
15-251 
Great Theoretical Ideas in Computer Science 

Lecture 1:
Introduction to the course

Jan 17th, 2017

Instructors:

Bernhard Haeupler

Anil Ada



What is computer science?

What is theoretical computer science?



“Computer Science is no more about computers
than astronomy is about telescopes.”

Motivational Quote of the Course

- Edsger Dijkstra

- Michael Fellows



What is computer science?

Is it branch of:

- science?
- engineering?
- math?
- philosophy?
- sports?



Physics

Theoretical physics

Experimental physics

Applications/Engineering

- come up with mathematical models

- derive the logical consequences

- test mathematical models with experiments

- make observations about the universe

Nature’s language is mathematics



The role of theoretical physics

Observed
Phenomenon

Mathematical
Model

Explore
Consequences

Test
Consequences

Real World Abstract World

Applications



(Theoretical) Physics

- science?
- engineering?
- math?
- philosophy?
- sports?



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Algorithm:  description of how the data is manipulated.

Computational problem:  the input-output pairs.

Usually

Input Output“Computer”



Computer Science 

The science that studies computation.

Computation:  manipulation of information/data.

Usually

Input OutputCalculator

Algorithm:  description of how the data is manipulated.

Computational problem:  the input-output pairs.



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Usually

Input OutputLaptop

Algorithm:  description of how the data is manipulated.

Computational problem:  the input-output pairs.



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Usually

Input OutputHuman

Algorithm:  description of how the data is manipulated.

Computational problem:  the input-output pairs.



“Computers” in early 20th century



Computer Science

The science that studies computation.

Computation:  manipulation of information/data.

Usually

Input OutputEvolution

Algorithm:  description of how the data is manipulated.

Computational problem:  the input-output pairs.



The computational lens

Computational biology

Computational physics

Computational chemistry

Computational neuroscience

Computational economics

…

Computational finance

Computational linguistics

Computational statistics



Wikipedia definition

“ Computer Science deals with the theoretical 
foundations of information and computation, 
together with practical techniques for the 
implementation and application of the foundations. ”

- Wikipedia



The role of theoretical computer science

Build a mathematical model for computation.

Explore the logical consequences.
Gain insight about computation.

Look for interesting applications.

CMU undergrad CMU Prof. OK, we don’t have
everybody

http://youtu.be/pTeZP-XfuKI

https://goo.gl/gGkpMv 

http://youtu.be/J4TkHuTmHsg 



The role of theoretical computer science

Computation Mathematical
Model

Explore
Consequences

Real World Abstract World

Applications

Only done recently



Simple examples of computation

We have been using algorithms for thousands of years.



Simple examples of computation

Euclid’s algorithm (~ 300BC):

def gcd(a, b):

while (a != b):

if (a > b):
a = a - b

else:

return a

We have been using algorithms for thousands of years.

b = b - a



Formalizing computation

Algorithm/Computation was only formalized in the 
20th century!

Someone had to ask the right question.

We have been using algorithms for thousands of years.



David Hilbert, 1900

The Problems of Mathematics
“Who among us would not be happy to lift the veil behind which is 
hidden the future; to gaze at the coming developments of our science 
and at the secrets of its development in the centuries to come? What 
will be the ends toward which the spirit of future generations of 
mathematicians will tend? What methods, what new facts will the new 
century reveal in the vast and rich field of mathematical thought?”



2 of Hilbert’s Problems

Is there a finitary procedure to determine if a given 
multivariate polynomial with integral coefficients has an 
integral solution?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0



2 of Hilbert’s Problems

Fortunately, the answer turned out to be NO.



2 of Hilbert’s Problems

Meanwhile… in New Jersey… a certain British grad student,
unaware of all these debates…

Gödel (1934):
Discusses some ideas for mathematical definitions of 
computation. But not confident what is a good definition.

Church (1936):
Invents lambda calculus. 
Claims it should be the definition of an “algorithm”.

Gödel, Post (1936):
Arguments that Church’s claim is not justified.



2 of Hilbert’s Problems

Alan Turing (1936, age 22):
Describes a new model for computation,
now known as the Turing Machine.™

Gödel, Kleene, and even Church:
“Umm.  Yeah.  He nailed it.  Game over.  “Algorithm” defined.”

Turing (1937):
TMs      lambda calculus



Formalization of computation:  Turing Machine

Turing Machine:



Church-Turing Thesis

Church-Turing Thesis:
The intuitive notion of “computable” is captured by 
functions computable by a Turing Machine.

Any computational problem that can be solved by a 
physical device, can be solved by a Turing Machine.

(Physical) Church-Turing Thesis

Real World Abstract World

Church-Turing Thesis



Back to Hilbert’s Problems

Is there a finitary procedure to determine if a given 
multivariate polynomial with integral coefficients has an 
integral solution?

Entscheidungsproblem (1928)
Is there a finitary procedure to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0



Back to Hilbert’s Problems

Is there an algorithm (a TM) to determine if a given 
multivariate polynomial with integral coefficients has an 
integral solution?

Entscheidungsproblem (1928)
Is there an algorithm (a TM) to determine the validity 
of a given logical expression?

(Mechanization of mathematics)

¬9x, y, z, n 2 N : (n � 3) ^ (xn + y

n = z

n)e.g.

Hilbert’s 10th problem (1900)

e.g. 5x2
yz

3 + 2xy + y � 99xyz4 = 0



Back to Hilbert’s Problems

Entscheidungsproblem (1928)

Hilbert’s 10th problem (1900)

There is no algorithm to solve this problem.

Matiyasevich-Robinson-Davis-Putnam (1970):

There is no algorithm to solve this problem.
Turing (1936):



Computer science

- science?
- engineering?
- math?
- philosophy?
- sports?



