|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 10 :
Power of Algorithms

February 16th, 2017

Computable cousins of uncomputable problems

Halting Problem

Input: Description of a TM M and an input x Question: Does $M(x)$ halt?

This is undecidable.

Halting Problem with Time Bound
Input: Description of a TM M, an input x , a number k Question: Does $M(x)$ halt in at most k steps?

This is decidable. (Simulate for k steps)

Computable cousins of uncomputable problems

Theorem Proving Problem

Input: A FOL statement (a mathematical statement)
Question: Is the statement provable?
This is undecidable.

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k
Question: Is the statement provable using at most k symbols?
This is decidable. (Brute-force search)

Kurt Friedrich Gödel (I906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most important logicians in history.

Incompleteness Theorems.
Completeness Theorem.

John von Neumann (1903-1957)

Contents [hide]

1 Early life and education
2 Career and abilities
2.1 Beginnings
2.2 Set theory
2.3 Geometry
2.4 Measure theory
2.5 Ergodic theory
2.6 Operator theory
2.7 Lattice theory
2.8 Mathematical formulation of quantum mechanics
2.9 Quantum logic
2.10 Game theory
2.11 Mathematical economics
2.12 Linear programming
2.13 Mathematical statistics
2.14 Nuclear weapons
2.15 The Atomic Energy Committee
2.16 The ICBM Committee
2.17 Mutual assured destruction
2.18 Computing
2.19 Fluid dynamics
2.20 Politics and social affairs
2.21 On the eve of World War II
2.22 Greece and Rome
2.23 Weather systems
2.24 Cognitive abilities
2.25 Mastery of mathematics

3 Personal life
4 Later life

- Mathematical formulation of quantum mechanics
- Founded the field of game theory in mathematics.
- Created some of the first general-purpose computers.

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length $=$ number of symbols). Let $\psi(F, n)$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k
Question: Is the statement provable using at most k symbols?
This is decidable. (Brute-force search)

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann

$\Psi(F, n)=$ the number of steps required for input (F, n)
$\varphi(n)=\max _{F} \Psi(F, n)$
(a worst-case notion of running time)

Question: How fast does $\varphi(n)$ grow for an optimal machine?

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me , however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Gödel's letter to von Neumann (I956)

One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let $\psi(\mathrm{F}, \mathrm{n})$ be the number of steps the machine requires for this and let $\varphi(\mathrm{n})=\operatorname{maxF} \psi(\mathrm{F}, \mathrm{n})$. The question is how fast $\varphi(\mathrm{n})$ grows for an optimal machine. One can show that $\varphi(\mathrm{n}) \geq \mathrm{k} \cdot \mathrm{n}$. If there really were a machine with $\varphi(\mathrm{n}) \sim \mathrm{k} \cdot \mathrm{n}$ (or even $\sim \mathrm{k} \cdot \mathrm{n}^{2}$), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me , however, to be completely within the realm of possibility that $\varphi(\mathrm{n})$ grows that slowly.

Goals for the week

I.What is the right way to study complexity?

- using the right language and level of abstraction
- upper bounds vs lower bounds
- polynomial time vs exponential time

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

Algorithms with integer inputs

Poll

```
def isPrime(n):
    if (n< 2):
    return False
    for factor in range(2,n):
    if (n % factor == 0):
        return False
    return True
```

What is the running time as a function of input length?

- logarithmic
- linear
- log-linear
- quadratic
- exponential
- beats me

Poll Answer

$$
\begin{aligned}
& \text { def isPrime }(n): \\
& \text { if }(n<2): \\
& \text { return False } \\
& \begin{array}{l}
\text { for factor in range }(2, n): \\
\text { if (} n \% \text { factor }==0): \\
\text { return False } \\
\text { return True }
\end{array}
\end{aligned}
$$

\# iterations: $\approx n$

$$
n=2^{\log _{2} n}=2^{\operatorname{len}(n)}
$$

Algorithms with number inputs

Algorithms on numbers involve BIG numbers.

36|8502788666|3I|0698659328|52|497II045574302I|69260358536775932020762686|0| 7237846234873269807IO2970I 2887435602 I 48 I 964232857782295671675021393065473695 3943653222082II694I5878307696498263I05897I7739I8I525033220266350650989268038 3I9483927388I505432422077I79I2I83888828I 996|48408052302I96889866637200606252 650I3I0964926475205090003984I76I220587III6456794655904497I683604424076996342 718304654479802II682970|3490774|4009047634829067I82274396|203698|42307099664 3455I334I46376I6824423860I0788974IO58I3I27I3062262I420863600822465I5I096IOI8 97890068I506766490I5942469667309276208447327I40045990I3904409378I4I724958467 7228950|43608277369974692883I956843I436I862929679227I6752485I3I6077587207648 784505836723I603I730798I747I4I75I905I35702967I99|I529635804I2838I8484I733782

This is actually still small. Imagine having millions of digits.

