15-252: More Great Ideas in Theoretical Computer Science Spring 2017

Fast Fourier Transform

Integer multiplication

Multiplying two n-bit integers A and B:

"Grade School" Method: O(n²) time.

Karatsuba's Algorithm: $O(n^{\log_2 3}) = O(n^{1.58...})$ (what Python uses)

Generalizations thereof: $O(n^{1+\epsilon})$

Fürer 2007: circuits of size n (log n) 2^{O(log*n)}

Schönhage-Strassen late '60s: O(n) time (!!) via Fast Fourier Transform (in RAM model) Volker Strassen & Arnold Schönhage, late '60s

Ideas discussed on the homework...

 Multiplying integers reduces to multiplying polynomials with integer coefficients.

 Multiplying polynomials is easy in the "Values Representation".

 With a magic set of interpolation points, going between "Coefficients Representation" and "Values Representation" is super-fast.

Multiplying two polynomials with degree < N (and coefficients fitting in a "word") in O(N log N) time.

Implies O(n) time multiplication of n-bit integers.

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N. Assumed in "Coefficients Representation",

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1}$$

$$Q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{N-1} x^{N-1}$$
(where a's, b's are ints fitting in a word).

Let $R(x) = P(x) \cdot Q(x)$, of degree < 2N. Task is to get R(x) in Coefficients Representation.

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N. Assumed in "Coefficients Representation",

Let $R(x) = P(x) \cdot Q(x)$, of degree < 2N. Task is to get R(x) in Coefficients Representation.

If only everything were in "Values Representation" instead...

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N. Assumed in "Coefficients Representation",

Let $R(x) = P(x) \cdot Q(x)$, of degree < 2N. Task is to get R(x) in Coefficients Representation.

> If only we knew P(1), P(2), ..., P(2N), Q(1), Q(2), ..., Q(2N),

R(1), R(2), ..., R(2N)

oultiply

uniquely determines R(x) by interpolation If we could somehow pass between Coefficients Representation & Values Representation in O(N log N) time, we'd be done.

evaluation

N coefficients of P(x)

N values of P(x), say x = 1, 2, ..., N

interpolation

Unfortunately, these seem to take $O(N^2)$ time.

If we could somehow pass between Coefficients Representation & Values Representation in O(N log N) time, we'd be done.

evaluation

N coefficients of P(x)

N values of P(x), say x = 1, 2, ..., N

interpolation

Unfortunately, these seem to take O(N

If we could somehow pass between Coefficients Representation & Values Representation in O(N log N) time, we'd be done.

evaluation

N coefficients of P(x)

N values of P(x), on 'roots of unity'

interpolation

Voila! O(N log N) ops with "FFT".

Discrete Fourier Transform (& Inverse)

Let N be a power of 2.

 $S_N = \{1, \omega_N^1, \omega_N^2, \omega_N^3, \dots, \omega_N^{N-1}\}$ is the set of N "complex roots of unity" that I'll describe shortly.

Let P(x) be a polynomial of degree N-1.

A recursive algorithm for DFT_N and $IDFT_N$ that uses only O(N log N) arithmetic operations.

G. Strang, '94: "The most important numerical algorithm of our lifetime."

"Brigham [1974] says that [Richard] Garwin asked [John] Tukey to give him a rapid way to compute the Fourier transform during a meeting of the President's [Kennedy's] Scientific Advisory Committee. Then Garwin went to the computing center at IBM Research in Yorktown Heights where [James] Cooley programmed the Fourier transform, because he had nothing better to do. After receiving many requests for the program, Cooley and Tukey published their paper in 1965."

-A. Terras, '99

G. Strang, '94: "The most important numerical algorithm of our lifetime."

James William Cooley

John Wilder Tukey

1965

G. Strang, '94: "The most important numerical algorithm of our lifetime."

"Heideman et al. [1984] note that [Carl Friedrich] Gauss discovered the fast Fourier transform in 1805
[two years before Fourier invented Fourier series!]
while computing the eccentricity of the orbit of the asteroid Juno."
-A. Terras, '99

G. Strang, '94: "*The most important numerical algorithm of our lifetime*."

OG, 1805

Multiplying polynomials with the FFT Let P(x), Q(x) be polynomials of degree < N. Want R(x) = P(x)·Q(x), which has degree < 2N.

