15-251: Great Theoretical Ideas in Computer Science Lecture 11

Graphs: The Basics

What is

a graph?

What

isn't

a graph?!

Facebook

Vertices = people Edges = friendships

Facebook

Graph is big and changing

1 billion people
[. 240 billion photos
\& 1 trillion connections

World Wide Web

2.2 Link Structure of the Web

W- 1.7 billion edges (links).
ent graph of the crawlable Web has rough
150 million nodes (pages) (intuges) (see rigure 1). we can never know whether we have found all the backlinks of a particular page but if we have downloaded it, we know all of its forward links at that time.

1998 paper on PageRank

Figure 1: A and B are Backlinks of C

Web pages vary greatly in terms of the number of backlinks they have. For example, the Netscape home page has 62,804 backlinks in our current database compared to most pages which have just a few backlinks. Generally, highly linked pages are more "important" than pages with few links. Simple citation counting has been used to speculate on the future winners of the Nobel Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

Vertices $=$ pages \quad Edges $=$ hyperlinks

 ("directed graph")
World Wide Web

2.2 Link Structure of the Web

While estimates vary, the current graph of the crawlable Web has roughly 150 million nodes (pages) and 1.7 billion edges (links). Every page has some number of forward links (outedges) and backlinks (inedges) (see Figure 1). We can never know whether we have found all the backlinks of a particular page but if we have downloaded it, we know all of its forward links at that time.

Figure 1: A and B are Backlinks of C

1998 paper on PageRank

Web pages vary greatly in terms of the number of backlinks they have. For example, the Netscape home page has 62,804 backlinks in our current database compared to most pages which have just a few backlinks. Generally, highly linked pages are more "important" than pages with few links. Simple citation counting has been used to speculate on the future winners of the Nobel Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

Today: Perhaps $n \approx 10^{12}, m \approx 10^{13}$?

Street Maps

Vertices = intersections
Edges = streets

Graphs from images

These are "planar" graphs; drawable with no crossing edges.

Register allocation problem

A compiler encounters:

$$
\begin{aligned}
\text { temp1 } & :=\mathrm{a}+\mathrm{b} \\
\text { temp2 } & :=- \text { temp1 } \\
C & :=\text { temp2+d }
\end{aligned}
$$

6 variables; can it be done with 4 registers?
G. Chaitin (IBM, 1980) breakthrough: Let variables be vertices. Put edge between u and v if they need to be live at same time. The least number of registers needed is the chromatic number of the graph.

Register allocation problem

A compiler encounters:

$$
\begin{aligned}
\text { temp1 } & :=\mathrm{a}+\mathrm{b} \\
\text { temp2 } & :=- \text { temp1 } \\
\mathrm{C} & :=\text { temp2+d }
\end{aligned}
$$

6 variables; can it be done with 4 registers?

(or something like that)

Computer Science Life Lesson:

If your problem has a graph, ().
If your problem doesn't have a graph, try to make it have a graph.

Warning:

The remainder of the lecture is, approximately, 100 definitions.

Definitions

Simple
Undirected
Graphs

Directed
Graphs
"parallel edges"

General
Graphs

Definitions

Simple
Undirected
Graphs

Directed
Graphs

General
Graphs

Definitions

A graph G is a pair (V,E) where: V is the finite set of vertices/nodes; E is the set of edges.

Each edge e $\in E$ is a pair $\{u, v\}$, where $u, v \in V$ are distinct.

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,4\},\{2,4\},\{3,6\},\{4,5\}\}
\end{aligned}
$$

Definitions

$G=(V, E)$ can be drawn like this:

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,2\},\{1,4\},\{2,4\},\{3,6\},\{4,5\}\}
\end{aligned}
$$

Notation

n almost always denotes $|\mathrm{V}|$

m almost always denotes |E|

Edge cases (haha)

Question:

Can we have a graph with no edges $(\mathrm{m}=0)$?

Answer:
Yes! For example,

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\emptyset
\end{aligned}
$$

(-

© ©

Called the "empty graph" with n vertices.

Edge cases

Question:

Can we have a graph with no vertices ($\mathrm{n}=0$)?

Answer:
Um...... well.......

IS THE MULL-GRAPH A POTMTLESS CONCEPT?

Frank Harary
University of Michigan and Oxford University

Ronald C. Read
Hnversity of Waterloe

ABSTRACT

The graph with no polnts and no lines is discuseed eriefically. Arguments for and against its official admittance as a graph are presented. This is accompanied by an extensive survey of the literature. Paradoxical properties of the mull-graph are noted. No conclugion is reached.

Edge cases

Question:

Can we have a graph with no vertices ($\mathrm{n}=0$)?

Answer:
It's to convenient to say no. We'll require $\mathrm{V} \neq \emptyset$.

One vertex ($n=1$) definitely allowed though.
Called the "trivial graph".

More terminology

Suppose $e=\{u, v\} \in E$ is an edge.