2 Main Questions in TCS

Computability of a problem:

Is there an algorithm to solve it?

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources



Computational Complexity

Complexity of a problem:

Is there an efficient algorithm to solve it?

- time
- space (memory)
- randomness
- quantum resources

2 camps:

- trying to come up with efficient algorithms
  (algorithm designers)

- trying to show no efficient algorithm exists
  (complexity theorists)



Computational Complexity

2 camps:

- trying to come up with efficient algorithms
  (algorithm designers)

- trying to show no efficient algorithm exists
  (complexity theorists)

multiplying two integers

sorting a list
protein structure prediction

computing Nash Equilibria of games
simulation of quantum systems

factoring integers



Some other interesting questions

If a problem has a space-efficient solution
does it also have a time-efficient solution?

Can every randomized algorithm be derandomized 
efficiently?

Can we use quantum properties of matter to build 
faster computers?

P vs NP



Learning Objectives



Topics Overview

Part 1:  Formalizing the notions of problems, algorithms, 
            and computability.

Part 2:  Efficient computation: 
            basic algorithms and complexity

Part 3:  Some highlights of theoretical CS and 
            the mathematics behind them.



This is a “big picture” course

Finite automata

Turing machines

Graph theory

NP-completeness

Approximation algorithms Probability

Randomized algorithms

Basic number theory

Cryptography
Random Walks

Uncountability and Undecidability

Gödel’s Incompleteness Theorems

Time Complexity

Quantum Computation



Goals
- Learn about the foundational ideas and concepts 
  in the theory of computation.

- Learn the mathematical constructs and techniques needed to  
  understand and develop key computational concepts.

- Improve rigorous, logical, and abstract thinking skills.

- Develop problem-solving skills.

- Refine proof-writing skills.

- Express complex ideas and arguments clearly, 
  both in written and oral form.

- Cooperate with others in order to solve challenging and 
  rigorous problems related to the study of computer science.



A review of the course syllabus



Webpage

Course webpage: www.cs.cmu.edu/~15251

http://www.cs.cmu.edu/~15251


Grading Scheme

Grading:

12 homework assignments

2 midterm exams

30%

20% + 20% = 40%

1 final exam

25%

Participation (attending classes and recitations)

5%

Mar 1,  Apr 19
6:30pm - 9:30pm



Grading Scheme

Alternate Grading:

12 homework assignments

2 midterm exams

30%,     lowest 4 homeworks half-weighted

Higher midterm: 30%

1 final exam

35%

Participation (attending classes and recitations)

5%
Important Note:  
With this scheme, max letter grade you can receive is a C.



A poll

What is your favorite TV show?

- Game of Thrones
- Breaking Bad
- Seinfeld
- Friends
- The Wire

- None of the above
- I don’t watch TV!

- Sesame Street

- Sherlock
- The Sopranos
- Arrested Development



Homework System

4 types of questions:  

    SOLO,  GROUP,  OPEN COLLABORATION, 

    PROGRAMMING

SOLO - work by yourself

GROUP - work in groups of 3 or 4

OPEN - work with anyone you would like from class

PROG - same rules as SOLO. submit to Autolab.



Homework System

Don’t share written material with anyone.

Erase public whiteboard when done.

Can search books to learn more about a subject.

Can’t Google specific keywords from the homework.

Always cite your sources!

Think about a problem before you collaborate.

General rules:



Homework System

Homework writing sessions: 
    Wednesdays 6:30pm to 7:50pm at DH 2210

You must practice writing the solutions beforehand!!!

You will lose points for poor presentation.

Write the solutions to a random subset of the problems.

You get 20% of the credit for the question if you write:
- nothing
- “I don’t know”, or
- “WTF!”



Homework System

Step 1:

You will know who graded which question.

If
- you think there has been a mistake in grading

- you don’t understand why you lost points

Homework Grading:

TAs grade and give back the hw on Friday.

Step 2:

email the TA who graded the question.
(attach a picture of your write-up)



Homework System

Submit electronically (via email) a completely correct 
solution by 10pm Sunday.

Learn from your mistakes —>  more points:

To get back 25% of the lost credit on a problem:



Piazza

Everyone must sign up.

Great resource, make use of it.

Please be polite.

Don’t give away any hints.

Course announcements will be made on Piazza.
You have to check it every day.



Office hours

See course webpage.

You have to use the OHs!

We have separate conceptual OHs.



Small Group Review Sessions

Sign up for an hour long time slot.

Review material with a TA and 2, 3 other students.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Lecture 1



A typical week

Sun Mon Tue Wed Thu Fri Sat

Lecture 1.5 (6:30 - 7:50pm)  (for this week only)



A typical week

Sun Mon Tue Wed Thu Fri Sat

Lecture 2

Office hour (Anil)

Homework comes out.

Maybe start thinking about SOLO problems.

Review that week’s material.

(this week OHs start on Thu)



A typical week

Sun Mon Tue Wed Thu Fri Sat

Recitation

Make progress on SOLO problems.

Start thinking about the GROUP problems.

Make appointments to meet with your group.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Meet with your group.

Make some progress on the questions.

Maybe solve some of them.

Go to office hours.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Meet with your group.

Go to office hours, get some help.

Solve some more problems.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Finish up GROUP problems.

Go to office hours.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Realize that you still need to do the OPEN problem(s)!

Express hate towards the professors.

Lecture

Rush to OH to get help.

Don’t sleep until you solve the hardest problem.



A typical week

Sun Mon Tue Wed Thu Fri Sat

Practice writing up the solutions to the problems.

Express hate towards the professors.

Learning moment: 
write solution down once you think you figured it out.

Realize you have a mistake in one of the questions.



Keys to success in this course

Come to lecture tomorrow!!



Video