- 1. Use DFT_{2N} to get P(w), Q(w) for all w $\in S_{2N}$
- 2. Multiply pairs, getting R(w) for all $w \in S_{2N}$
- 3. Use $IDFT_{2N}$ to get R's coefficients

Multiplying polynomials with the FFT Let P(x), Q(x) be polynomials of degree < N. Want R(x) = P(x)·Q(x), which has degree < 2N.

- 1. Use DFT_{2N} to get P(w), Q(w) for all w $\in S_{2N}$ d
- 2. Multiply pairs, getting R(w) for all $w \in S_{2N}$
- 3. Use $IDFT_{2N}$ to get R's coefficients

Time:1. O(N log N) arithmetic ops2. O(N)arithmetic ops3. O(N log N) arithmetic opsO(N log N) arithmetic ops

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials using O(N log N) arithmetic operations.

If the coefficients are ints fitting in a word, can multiply polynomials in O(N log N) time.

* Requires proving that you can compute the Nth roots of unity to O(log N) bits of precision in O(N log N) time, and that this precision is sufficient. This is fairly easy to prove, but also boring to prove.

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials using O(N log N) arithmetic operations.

If the coefficients are ints fitting in a word, can multiply polynomials in O(N log N) time.

Implies O(n)-time multiplication of n-bit integers (in the Word RAM model). The Discrete Fourier Transform & The Fast Fourier Transform

The complex numbers C

The complex numbers C

The complex numbers C

Unity

Square Roots of Unity

4th Roots of Unity

8th Roots of Unity

16th Roots of Unity

Discrete Fourier Transform (& Inverse)

Let N be a power of 2.

Let
$$S_N = \{1, \omega_N^1, \omega_N^2, \omega_N^3, \dots, \omega_N^{N-1}\}$$

Let P(x) be a polynomial of degree N-1.

Discrete Fourier Transform (& Inverse)

Let N be 8, and let $\omega = \omega_8$ Let $S_8 = \{1, \omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega^6, \omega^7\}$ Let P(x) be a polynomial of degree 7.

Evaluation $\omega^3 t \omega^4, \omega^5, \omega^6, \omega^7$

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.

r 1	1	1	1	1	1	1	1 -]	- a ₀ -		- P(1) -
1	ω	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7		a ₁		Ρ(ω)
1	ω^2	ω^4	ω^6	ω^8	ω^{10}	ω^{12}	ω^{14}		a ₂		Ρ(ω ²)
1	ω^3	ω^6	ω^9	ω^{12}	ω^{15}	ω^{18}	ω^{21}		a ₃		Ρ(ω ³)
1	ω^4	ω^8	ω^{12}	ω^{16}	ω^{20}	ω^{24}	ω^{28}	•	a ₄	=	P(ω^4)
1	ω^5	ω^{10}	ω^{15}	ω^{20}	ω^{25}	ω^{30}	ω^{35}		a ₅		Ρ(ω ⁵)
1	ω^6	ω^{12}	ω^{18}	ω^{24}	ω^{30}	ω^{36}	ω^{42}		a ₆		Ρ(ω ⁶)
1	ω^7	ω^{14}	ω^{21}	ω^{28}	ω^{35}	ω^{42}	ω^{49} .		_ a ₇ _		- Ρ(ω ⁷)

Since $\omega^8 = 1$, we can reduce all exponents mod 8.

Evaluation ω^{3} to ω^{4} , ω^{5} , ω^{6} , ω^{7} }

 $(0 \le j, k < 7)$

Say P(x) = $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.

	<u>۲</u> 1	1	1	1	1	1	1	ך 1	ſ	a ₀ -		- P(1) -
	1	ω	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7		a ₁		Ρ(ω)
	1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6		a ₂		Ρ(ω ²)
	1	ω^3	ω^6	ω	ω^4	ω^7	ω^2	ω^5		a ₃		$P(\omega^3)$
	1	ω^4	1	ω^4	1	ω^4	1	ω^4	•	a ₄	=	$P(\omega^4)$
	1	ω^5	ω^2	ω^7	ω^4	ω	ω^6	ω^3		a ₅		Ρ(ω ⁵)
	1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2		a ₆		Ρ(ω ⁶)
	L 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω		_ a _{7_} _		- Ρ(ω ⁷)
DFT ₈							:1.					

