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Integer multiplication 

Multiplying two n-bit integers A and B: 

“Grade School” Method:  O(n2) time. 

Karatsuba’s Algorithm:    O(nlog23) = O(n1.58…) 
(what Python uses) 

Generalizations thereof:  O(n1+ϵ) 

Fürer 2007:  circuits of size   n (log n) 2O(log*n) 

Schönhage−Strassen late ’60s :  O(n) time 

(in RAM model) 

(!!) 
via Fast Fourier Transform 



Volker Strassen 
& Arnold Schönhage, 

late ’60s 



Ideas discussed on the homework… 

1.  Multiplying integers reduces to multiplying  
     polynomials with integer coefficients. 

2.  Multiplying polynomials is easy in the  
     “Values Representation”. 

3.  With a magic set of interpolation points, 
     going between “Coefficients Representation” 
     and “Values Representation” is super-fast. 



Goal 
 

Multiplying two polynomials with degree < N  
(and coefficients fitting in a “word”) 

in O(N log N) time. 

 
 

Implies O(n) time multiplication of n-bit integers. 



Polynomial multiplication 

Let P(x) and Q(x) be polynomials of degree < N. 

Assumed in “Coefficients Representation”, 

P (x)  = a0 + a1 x + a2 x2 + ··· + aN−1 xN−1 

Q (x) = b0 + b1 x + b2 x2 + ··· + bN−1 xN−1 

(where aj’s, bk’s are ints fitting in a word). 

Let R(x) = P(x)·Q(x), of degree < 2N. 
Task is to get R(x) in Coefficients Representation. 
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Let P(x) and Q(x) be polynomials of degree < N. 

Assumed in “Coefficients Representation”, 

Let R(x) = P(x)·Q(x), of degree < 2N. 
Task is to get R(x) in Coefficients Representation. 

If only everything were in  
“Values Representation” 

instead… 



Polynomial multiplication 

Let P(x) and Q(x) be polynomials of degree < N. 

Assumed in “Coefficients Representation”, 

Let R(x) = P(x)·Q(x), of degree < 2N. 
Task is to get R(x) in Coefficients Representation. 

If only we knew 
 P (1),  P   (2), …,  P (2N),  
Q(1), Q(2), ..., Q(2N), 

R(1), R(2), ..., R(2N) 

uniquely 
determines R(x) 
by interpolation 



N coefficients of P(x) 

If we could somehow pass between 
Coefficients Representation & Values Representation 

in O(N log N) time, we’d be done. 

N values of P(x), 
say x = 1, 2, …, N 

evaluation 

interpolation 

Unfortunately, these seem to take O(N2) time. 
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N coefficients of P(x) 

If we could somehow pass between 
Coefficients Representation & Values Representation 

in O(N log N) time, we’d be done. 

N values of P(x), 
 

evaluation 

interpolation 

on ‘roots of unity’ 

Voila!  O(N log N) ops with “FFT”. 



Discrete Fourier Transform (& Inverse) 
Let N be a power of 2. 

is the set of N  

 “complex roots of unity” that I’ll describe shortly. 

Let P(x) be a polynomial of degree N−1. 

P’s values on SN P’s coefficients 

P’s coefficients P’s values on SN 

IDFTN 

DFTN 

interpolation 

evaluation 



Fast Fourier Transform 

P’s values on SN P’s coefficients 

P’s coefficients P’s values on SN 

IDFTN 

DFTN 

interpolation 

evaluation 

A recursive algorithm for 
DFTN and IDFTN that 
uses only O(N log N) 
arithmetic operations. 



Fast Fourier Transform 

G. Strang, ’94: “The most important numerical 
algorithm of our lifetime.” 

“Brigham [1974] says that [Richard] Garwin asked [John] Tukey 
to give him a rapid way to compute the Fourier transform during a 

meeting of the President's [Kennedy’s] Scientific Advisory Committee. 
Then Garwin went to the computing center at IBM Research in  

Yorktown Heights where [James] Cooley programmed the 
Fourier transform, because he had nothing better to do. 

After receiving many requests for the program, 
Cooley and Tukey published their paper in 1965.” 

−A. Terras, ’99 



Fast Fourier Transform 

1965 

G. Strang, ’94: “The most important numerical 
algorithm of our lifetime.” 



Fast Fourier Transform 

G. Strang, ’94: “The most important numerical 
algorithm of our lifetime.” 

“Heideman et al. [1984] note that [Carl Friedrich] Gauss 
discovered the fast Fourier transform in 1805 

[two years before Fourier invented Fourier series!] 
while computing the eccentricity of the orbit of the asteroid Juno.” 

−A. Terras, ’99 



Fast Fourier Transform 

G. Strang, ’94: “The most important numerical 
algorithm of our lifetime.” 

OG, 1805 



Multiplying polynomials with the FFT 
Let P(x), Q(x) be polynomials of degree < N. 
Want R(x) = P(x)·Q(x), which has degree < 2N. 

1.  Use DFT2N to get P(w), Q(w) for all w∈S2N d  
2.  Multiply pairs,    getting R(w) for all w∈S2N d  
3.  Use IDFT2N to get R’s coefficients 

P’s values on SN P’s coefficients 

P’s coefficients P’s values on SN 

IDFTN 

DFTN 

interpolation 

evaluation 



Multiplying polynomials with the FFT 
Let P(x), Q(x) be polynomials of degree < N. 
Want R(x) = P(x)·Q(x), which has degree < 2N. 