Algorithms with number inputs

$B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429$
$B \approx 5.7 \times 10^{75} \quad(5.7$ quattorvigintillion)

Definition: $\operatorname{len}(B)=\#$ bits to write B

$$
n \approx \log _{2} B
$$

For $B=5693030020523999993479642904621911725098567020556258102766251487234031094429$

$$
\operatorname{len}(B)=251
$$

Algorithms with number inputs

$B=569303002052399999347964290462|9||725098567020556258| 0276625|48723403| 094429$
Goal: find one (non-trivial) factor of B

$$
\begin{aligned}
& \text { for } \mathrm{A}=2,3,4,5, \ldots \\
& \text { test if } \mathrm{B} \bmod \mathrm{~A}=0 .
\end{aligned}
$$

It turns out:

$$
B=68452332409801603635385895997250919383 \mathrm{x}
$$

Each factor \approx age of the universe in Planck time.
Worst case: \sqrt{B} iterations.

$\sqrt{B}=\sqrt{2^{\log _{2} B}}=\sqrt{2^{\operatorname{len}(B)}}=2^{\operatorname{len}(B) / 2}$ input length

Recall our model

The Random-Access Machine (RAM) model
Good combination of reality/simplicity.
$+,-, /, *,<,>$, etc. e.g. $245 * 12894$ takes I step
memory access
e.g. $A[94]$
takes I step

Actually:
We'll assume arithmetic operations take I step if the numbers are bounded by a polynomial in n.

Unless specified otherwise, we will use this model.

Example

arithmetic operation

Are the numbers involved bounded by poly(n)?

What is the running-time of this algorithm?

Integer Addition

```
def sum(A,B):
        for i from 1 to B do:
        A+= 1
    return A
```

What is the running-time of this algorithm?

Integer Addition

36I8502788666|3II0698659328I52I497II04 A
$+65743021169260358536775932020762686101 \quad B$ IOI92804905592I669606641864835977657205

\# steps to produce C is $O(n)$

Integer Multiplication

$$
\begin{array}{rr}
36|8502788666| 3||0698659328| 52| 497|\mid 04 & A \\
5932020762686|0| & B
\end{array}
$$

$X X$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
2|465033672205046394665|358202698404452609868|37425504
\# steps: $O(\operatorname{len}(A) \cdot \operatorname{len}(B))=O\left(n^{2}\right)$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks: How can we do better?

What algorithm does Python use?

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \mathrm{x}=5678 \quad x=a \cdot 10^{n / 2}+b \\
& y=324 \\
& y=c \cdot 10^{n / 2}+d \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Use recursion!

Integer Multiplication

$$
\begin{aligned}
& \text { a b } \\
& \begin{array}{ll}
\mathrm{x}=5678 & x=a \cdot 10^{n / 2}+b \\
\mathrm{y}=1234 & y=c \cdot 10^{n / 2}+d
\end{array} \\
& \text { c d } \\
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

- Recursively compute $a c, a d, b c$, and $b d$.
- Do the multiplications by 10^{n} and $10^{n / 2}$
- Do the additions.

$$
T(n)=4 T(n / 2)+O(n)
$$

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 4^{j}$
work done per node at level j :
$c\left(n / 2^{j}\right)$
$c n 2^{j}$
per level \# levels: $\log _{2} n$

Integer Multiplication

$$
\begin{aligned}
x \cdot y & =\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
$$

Hmm, we don't really care about $a d$ and $b c$.
We just care about their sum.
Maybe we can get away with 3 recursive calls.

Integer Multiplication

$$
\begin{aligned}
& x \cdot y=\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d \\
& (a+b)(c+d)=a c+a d+b c+b d
\end{aligned}
$$

- Recursively compute $a c, b d,(a+b)(c+d)$.
$-a d+b c=(a+b)(c+d)-a c-b d$
$T(n) \leq 3 T(n / 2)+O(n) \quad$ Is this better??

Integer Multiplication

Level

0

\# distinct nodes at level $\mathrm{j}: \quad 3^{j}$
work done per node at level $\mathrm{j}: \quad c\left(n / 2^{j}\right)$
$\operatorname{cn}\left(3^{j} / 2^{j}\right)$ per level \# levels: $\log _{2} n$

$$
\text { Total cost: } \sum_{j=0}^{\infty 2} c n\left(3^{j} / 2^{j}\right)
$$ $\log _{2} n$

Integer Multiplication

Level

0

Karatsuba Algorithm

$\log _{2} n$
Total cost:

$$
\sum_{j=0}
$$

$$
\begin{aligned}
\operatorname{cn}\left(3^{j} / 2^{j}\right) & \leq C n\left(3^{\log _{2} n} / 2^{\log _{2} n}\right) \\
& =C 3^{\log _{2} n} \\
& =C n^{\log _{2} 3} \in O\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?
A good algorithm designer always thinks: How can we do better?