 $DFT_8[j,k] = \omega^{jk \mod 8}$
Multiplication modulo 8 table

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

,4	, ω ⁵	,ω	$^{6}, \omega^{7}$
x ^e	³ +a ₇ x ⁷	•	
	ra _o 7		P(1) ⁻
	aı		Ρ(ω)
	a ₂		Ρ(ω ²)
	a ₃		Ρ(ω ³)
•	a ₄	=	P(ω^4)
	a _s		Ρ(ω ⁵)
	a _s _		Ρ(ω ⁶)
			Ρ(ω ⁷)

 $DFT_8[j,k] = \omega^{jk \mod 8}$ (0 ≤ j, k < 7)

Evaluation ω^{3} to ω^{4} , ω^{5} , ω^{6} , ω^{7} }

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.

- 1	1	1	1	1	1	1	1 -]	ra ₀ -		- P(1) -
1	ω	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7		a ₁		Ρ(ω)
1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6		a ₂		Ρ(ω ²)
1	ω^3	ω^6	ω	ω^4	ω^7	ω^2	ω^5		a ₃		Ρ(ω ³)
1	ω^4	1	ω^4	1	ω^4	1	ω^4	•	a ₄	=	$P(\omega^4)$
1	ω^5	ω^2	ω^7	ω^4	ω	ω^6	ω^3		a ₅		Ρ(ω ⁵)
1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2		a ₆		Ρ(ω ⁶)
_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω_		_ a ₇ _		- P(ω ⁷)

 $DFT_8[j,k] = \omega^{jk \mod 8}$ (0 ≤ j, k < 7)

Evaluation ω^{3} to ω^{4} , ω^{5} , ω^{6} , ω^{7} }

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.

Interpolation?

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$. Given P(1), $P(\omega)$, ..., $P(\omega^7)$, how to get a_0 , a_1 , ..., a_7 ?

Interpolation?

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$. Given P(1), $P(\omega)$, ..., $P(\omega^7)$, how to get a_0 , a_1 , ..., a_7 ?

Interpolation?

Say $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$. Given P(1), $P(\omega)$, ..., $P(\omega^7)$, how to get a_0 , a_1 , ..., a_7 ?

DFT versus IDFT

Question:

We know what matrix DFT₈ is. What is its inverse matrix, IDFT₈?

Answer: It's extremely similar to DFT₈.

				IDF	-T ₈							D	=T ₈			
	- 1	1	1	1	1	1	1	1 7	- 1	1	1	1	1	1	1	1 7
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}	1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}	1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^4	1	ω^4	1	ω^4	1	ω^4
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}	1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2
	_ 1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω	_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω

 $DFT_{N}[j,k] = \omega^{jk \mod N}$ $IDFT_{N}[j,k] = \frac{1}{N} \omega^{-jk \mod N}$

 $(0 \le j, k \le N, \omega = \omega_N \text{ is } N^{\text{th}} \text{ root of unity})$

				IDF	-T ₈								D	=T ₈				
ĺ	- 1	1	1	1	1	1	1	1 -] [- 1	1	1	1	1	1	1	1 .	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	_ 1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω_		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω.	
									Г	1	0	0	0	0	0	0	0 -	
F		<i>с</i> .								0	1	0	0	0	0	0	0	
ŀ	ro	ot I	llusi	ratio	on.					0	0	1	0	0	0	0	0	
										0	0	0	1	0	0	0	0	
	W	e'll s	sho	w th	e p	rodu	uct :	=		0	0	0	0	1	0	0	0	
										0	0	0	0	0	1	0	0	

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

We'll show the product =

Proof by picture.

 $\frac{1}{8}$

			IDF	-T ₈			
1	1	1	1	1	1	1	1
1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}
1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}
1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}
1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}
1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}
1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}
. 1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω

1	1	1	1	1	1	1	1 -							
1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7							
1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6							
1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5							
1	ω^4	1	ω^4	1	ω^4	1	ω^4							
1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3							
1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2							
1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω							
r 1	0	0	0	0	0	0	ך 0							
1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0							
1 0 0	0 1 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0							
1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0							
1 0 0 0	0 1 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0							
1 0 0 0 0	0 1 0 0 0	0 0 1 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1	0 0 0 0 0	0 0 0 0 0							
1 0 0 0 0 0	0 1 0 0 0 0	0 0 1 0 0 0	0 0 1 0 0 0	0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	0 0 0 0 0 0							

L 1	$\omega^{-\prime}$	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω

IDFT₈

1

 $1 \omega^{-1} \omega^{-2} \omega^{-3} \omega^{-4} \omega^{-5} \omega^{-6} \omega^{-7}$

 $1 \omega^{-3} \omega^{-6} \omega^{-1} \omega^{-4} \omega^{-7} \omega^{-2} \omega^{-5}$

