
February 16th, 2017

15-251 
Great Theoretical Ideas in Computer Science 

Lecture 10:
Power of Algorithms



Computable cousins of uncomputable problems

Halting Problem with Time Bound

Input: Description of a TM M, an input x, a number k

Question: Does M(x) halt in at most k steps? 

Halting Problem

Input: Description of a TM M and an input x

Question: Does M(x) halt? 

This is undecidable.

This is decidable. (Simulate for k steps)



Computable cousins of uncomputable problems

Theorem Proving Problem

Input: A FOL statement (a mathematical statement)

Question: Is the statement provable?

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement),  k

Question: Is the statement provable 
                 using at most k symbols? 

This is undecidable.

This is decidable. (Brute-force search)



Kurt Friedrich Gödel (1906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most 
important logicians in history.

Incompleteness Theorems.

Completeness Theorem.



John von Neumann (1903-1957)

- Mathematical formulation of 
quantum mechanics

- Founded the field of game theory 
in mathematics.

- Created some of the first 
general-purpose computers.



Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for 
every formula F in first order predicate logic and every natural 
number n, allows one to decide if there is a proof of F of length n 
(length = number of symbols). Let ψ(F,n) be the number of steps the 
machine requires for this and let φ(n) = maxF ψ(F,n). The question 
is how fast φ(n) grows for an optimal machine. One can show that 
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even 
∼ k ⋅ n2), this would have consequences of the greatest importance. 
Namely, it would obviously mean that in spite of the undecidability 
of the Entscheidungsproblem, the mental work of a mathematician 
concerning Yes-or-No questions could be completely replaced by a 
machine. After all, one would simply have to choose the natural 
number n so large that when the machine does not deliver a result, it 
makes no sense to think more about the problem. Now it seems to 
me, however, to be completely within the realm of possibility that 
φ(n) grows that slowly.
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Gödel’s letter to von Neumann

= the number of steps required for input (F, n)

(a worst-case notion of
   running time)

Question: How fast does            grow 
                 for an optimal machine?
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Goals for the week

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction



Algorithms with integer inputs



Poll

What is the running time as a function of input length?

- logarithmic

- linear

- log-linear

- quadratic

- exponential

- beats me



Poll Answer

n = 2log2 n = 2len(n) exponential in 
input length

# iterations:  ~ ~ n



Algorithms with number inputs

3618502788666131106986593281521497110455743021169260358536775932020762686101 
7237846234873269807102970128874356021481964232857782295671675021393065473695 
3943653222082116941587830769649826310589717739181525033220266350650989268038 
3194839273881505432422077179121838888281996148408052302196889866637200606252 
6501310964926475205090003984176122058711164567946559044971683604424076996342 
7183046544798021168297013490774140090476348290671822743961203698142307099664 
3455133414637616824423860107889741058131271306226214208636008224651510961018 
9789006815067664901594246966730927620844732714004599013904409378141724958467 
7228950143608277369974692883195684314361862929679227167524851316077587207648 
7845058367231603173079817471417519051357029671991152963580412838184841733782 

Algorithms on numbers involve BIG numbers.

This is actually still small. Imagine having millions of digits.



Algorithms with number inputs
5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

B ⇡ 5.7⇥ 1075 ( 5.7 quattorvigintillion )

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =For

len(B) = 251

Definition: len(B) = # bits to write B

⇡ log2 Bn



Algorithms with number inputs

for A = 2, 3, 4, 5, … 
     test if B mod A = 0.

B =

It turns out:
68452332409801603635385895997250919383 

83167801886452917478124266362673045163 

x

Each factor ~ age of the universe in Planck time.~

Worst case:          iterations.
p
B

exponential in 
input length

p
B =

p
2log2 B =

p
2len(B) = 2len(B)/2

5693030020523999993479642904621911725098567020556258102766251487234031094429 

Goal:  find one (non-trivial) factor of 

B =

B



Recall our model

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+ , - , / , *, <, >, etc. takes 1 stepe.g.  245*12894

memory access takes 1 stepe.g.  A[94]

Unless specified otherwise, we will use this model.

Actually:
We’ll assume arithmetic operations take 1 step 
if the numbers are bounded by a polynomial in n.



Example

def double(B): 
    return B+B

arithmetic 
operation

Are the numbers involved bounded by poly(n)?

What is the running-time of this algorithm?



Integer Addition

def sum(A, B):
    for i from 1 to B do:
        A += 1
    return A

What is the running-time of this algorithm?