Cut the integer into 3 parts of length $\mathrm{n} / 3$ each.
Replace 9 multiplications with only 5 .

$$
\begin{aligned}
& T(n) \leq 5 T(n / 3)+O(n) \\
& T(n) \in O\left(n^{\log _{3} 5}\right)
\end{aligned}
$$

Can do $T(n) \in O\left(n^{1+\epsilon}\right)$ for any $\epsilon>0$.

Integer Multiplication

Fastest known: $\quad n(\log n) 2^{O\left(\log ^{*} n\right)}$
Martin Fürer
(2007)

Matrix Multiplication

Input: $2 \mathrm{n} \times \mathrm{n}$ matrices X and Y .
Output: The product of X and Y.
(Assume entries are objects we can multiply and add.)

Matrix Multiplication

$\left.$| a | b |
| :--- | :--- |
| c | d |\times| e | f |
| :--- | :--- |
| g | h | \right\rvert\,$=$| $a e+b g$ | $a f+b h$ |
| :--- | :--- |
| $c e+d g$ | $c f+d h$ |

Matrix Multiplication

$Z[i, j]=(i$ 'th row of $X) \cdot(j$ 'th column of $Y)$
$=\sum_{k=1}^{n} \mathrm{X}[\mathrm{i}, \mathrm{k}] \mathrm{Y}[\mathrm{k}, \mathrm{j}]$

Matrix Multiplication

$Z[i, j]=(i$ 'th row of $X) \cdot(j$ 'th column of $Y)$

$$
=\sum_{k=1}^{n} \mathrm{X}[\mathrm{i}, \mathrm{k}] \mathrm{Y}[\mathrm{k}, \mathrm{j}]
$$

Algorithm I:
$\Theta\left(n^{3}\right)$

Matrix Multiplication

$$
\left.X=\begin{array}{|ccc|}
\hline A & \vdots & B \\
\ldots \ldots \ldots & \vdots & \cdots \\
C & \vdots & D
\end{array} \quad Y=\begin{array}{|c:ccc}
E & \vdots & F \\
\ldots \ldots & \cdots & \cdots \\
G & \vdots & H
\end{array} \right\rvert\,
$$

$$
Z=\left\lvert\, \begin{array}{cc}
A E+B G & A F+B H \\
\cdots \cdots \cdots \cdots \cdots \\
C E+D G: C F+D H
\end{array}\right.
$$

Algorithm 2: recursively compute 8 products + do the additions.

Matrix Multiplication: Strassen's Algorithm

$$
Z=\left|\begin{array}{|c|c|}
\hline A E+B G: A F+B H \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
C E+D G & \cdots F+D H
\end{array}\right|
$$

Can reduce the number of products to 7 .

QI = (A+D) $(E+G)$
Q2 $=(C+D) E$
Q3 $=\mathrm{A}(\mathrm{F}-\mathrm{H})$
Q4 $=\mathrm{D}(\mathrm{G}-\mathrm{E})$
Q5 $=(A+B) H$
Q6 $=(\mathrm{C}-\mathrm{A})(\mathrm{E}+\mathrm{F})$
Q7 $=(B-D)(G+H)$
$A E+B G=Q 1+Q 4-Q 5+Q 7$
$\mathrm{AF}+\mathrm{BH}=\mathrm{Q} 3+\mathrm{Q} 5$
$C E+D G=Q 2+Q 4$
$C F+D H=Q 1+Q 3-Q 2+Q 6$

Matrix Multiplication: Strassen's Algorithm
Running Time:

$$
\begin{aligned}
T(n) & =7 \cdot T(n / 2)+O\left(n^{2}\right) \\
T(n) & =O\left(n^{\log _{2} 7}\right) \\
& =O\left(n^{2.81}\right)
\end{aligned}
$$

Matrix Multiplication: Strassen's Algorithm

Strassen's Algorithm (1969)

Together with Schönhage (in 1971) did n-bit integer multiplication in time $O(n \log n \log \log n)$

Arnold Schönhage

The race for the world record

Improvements since 1969

1978: $O\left(n^{2.796}\right)$ by Pan
1979: $O\left(n^{2.78}\right)$ by Bini, Capovani, Romani, Lotti
1981: $O\left(n^{2.522}\right)$ by Schönhage
1981: $O\left(n^{2.517}\right) \quad$ by Romani
1981: $O\left(n^{2.496}\right)$ by Coppersmith,Winograd
1986: $O\left(n^{2.479}\right)$ by Strassen
1990: $O\left(n^{2.376}\right) \quad$ by Coppersmith, Winograd
No improvement for 20 years!

The race for the world record

No improvement for 20 years!

2010: $O\left(n^{2.374}\right)$ by Andrew Stothers (PhD thesis)

201 I: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

(CMU PhD, 2008)

The race for the world record

20II: $O\left(n^{2.373}\right)$ by Virginia Vassilevska Williams

Current world record:

2014: $O\left(n^{2.372}\right)$ by François Le Gall

Enormous Open Problem

Is there an $O\left(n^{2}\right)$ time algorithm for matrix multiplication ???