 $1 \omega^{-5} \omega^{-2} \omega^{-7} \omega^{-4} \omega^{-1} \omega^{-6} \omega^{-3}$

 $1 \omega^{-6} \omega^{-4} \omega^{-2} 1 \omega^{-6} \omega^{-4} \omega^{-2}$

 $1 \omega^{-4} 1 \omega^{-4}$

1

1

 $\omega^{-2} \quad \omega^{-4} \quad \omega^{-6}$

1

1

 ω^{-4}

We'll show the product =

	r 1	1	1	1	1	1	1	1 -						
	1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7						
	1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6						
	1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5						
	1	ω^4	1	ω^4	1	ω^4	1	ω^4						
	1	$1 \omega^5$		ω^7	ω^4	ω^1	ω^6	ω^3						
	1 ω ⁶ 1 ω ⁷ Γ 1 Ο		ω^4	ω^2	1	ω^6	ω^4	ω^2						
			ω^6	ω^5	ω^4	ω^3	ω^2	ω_						
			<u></u>											
	- 1	0	0	0	0	0	0	0 7						
	- 1 0	0	0 0	0 0	0 0	0 0	0 0	0 -						
	- 1 0 0	0 1 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 - 0 0						
	- 1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 - 0 0 0						
	- 1 0 0 0 0	0 1 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1	0 0 0 0	0 0 0 0	0 - 0 0 0						
	- 1 0 0 0 0 0	0 1 0 0 0	0 0 1 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 0 1	0 0 0 0 0	0 0 0 0 0						
	- 1 0 0 0 0 0 0	0 1 0 0 0 0	0 0 1 0 0 0	0 0 1 0 0 0	0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	0 - 0 0 0 0 0						

 1

 $1 \omega^{-4}$

1

 $1 \omega^{-2} \omega^{-4} \omega^{-6} 1$

				IDF	-T ₈								D	=T ₈				
	r 1	1	1	1	1	1	1	1	1	- 1	1	1	1	1	1	1	1	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω.		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω.	
									٦	1	0	0	0	0	0	0	0 -	
										0	1	0	0	0	0	0	0	1
										0	0	1	0	0	0	0	0	
										0	0	0	1	0	0	0	0	1
							uct =	=		0	0	0	0	1	0	0	0	
										0	0	0	0	0	1	0	0	
										0	0	0	0	0	0	1	0	
										0	0	0	0	0	0	0	1_	

				IDF	-T ₈								DF	-T ₈				
	- 1	1	1	1	1	1	1	1	1	- 1	1	1	1	1	1	1	1 -	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	_ 1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω.		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω_	
									٦	1	0	0	0	0	0	0	0 -	
										0	1	0	0	0	0	0	0	
										0	0	1	0	0	0	0	0	
										0	0	0	1	0	0	0	0	
							JCt -	=		0	0	0	0	1	0	0	0	
										0	0	0	0	0	1	0	0	
										0	0	0	0	0	0	1	0	
										0	0	0	0	0	0	0	1_	

				IDF	-Т ₈								D	-T ₈			
	1 آ	1	1	1	1	1	1	1]	- 1	1	1	1	1	1	1	1 -
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2
	1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω_
1		.4 . 1	4	1	4		4 .		٢	1	0	0	0	0	0	0	ך 0
	+ u) + 1 	$+ \omega^{\neg}$	· + 1 ·	$+ \omega^{-}$	+ 1 +	ω^+			0	1	0	0	0	0	0	0
				ic <mark>8</mark> U						0	0	1	0	0	0	0	0
ć	ave	erage	9		A*******		****			0	0	0	1	0	0	0	0
	Vis	s 0		w th	e p		uct			0	0	0	0	1	0	0	0
				ω_8^4				1		0	0	0	0	0	1	0	0
					•					0	0	0	0	0	0	1	0
					*****	******	*****			0	0	0	0	0	0	0	1