Integer Addition

36185027886661311069865932815214971104 
65743021169260358536775932020762686101 

101928049055921669606641864835977657205 
+

A
B

C

# steps to produce      is C O(n)



Integer Multiplication
36185027886661311069865932815214971104 

5932020762686101 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504 

A

B

C

# steps: O(len(A) · len(B)) = O(n2)



Integer Multiplication

You might think: 
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ? 

What algorithm does Python use?



Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

Use recursion!

= ac · 10n + (ad+ bc) · 10n/2 + bd



Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

- Recursively compute ac, ad, bc, and bd.  

= ac · 10n + (ad+ bc) · 10n/2 + bd

- Do the multiplications by 10n and 10n/2

- Do the additions.

T (n) = 4T (n/2) +O(n)

O(n)

O(n)



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2 n/2

n/2 n/2

n/4 n/4 n/4 n/4

n/4 n/4 n/4 n/4

2

# distinct nodes at level j: 

work done per node at level j: 

4j

c(n/2j)

# levels: Total cost:
log2 n

log2 nX

j=0

cn2j 2 O(n2)

per level
cn2j



Integer Multiplication

x · y = (a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

Hmm, we don’t really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls.



Integer Multiplication

x · y = (a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

(a+ b)(c+ d) = ac+ ad+ bc+ bd

T (n)  3T (n/2) +O(n) Is this better??

- Recursively compute ac, bd, (a+b)(c+d).  

- ad + bc = (a+b)(c+d) - ac - bd



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

# distinct nodes at level j: 

work done per node at level j: c(n/2j)

# levels: Total cost:
log2 n

3j

log2 nX

j=0

cn(3j/2j)

per level
cn(3j/2j)



Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

Total cost:
log2 nX

j=0

cn(3j/2j)

2 O(nlog2 3)

 Cn(3log2 n/2log2 n)

= C3log2 n

= Cnlog2 3

Karatsuba Algorithm



Integer Multiplication

You might think: 
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ? 

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.

T (n)  5T (n/3) +O(n)

T (n) 2 O(nlog3 5)

Can do                                for any T (n) 2 O(n1+✏) ✏ > 0.



Integer Multiplication

Fastest known: n(log n)2O(log

⇤ n) Martin Fürer
(2007)



Matrix Multiplication

x =X Y Zn

n

Input:  2  n x n  matrices X and Y.

Output:  The product of X and Y.

(Assume entries are objects we can multiply and add.)



Matrix Multiplication

a b

c d

e f

g h
x =

ae+bg af+bh

ce+dg cf+dh



Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X)  (j’th column of Y).
nX

k=1

        =        X[i,k] Y[k,j]



Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X)  (j’th column of Y).
nX

k=1

        =        X[i,k] Y[k,j]

Algorithm 1: ⇥(n3)



Matrix Multiplication

X Y= =
A B

C D

E F

G H

Z =
AE+BG AF+BH

CE+DG CF+DH

Algorithm 2: recursively compute 8 products
                            + do the additions. ⇥(n3)



Matrix Multiplication:  Strassen’s Algorithm

Can reduce the number of products to 7.

Q1 = (A+D)(E+G)
Q2 = (C+D)E
Q3 = A(F-H)
Q4 = D(G-E)
Q5 = (A+B)H
Q6 = (C-A)(E+F)
Q7 = (B-D)(G+H)

Z =
AE+BG AF+BH

CE+DG CF+DH

AE+BG = Q1+Q4-Q5+Q7

AF+BH = Q3+Q5

CF+DH = Q1+Q3-Q2+Q6

CE+DG = Q2+Q4



Matrix Multiplication:  Strassen’s Algorithm

T (n) = 7 · T (n/2) +O(n2)Running Time:

= O(n2.81)

T (n) = O(nlog2 7)=)



Matrix Multiplication:  Strassen’s Algorithm

Volker Strassen

Strassen’s Algorithm (1969)

Together with Schönhage (in 1971)
did n-bit integer multiplication
in time O(n log n log log n)

Arnold Schönhage



The race for the world record

Improvements since 1969

No improvement for 20 years!

1978:                    by PanO(n2.796)

1979:                    by Bini, Capovani, Romani, LottiO(n2.78)

1981:                    by SchönhageO(n2.522)

1981:                    by RomaniO(n2.517)

1981:                    by Coppersmith, WinogradO(n2.496)

1986:                    by StrassenO(n2.479)

1990:                    by Coppersmith, WinogradO(n2.376)



The race for the world record

No improvement for 20 years!

2010:                    by Andrew Stothers (PhD thesis)O(n2.374)

2011:                    by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)



The race for the world record

Current world record:

2014:                    by François Le GallO(n2.372)

2011:                    by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)



Enormous Open Problem

Is there an             time algorithm
for matrix multiplication ??? 

O(n2)


