4}^{3}\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}1 \\ \omega_{4}^{2} \\ 1 \\ \omega_{4}^{2}\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}1 \\ \omega_{4}^{3} \\ \omega_{4}^{2} \\ \omega_{4}^{1}\end{array}\right]$
$+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ \omega^{2} \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{6} \\ \omega^{5} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.

$$
=a_{0} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6} \\
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6}
\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4}
\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2} \\
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega_{4}^{1} & \omega_{4}^{2} & \omega_{4}^{3} \\
1 & \omega_{4}^{2} & 1 & \omega_{4}^{2} \\
1 & \omega_{4}^{3} & \omega_{4}^{2} & \omega_{4}^{1}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{0} \\
a_{2} \\
a_{4} \\
a_{6}
\end{array}\right]
$$

$+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ \omega^{2} \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{6} \\ \omega^{5} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus "O(8)" additional operations.

$$
=a_{0} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+a_{2} \cdot\left[\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6} \\
1 \\
\omega^{2} \\
\omega^{4} \\
\omega^{6}
\end{array}\right]+a_{4} \cdot\left[\begin{array}{c}
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4} \\
1 \\
\omega^{4}
\end{array}\right]+a_{6} \cdot\left[\begin{array}{c}
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2} \\
1 \\
\omega^{6} \\
\omega^{4} \\
\omega^{2}
\end{array}\right]=\mathrm{DFT}_{4} \cdot\left[\begin{array}{l}
a_{0} \\
a_{2} \\
a_{4} \\
a_{6}
\end{array}\right]
$$

ditto
$+a_{1} \cdot\left[\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7}\end{array}\right]+a_{3} \cdot\left[\begin{array}{c}1 \\ \omega^{3} \\ \omega^{6} \\ \omega \\ \omega^{4} \\ \omega^{7} \\ \omega^{2} \\ \omega^{5}\end{array}\right]+a_{5} \cdot\left[\begin{array}{c}1 \\ \omega^{5} \\ \omega^{2} \\ \omega^{7} \\ \omega^{4} \\ \omega \\ \omega^{6} \\ \omega^{3}\end{array}\right]+a_{7} \cdot\left[\begin{array}{c}1 \\ \omega^{7} \\ \omega^{6} \\ \omega^{5} \\ \omega^{4} \\ \omega^{3} \\ \omega^{2} \\ \omega\end{array}\right]$

Claim: DFT_{8} reduces to 2 applications of DFT_{4}, plus " $\mathrm{O}(8)$ " additional operations.

Summary

- Multiplying two n-bit integers is doable in $\mathrm{O}(\mathrm{n})$ time in the Word RAM model
- It reduces to multiplying two polynomials of degree $<\mathrm{N}$ in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time.
- $\mathrm{DFT}_{\mathrm{N}}$ reduces Coefficients Representation to Values Representation over roots of unity.
- $\mathrm{FFT}_{\mathrm{N}}$ computes $\mathrm{DFT}_{\mathrm{N}}$ (and inverse) in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time.
- $\quad \mathrm{DFT}_{\mathrm{N}}$ has myriad uses in CS \& Engineering.

