
February 16th, 2017

15-251
Great Theoretical Ideas in Computer Science

Lecture 10:
Power of Algorithms

Computable cousins of uncomputable problems

Halting Problem with Time Bound

Input: Description of a TM M, an input x, a number k

Question: Does M(x) halt in at most k steps?

Halting Problem

Input: Description of a TM M and an input x

Question: Does M(x) halt?

This is undecidable.

This is decidable. (Simulate for k steps)

Computable cousins of uncomputable problems

Theorem Proving Problem

Input: A FOL statement (a mathematical statement)

Question: Is the statement provable?

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k

Question: Is the statement provable
 using at most k symbols?

This is undecidable.

This is decidable. (Brute-force search)

Kurt Friedrich Gödel (1906-1978)

Logician, mathematician, philosopher.

Considered to be one of the most
important logicians in history.

Incompleteness Theorems.

Completeness Theorem.

John von Neumann (1903-1957)

- Mathematical formulation of
quantum mechanics

- Founded the field of game theory
in mathematics.

- Created some of the first
general-purpose computers.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann

Theorem Proving Problem with a Bound

Input: A FOL statement (a mathematical statement), k

Question: Is the statement provable
 using at most k symbols?

This is decidable. (Brute-force search)

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann

= the number of steps required for input (F, n)

(a worst-case notion of
 running time)

Question: How fast does grow
 for an optimal machine?

'(n)

 (F, n)

'(n) = max

F
 (F, n)

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Gödel’s letter to von Neumann (1956)

One can obviously easily construct a Turing machine, which for
every formula F in first order predicate logic and every natural
number n, allows one to decide if there is a proof of F of length n
(length = number of symbols). Let ψ(F,n) be the number of steps the
machine requires for this and let φ(n) = maxF ψ(F,n). The question
is how fast φ(n) grows for an optimal machine. One can show that
φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even
∼ k ⋅ n2), this would have consequences of the greatest importance.
Namely, it would obviously mean that in spite of the undecidability
of the Entscheidungsproblem, the mental work of a mathematician
concerning Yes-or-No questions could be completely replaced by a
machine. After all, one would simply have to choose the natural
number n so large that when the machine does not deliver a result, it
makes no sense to think more about the problem. Now it seems to
me, however, to be completely within the realm of possibility that
φ(n) grows that slowly.

Goals for the week

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction

Algorithms with integer inputs

Poll

What is the running time as a function of input length?

- logarithmic

- linear

- log-linear

- quadratic

- exponential

- beats me

Poll Answer

n = 2log2 n = 2len(n) exponential in
input length

iterations: ~ ~ n

Algorithms with number inputs

3618502788666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
6501310964926475205090003984176122058711164567946559044971683604424076996342
7183046544798021168297013490774140090476348290671822743961203698142307099664
3455133414637616824423860107889741058131271306226214208636008224651510961018
9789006815067664901594246966730927620844732714004599013904409378141724958467
7228950143608277369974692883195684314361862929679227167524851316077587207648
7845058367231603173079817471417519051357029671991152963580412838184841733782

Algorithms on numbers involve BIG numbers.

This is actually still small. Imagine having millions of digits.

Algorithms with number inputs
5693030020523999993479642904621911725098567020556258102766251487234031094429 B =

B ⇡ 5.7⇥ 1075 (5.7 quattorvigintillion)

5693030020523999993479642904621911725098567020556258102766251487234031094429 B =For

len(B) = 251

Definition: len(B) = # bits to write B

⇡ log2 Bn

Algorithms with number inputs

for A = 2, 3, 4, 5, …
 test if B mod A = 0.

B =

It turns out:
68452332409801603635385895997250919383

83167801886452917478124266362673045163

x

Each factor ~ age of the universe in Planck time.~

Worst case: iterations.
p
B

exponential in
input length

p
B =

p
2log2 B =

p
2len(B) = 2len(B)/2

5693030020523999993479642904621911725098567020556258102766251487234031094429

Goal: find one (non-trivial) factor of

B =

B

Recall our model

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+ , - , / , *, <, >, etc. takes 1 stepe.g. 245*12894

memory access takes 1 stepe.g. A[94]

Unless specified otherwise, we will use this model.

Actually:
We’ll assume arithmetic operations take 1 step
if the numbers are bounded by a polynomial in n.

Example

def double(B):
 return B+B

arithmetic
operation

Are the numbers involved bounded by poly(n)?

What is the running-time of this algorithm?

Integer Addition

def sum(A, B):
 for i from 1 to B do:
 A += 1
 return A

What is the running-time of this algorithm?

Integer Addition

36185027886661311069865932815214971104
65743021169260358536775932020762686101

101928049055921669606641864835977657205
+

A
B

C

steps to produce is C O(n)

Integer Multiplication
36185027886661311069865932815214971104

5932020762686101
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504

A

B

C

steps: O(len(A) · len(B)) = O(n2)

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ?

What algorithm does Python use?

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

Use recursion!