We say:
u and v are the endpoints of e,
u and v are adjacent,
u and v are incident on e,
u is a neighbor of v,
v is a neighbor of u.

More terminology

For $u \in V$ we define $N(u)=\{v:\{u, v\} \in E\}$, the neighborhood of u.
E.g., in the below graph, $N(y)=\{v, w, z\}$,

$$
\begin{aligned}
& N(z)=\{y\}, \\
& N(x)=\emptyset .
\end{aligned}
$$

The degree of u is $\operatorname{deg}(u)=|N(u)|$.
E.g., $\operatorname{deg}(y)=3, \operatorname{deg}(z)=1, \operatorname{deg}(x)=0$.

Theorem:

Let $G=(V, E)$ be a graph. Then

$\sum_{u \in V} \operatorname{deg}(u)=2|E|$

$$
\begin{aligned}
2+2+0+3+1 & =8 \\
& =2 \cdot 4
\end{aligned}
$$

Theorem:

Let $G=(V, E)$ be a graph. Then

$$
\begin{aligned}
2+2+0+3+1 & =8 \\
& =2 \cdot 4
\end{aligned}
$$

Remark: Classic "double counting" proof.

Proof of
 $\operatorname{deg}(u)=: 2|E|$

Tell each vertex to put a "token" on each edge it's incident to.
Vertex u places deg(u) tokens. So one hand,

$$
\text { total number of tokens }=\quad \sum_{u \in V} \operatorname{deg}(u)
$$

On the other hand, each edge ends up with exactly 2 tokens, so total number of tokens $=2 \mid$ ㅌ. .

Therefore $\quad \sum_{u \in V} \operatorname{deg}(u)=2|E|$

Poll:

In an n-vertex graph, what values can m be?
(I.e., what are possibilities for the number of edges?)

$$
\begin{aligned}
m & =1 \\
m & =n \\
m & =n^{1.5} \\
m & =n^{2} \\
m & =n^{3}
\end{aligned}
$$

Poll:

In an n-vertex graph, what values can m be?
(I.e., what are possibilities for the number of edges?)

$$
\begin{aligned}
m & =1 \\
m & =n \\
m & =n^{1.5}
\end{aligned}
$$

Question:

In an n-vertex graph, how large can m be?
(That is, what is the max number of edges?)
Answer: $\binom{n}{2}=\frac{n(n-1)}{2}=\frac{1}{2} n^{2}-\frac{1}{2} n=O\left(n^{2}\right)$
E.g.: $n=5, m=\binom{5}{2}=10$.

Called the complete graph on n vertices. Notation: K_{n}

A bogus "definition"

$$
\begin{aligned}
& \text { If } m=O(n) \text { we say } G \text { is "sparse". } \\
& \text { If } m=\Omega\left(n^{2}\right) \text { we say } G \text { is "dense". }
\end{aligned}
$$

This does not actually make sense.

$$
\begin{aligned}
& \text { E.g., if } n=100, m=1000 \text {, is it } \\
& \text { sparse or dense? Or neither? }
\end{aligned}
$$

It does make sense if one has a sequence or family of graphs.

Anyway, it's handy informal terminology.

Let's go back to talking about K_{n}.

In K_{n}, every vertex has the same degree.

This is called being a regular graph.
We say G is d-regular if all nodes have degree d.

For example: K_{n} is ($n-1$)-regular; the empty graph is 0-regular.

What about d-regular for other d?

1-regular graphs

Possible if and only if |V| is even.
Such a graph is called a perfect matching.

2-regular graphs

2-regular graph is a disjoint collection of cycles.

3-regular graphs

There are lots and lots of possibilities.

A little about "directed graphs"

First, they have a "celebrity couple"-style nickname, a la:

"Brangelina"
"Kimye

A little about "directed graphs"

"Digraph"

Now an edge is an ordered pair, e = (u,v).
$G=(V, E)$, where:
$V=\{p, q, r, s, t\}$
$E=\{(p, q),(p, r),(q, r)$,
$(r, s),(s, t),(t, s)\}$

these are distinct edges

A little about "directed graphs"

Now there's out-degree and in-degree

$$
\operatorname{deg}_{\text {out }}(u)=|\{v:(u, v) \in E\}|
$$

$$
\operatorname{deg}_{\mathrm{in}}(\mathrm{u})=|\{\mathrm{v}:(\mathrm{v}, \mathrm{u}) \in E\}|
$$

E.g.:
$\operatorname{deg}_{\text {out }}(p)=2$
$\operatorname{deg}_{\text {in }}(p)=0$
$\operatorname{deg}_{\text {in }}(\mathrm{s})=2$

Storing graphs on a computer

Two traditional methods:

Adjacency Matrix Adjacency List

For both, assume $V=\{1,2, \ldots, n\}$.