				IDF	-T ₈								D	=T ₈			
	1	1	1	1	1	1	1	1]	- 1	1	1	1	1	1	1	1 -
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2
	1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω
1 _		2ب ر 2	⊥ ر،3	44	· ⊥ () [_]	-3 _ ()	-2 _ /	1	ſ	• 1	0	0	0	0	0	0	ך 0
<u> </u>		+ 00		τ <i>ω</i> 	+ 00	<u>+ 00</u>	<u>т (</u>			0	1	0	0	0	0	0	0
				ICU	re.	ω_8^{-2}				0	0	1	0	0	0	0	0
ć	ave	erage	e	ω_8^{-3}	••••		ω	-1 3		0	0	0	1	0	0	0	0
	Vis	s 0		w th	e N		.ct			0	0	0	0	1	0	0	0
				ω_8^{-4}		米		1		0	0	0	0	0	1	0	0
										0	0	0	0	0	0	1	0
				ω_8^3	******	ω^2		L 3		0	0	0	0	0	0	0	1 _

				IDF	-T ₈								D	-T ₈				
		1	1	1	1	1	1	1]	Γ1	1	1	1	1	1	1	1 -	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω		1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω	
1.	<u>د</u> ر 2	4	1.0-2	2 . 1		<u>√</u> −4		2	[- 1	0	0	0	0	0	0	0 -	
<u> </u>	- <i>W</i>	+ 00	<u>+ω</u>	- 1 - 		- 00	$+\omega$	_		0	1	0	0	0	0	0	0	
				ICU	re.	ω_8^{-2}				0	0	1	0	0	0	0	0	
ć	ave	rage	e		********	Î	***			0	0	0	1	0	0	0	0	
	Vis	30		w th	ie p	r <mark>o</mark> du	lot			0	0	0	0	1	0	0	0	
				ω_8^4		-		1		0	0	0	0	0	1	0	0	
										0	0	0	0	0_	0_	1	0	
					******	ω^2	******			_ 0	0	0	0	0	0	0	1 _	

				IDF	-T ₈								D	=T ₈				
	Γ1	1	1	1	1	1	1	1 .	1 [- 1	1	1	1	1	1	1	1	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω.		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω	
1 _	<u>, 2</u>	±4	± 0 ⁻²	2 _ 1 _	ـ 2ر)	- ()-4	+ ()-	2	Г	1	0	0	0	0	0	0	0 -	1
<u> </u>		<u>+ ω</u>	<u>+ w</u>	т <u>т</u> т 		- 00	<i>+ w</i>	_		0	1	0	0	0	0	0	0	
				ictu	re.	ω_8^{-2}				0	0	1	0	0	0	0	0	
	ave	rage	9		•********		****			0	0	0	1	0	0	0	0	
	Vis	S O		w th		r <mark>o</mark> du	uct			0	0	0	0	1	0	0	0	
				ω_8^4				1		0	0	0	0	0	1	0	0	
					•					0	0	0	0	0	0	1	0	
					******	ω^2	*****			0	0	0	0	0	0	0	1 .	

				ID	-T ₈								DF	=T ₈				
ĺ	- 1	1	1	1	1	1	1	1 7		- 1	1	1	1	1	1	1	1	1
	1	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}	ω^{-6}	ω^{-7}		1	ω^1	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7	
	1	ω^{-2}	ω^{-4}	ω^{-6}	1	ω^{-2}	ω^{-4}	ω^{-6}		1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6	
1	1	ω^{-3}	ω^{-6}	ω^{-1}	ω^{-4}	ω^{-7}	ω^{-2}	ω^{-5}		1	ω^3	ω^6	ω^1	ω^4	ω^7	ω^2	ω^5	
8	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}	1	ω^{-4}		1	ω^4	1	ω^4	1	ω^4	1	ω^4	
	1	ω^{-5}	ω^{-2}	ω^{-7}	ω^{-4}	ω^{-1}	ω^{-6}	ω^{-3}		1	ω^5	ω^2	ω^7	ω^4	ω^1	ω^6	ω^3	
	1	ω^{-6}	ω^{-4}	ω^{-2}	1	ω^{-6}	ω^{-4}	ω^{-2}		1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2	
	_ 1	ω^{-7}	ω^{-6}	ω^{-5}	ω^{-4}	ω^{-3}	ω^{-2}	ω		_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω.	
									Г	1	0	0	0	0	0	0	0 -	
										0	1	0	0	0	0	0	0	
			ny p	iciu	re.	4				0	0	1	0	0	0	0	0	

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0

0 0

Well show the product = Proof is an exercise. ③

Last piece of the puzzle: FFT

Computing this in O(N log N) ops

Claim: DFT_N reduces to 2 applications of $DFT_{N/2}$, plus O(N) additional operations.