= ac · 10n + (ad+ bc) · 10n/2 + bd

Integer Multiplication

5 6 7 8

1 2 3 4

x =

y =

a b

c d

x · y =

x = a · 10n/2 + b

y = c · 10n/2 + d

(a · 10n/2 + b) · (c · 10n/2 + d)

- Recursively compute ac, ad, bc, and bd.

= ac · 10n + (ad+ bc) · 10n/2 + bd

- Do the multiplications by 10n and 10n/2

- Do the additions.

T (n) = 4T (n/2) +O(n)

O(n)

O(n)

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2 n/2

n/2 n/2

n/4 n/4 n/4 n/4

n/4 n/4 n/4 n/4

2

distinct nodes at level j:

work done per node at level j:

4j

c(n/2j)

levels: Total cost:
log2 n

log2 nX

j=0

cn2j 2 O(n2)

per level
cn2j

Integer Multiplication

x · y = (a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

Hmm, we don’t really care about ad and bc.
We just care about their sum.

Maybe we can get away with 3 recursive calls.

Integer Multiplication

x · y = (a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + (ad+ bc) · 10n/2 + bd

(a+ b)(c+ d) = ac+ ad+ bc+ bd

T (n) 3T (n/2) +O(n) Is this better??

- Recursively compute ac, bd, (a+b)(c+d).

- ad + bc = (a+b)(c+d) - ac - bd

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

distinct nodes at level j:

work done per node at level j: c(n/2j)

levels: Total cost:
log2 n

3j

log2 nX

j=0

cn(3j/2j)

per level
cn(3j/2j)

Integer Multiplication

n

n/2 n/2

Level
0

1

n

n/2 n/2
n/2

n/2

n/4 n/4 n/4

n/4 n/4 n/4

2

Total cost:
log2 nX

j=0

cn(3j/2j)

2 O(nlog2 3)

 Cn(3log2 n/2log2 n)

= C3log2 n

= Cnlog2 3

Karatsuba Algorithm

Integer Multiplication

You might think:
Probably this is the best, what else can you really do ?

A good algorithm designer always thinks:

How can we do better ?

Cut the integer into 3 parts of length n/3 each.

Replace 9 multiplications with only 5.

T (n) 5T (n/3) +O(n)

T (n) 2 O(nlog3 5)

Can do for any T (n) 2 O(n1+✏) ✏ > 0.

Integer Multiplication

Fastest known: n(log n)2O(log

⇤ n) Martin Fürer
(2007)

Matrix Multiplication

x =X Y Zn

n

Input: 2 n x n matrices X and Y.

Output: The product of X and Y.

(Assume entries are objects we can multiply and add.)

Matrix Multiplication

a b

c d

e f

g h
x =

ae+bg af+bh

ce+dg cf+dh

Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X) (j’th column of Y).
nX

k=1

 = X[i,k] Y[k,j]

Matrix Multiplication

x =X Y Z
i

jj

i

Z[i,j] = (i’th row of X) (j’th column of Y).
nX

k=1

 = X[i,k] Y[k,j]

Algorithm 1: ⇥(n3)

Matrix Multiplication

X Y= =
A B

C D

E F

G H

Z =
AE+BG AF+BH

CE+DG CF+DH

Algorithm 2: recursively compute 8 products
 + do the additions. ⇥(n3)

Matrix Multiplication: Strassen’s Algorithm

Can reduce the number of products to 7.

Q1 = (A+D)(E+G)
Q2 = (C+D)E
Q3 = A(F-H)
Q4 = D(G-E)
Q5 = (A+B)H
Q6 = (C-A)(E+F)
Q7 = (B-D)(G+H)

Z =
AE+BG AF+BH

CE+DG CF+DH

AE+BG = Q1+Q4-Q5+Q7

AF+BH = Q3+Q5

CF+DH = Q1+Q3-Q2+Q6

CE+DG = Q2+Q4

Matrix Multiplication: Strassen’s Algorithm

T (n) = 7 · T (n/2) +O(n2)Running Time:

= O(n2.81)

T (n) = O(nlog2 7)=)

Matrix Multiplication: Strassen’s Algorithm

Volker Strassen

Strassen’s Algorithm (1969)

Together with Schönhage (in 1971)
did n-bit integer multiplication
in time O(n log n log log n)

Arnold Schönhage

The race for the world record

Improvements since 1969

No improvement for 20 years!

1978: by PanO(n2.796)

1979: by Bini, Capovani, Romani, LottiO(n2.78)

1981: by SchönhageO(n2.522)

1981: by RomaniO(n2.517)

1981: by Coppersmith, WinogradO(n2.496)

1986: by StrassenO(n2.479)

1990: by Coppersmith, WinogradO(n2.376)

The race for the world record

No improvement for 20 years!

2010: by Andrew Stothers (PhD thesis)O(n2.374)

2011: by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)

The race for the world record

Current world record:

2014: by François Le GallO(n2.372)

2011: by Virginia Vassilevska WilliamsO(n2.373)

(CMU PhD, 2008)

Enormous Open Problem

Is there an time algorithm
for matrix multiplication ???

O(n2)