     1. O(N log N) arithmetic ops 
    2. O(N)          arithmetic ops 
    3. O(N log N) arithmetic ops 

          O(N log N) arithmetic ops 

Time: 

1.  Use DFT2N to get P(w), Q(w) for all w∈S2N d  
2.  Multiply pairs,    getting R(w) for all w∈S2N d  
3.  Use IDFT2N to get R’s coefficients 



Multiplying polynomials with the FFT 

Can multiply two degree-N polynomials 
using O(N log N) arithmetic operations. 

If the coefficients are ints fitting in a word, 
can multiply polynomials in O(N log N) time. 

* Requires proving that you can compute the Nth roots of unity to 
  O(log N) bits of precision in O(N log N) time, and that this precision 
  is sufficient.  This is fairly easy to prove, but also boring to prove. 



Multiplying polynomials with the FFT 

Can multiply two degree-N polynomials 
using O(N log N) arithmetic operations. 

If the coefficients are ints fitting in a word, 
can multiply polynomials in O(N log N) time. 

Implies O(n)-time multiplication of 
n-bit integers (in the Word RAM model). 



The Discrete Fourier Transform 
&    The Fast Fourier Transform 



The complex numbers ℂ 

z = .6−.8i 
.6 

−.8 

    |z| = magnitude of z 

= 1, in this case 



The complex numbers ℂ 
complex #’s 

of magnitude 1 

θ≈53° 

defined by 
angle θ from 

x-axis 

Key Rule: 
        Multiplication by z = rotation by θ. 

z = .6−.8i 



The complex numbers ℂ 

Key Rule: 
        Multiplication by z = rotation by θ. 

z2 = −.28−.96i 

θ≈53° 

z = .6−.8i 

complex #’s 
of magnitude 1 

defined by 
angle θ from 

x-axis 



Unity 

1 +0i 
(angle θ = 0) 



Square Roots of Unity 

1 −1 
(angle θ = 180°) 



Cube Roots of Unity 

1 

of a circle = rotation by 



Cube Roots of Unity 

1 

of a circle = rotation by 

of a circle = rotation by 

= 



4th Roots of Unity 

1 

of a circle by 

= −i 

= rotation  



8th Roots of Unity 



16th Roots of Unity 



Discrete Fourier Transform (& Inverse) 

Let N be a power of 2. 

 Let                                                     . 

Let P(x) be a polynomial of degree N−1. 

P’s values on SN P’s coefficients 

P’s coefficients P’s values on SN 

IDFTN 

DFTN 

interpolation 

evaluation 



Discrete Fourier Transform (& Inverse) 

Let N be 8, and let              . 

Let P(x) be a polynomial of degree 7. 

Let                                                          . 

P’s values on S8 P’s coefficients 

P’s coefficients P’s values on S8 

IDFT8 

DFT8 

interpolation 

evaluation 



Evaluation at                                          
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. 

Since ω8 = 1, we can reduce all exponents mod 8. 



Evaluation at                                          
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. 

 DFT8[j,k] =    
DFT8 

(0 ≤ j, k < 7) ωjk mod 8  



Evaluation at                                          
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. • 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 4 6 0 2 4 6 

3 0 3 6 1 4 7 2 5 

4 0 4 0 4 0 4 0 4 

5 0 5 2 7 4 1 6 3 

6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 

Multiplication modulo 8 table 

 DFT8[j,k] =    (0 ≤ j, k < 7) ωjk mod 8  



Evaluation at                                          
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. 

 DFT8[j,k] =    (0 ≤ j, k < 7) ωjk mod 8  



Evaluation at                                          
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. 

 DFT8 · 



Interpolation? 
Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7. 

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7? 

 DFT8 · 
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  DFT8
−1

 ·  
also known as 

IDFT8 
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DFT versus IDFT 

Question: 
 We know what matrix DFT8 is. 
 What is its inverse matrix, IDFT8? 

Answer: 
 It’s extremely similar to DFT8. 



DFT8 IDFT8 

 DFTN[j,k]  =    (0 ≤ j, k < N,  ω = ωN is Nth root of unity) ωjk mod N  

 IDFTN[j,k]  =       ω−jk mod N  



DFT8 IDFT8 

 

Proof illustration.   
 

  We’ll show the product =   
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Proof by picture.   
 

  We’ll show the product =   
average 

is 0 



DFT8 IDFT8 

 

Proof by picture.   
 

  We’ll show the product =   
Well, looks pretty true. 
 

Proof is an exercise. J 



 DFTN · 

Last piece of the puzzle:  FFT 

Computing this in O(N log N) ops 



Terminology:  

sequence transformed sequence 

 DFTN · 



 DFTN · 

Claim:  DFTN reduces to 2 applications of DFTN/2, 
                        plus O(N) additional operations. 

⇒  T(N) = 2T(N/2) + O(N) ⇒  T(N) = O(N log N) 



Claim:  DFT8 reduces to 2 applications of DFT4, 
                 plus “O(8)” additional operations. 
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Claim:  DFT8 reduces to 2 applications of DFT4, 
                 plus “O(8)” additional operations. 

ditto 



Claim:  DFT8 reduces to 2 applications of DFT4, 
                 plus “O(8)” additional operations. 

Computable with 1  
application of DFT4 

to (a0,a2,a4,a6), 
and some copying. 

Now to get this, 
apply the above to 

(a1,a3,a5,a7), 
and then multiply the 

jth row by ωj, for 0 ≤ j < 7. 

Total:  2 applications of DFT4, 
plus “O(8)” more operations. 



Summary 
•   Multiplying two n-bit integers is doable 

 in O(n) time in the Word RAM model 
 

•   It reduces to multiplying two polynomials 
 of degree < N in O(N log N) time. 
 

•   DFTN reduces Coefficients Representation to 
 Values Representation over roots of unity. 
 

•   FFTN computes DFTN (and inverse)  
 in O(N log N) time. 

•   DFTN has myriad uses in CS & Engineering. 