 \Rightarrow T(N) = 2T(N/2) + O(N) \Rightarrow T(N) = O(N log N)

Claim: DFT₈ reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

1	1	1	1	1	1	1	1 -		a ₀]
1	ω	ω^2	ω^3	ω^4	ω^5	ω^6	ω^7		a ₁
1	ω^2	ω^4	ω^6	1	ω^2	ω^4	ω^6		a ₂
1	ω^3	ω^6	ω	ω^4	ω^7	ω^2	ω^5		a ₃
1	ω^4	1	ω^4	1	ω^4	1	ω^4	•	a ₄
1	ω^5	ω^2	ω^7	ω^4	ω	ω^6	ω^3		a ₅
1	ω^6	ω^4	ω^2	1	ω^6	ω^4	ω^2		a ₆
_ 1	ω^7	ω^6	ω^5	ω^4	ω^3	ω^2	ω_		a ₇

	1		1 -		- 1 -		- 1 -		1		1 -		1 -		- 1 -																							
	1		ω		ω^2		ω^3		ω^4		ω^5		ω^6		ω^7																							
	1		ω^2		ω^4	+a ₃ .	+a ₃ .		ω^6		1		ω^2		ω^4		ω^6																					
	1		ω^3		ω^6			ω		ω^4		ω^7		ω^2		ω^5																						
$= a_0 \cdot$	1	+a ₁ .	ω^4	$\begin{vmatrix} +a_2 \cdot \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	1			ω^4	+a ₄ •	1	+a ₅ •	ω^4	+a ₆ •	1	+a ₇ •	ω^4																						
	1		ω^5		ω^2																									ω^7		ω^4		ω		ω^6		ω^3
	1		ω^6		ω^4											ω^2		1		ω^6		ω^4		ω^2														
	1		ω^7		ω^{6}		ω^5		ω^4		ω^3		ω^2		_ω_																							

Claim: DFT₈ reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

Claim: DFT₈ reduces to 2 applications of DFT₄, plus "O(8)" additional operations.

Claim: DFT₈ reduces to 2 applications of DFT₄, plus "O(8)" additional operations.

ω

 ω^5

 ω^7

 $\left[\omega^{3} \right]$

 ω_8^2

Claim: DFT_8 reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

Claim: DFT_8 reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

Claim: DFT_8 reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

Claim: DFT_8 reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

ditto

$$= a_{0} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + a_{2} \cdot \begin{bmatrix} 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \\ 1 \\ \omega^{2} \\ \omega^{4} \\ \omega^{6} \end{bmatrix} + a_{4} \cdot \begin{bmatrix} 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \\ 1 \\ \omega^{4} \end{bmatrix} + a_{6} \cdot \begin{bmatrix} 1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2} \\ 1 \\ \omega^{6} \\ \omega^{4} \\ \omega^{2} \end{bmatrix} = \mathsf{DFT}_{4} \cdot \begin{bmatrix} a_{0} \\ a_{2} \\ a_{4} \\ a_{6} \end{bmatrix}$$

$$+a_{1} \cdot \begin{bmatrix} 1 \\ \omega \\ \omega^{2} \\ \omega^{3} \\ \omega^{4} \\ \omega^{5} \\ \omega^{6} \\ \omega^{7} \end{bmatrix} +a_{3} \cdot \begin{bmatrix} 1 \\ \omega^{3} \\ \omega^{6} \\ \omega^{6} \\ \omega^{7} \\ \omega^{4} \\ \omega^{7} \\ \omega^{7} \\ \omega^{6} \\ \omega^{7} \\ \omega^{6} \\ \omega^{7} \\ \omega^{6} \\ \omega^{6} \\ \omega^{7} \\ \omega^{6} \\ \omega^{7} \\ \omega^{6} \\ \omega^{6} \\ \omega^{2} \\ \omega^{6} \\ \omega^{6} \\ \omega^{7} \\ \omega^{6} \\ \omega^{6} \\ \omega^{2} \\ \omega^{6} \\ \omega^{6} \\ \omega^{2} \\ \omega^{6} \\ \omega^{6} \\ \omega^{2} \\ \omega^{6} \\ \omega^$$

Claim: DFT_8 reduces to 2 applications of DFT_4 , plus "O(8)" additional operations.

Summary

- Multiplying two n-bit integers is doable in O(n) time in the Word RAM model
- It reduces to multiplying two *polynomials* of degree < N in O(N log N) time.
- DFT_N reduces Coefficients Representation to Values Representation over roots of unity.
- FFT_N computes DFT_N (and inverse) in O(N log N) time.
- DFT_N has myriad uses in CS & Engineering.