Our example graph:

Adjacency Matrix

Adjacency matrix A is $\mathrm{n} \times \mathrm{n}$ array.
$A[i, j]= \begin{cases}1 & \text { if } i, j \text { are adjacent } \\ 0 & \text { if } i, j \text { not adjacent }\end{cases}$
For digraphs, put 1 iff $i \rightarrow j$ is an edge.

For general graphs, put \# edges $i \rightarrow j$.

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Adjacency Matrix

Pros:

Extremely simple.
O(1) time lookup for whether edge is present/absent.
Can apply linear algebra to graph theory...

Cons:

Always uses n^{2} space (memory).
Very wasteful for "sparse" graphs ($m \ll n^{2}$).
Takes $\Omega(\mathrm{n})$ time to enumerate neighbors of a vertex.

Adjacency List

A length-n array Adj, where Adjij] stores a pointer to a list of i's neighbors.

Adjacency List

Pros:

Space-efficient. Memory usage is...
$\mathrm{O}(\mathrm{n})+\mathrm{O}(\mathrm{m})$
Efficient to run through neighbors of vertex u: O(deg(u)) time.

Cons:

Single edge lookup can be slow:
To check if (u, v) is an edge, may take $\Omega(\operatorname{deg}(\mathrm{u})$) time, which could be $\Omega(\mathrm{n})$ time.

Storing graphs on a computer

Any other possibilities? Sure!

Adjacency matrix and list were good enough for your grandparents.

But you could do something new and fresh. Maybe add in a hash table to your adj. list.

Time for more definitions! Yay!

Let's talk about connectedness.

Here's a graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7\} \\
& E=\{\{1,3\},\{1,7\},\{2,4\},\{2,6\}, \\
& \\
& \quad\{3,5\},\{3,7\},\{4,6\},\{5,7\}\}
\end{aligned}
$$

Notice anything peculiar about it?

This graph is not connected.

Terminology

A graph $G=(V, E)$ is connected if $\forall u, v \in V$, v is reachable from u.

Vertex v is reachable from u if there is a path from u to v.

That's correct, but let's say instead: "if there is a walk from u to v ".

Terminology

A walk in G is a sequence of vertices

$$
\left.v_{0}, v_{1}, v_{2}, \ldots, v_{n} \quad \text { (with } n \geq 0\right)
$$

such that $\left\{\mathrm{v}_{\mathrm{t}-1}, \mathrm{v}_{\mathrm{t}}\right\} \in E$ for all $1 \leq \mathrm{t} \leq \mathrm{n}$.

We say it is a walk from v_{0} to v_{n}, and its length is n.

Example:

(p, q, s, r, p, r, s, t) is a walk from p to t of length 7.

Terminology

A walk in G is a sequence of vertices
$\mathrm{V}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \quad$ (with $\mathrm{n} \geq 0$)
such that $\left\{\mathrm{v}_{\mathrm{t}-1}, \mathrm{v}_{\mathrm{t}}\right\} \in E$ for all $1 \leq \mathrm{t} \leq \mathrm{n}$.

Question:

Is vertex u reachable from u?

Answer:
Yes.
Walks of length 0 are allowed.

Terminology

A path in G is a walk with no repeated vertices.

Fact:

There is a walk from u to v
iff there is a path from u to v.
Because you can always "shortcut" any repeated vertices in a walk.

Example:

walk (p, q, s, r, p, r, s, t) "shortcuts" to path (p, q, s, t).

Terminology

A path in G is a walk with no repeated vertices.

If v is reachable from u, we define the distance from u to $\mathbf{v ,} \quad \operatorname{dist}(\mathrm{u}, \mathrm{v})$, to be the length of the shortest path from u to v.

Examples:

$\operatorname{dist}(p, r)=1, \operatorname{dist}(p, s)=2$,
$\operatorname{dist}(p, t)=3, \operatorname{dist}(p, p)=0$.

Terminology

A path in G is a walk with no repeated vertices.

A cycle is a walk (of length at least 3) from u to u with no repeated vertices (except for beginning/ending with u).

Example:

(p, r, s, q, p) is a cycle of length 4.

This 5-vertex graph is connected.

This 11-vertex graph is not connected.
It has 3 connected components:

$$
\{p, q, r, s, t\}, \quad\{u, v\},\{w, x, y, z\}
$$

Claim:

"is reachable from" is an equivalence relation
Proof:

- $\quad u$ is reachable from u ?
\checkmark
- u reachable from v
$\Leftrightarrow \quad v$ reachable from $u ?$
- u is reachable from v,
v is reachable from w $\Rightarrow u$ is reachable from $w ?$

Connected components are the equivalence classes.

A little more about digraphs

In a digraph, walks have to "follow the arrows".

Given this, the reachable/walk/path/cycle stuff is all the same, except......
u reachable from v
\Rightarrow v reachable from u
G is strongly connected iff $\forall u, v \in V$, u is reachable from v.

Challenge:

Make an n-vertex graph connected using as few edges as possible.

CHALLENGE CONSIIERED

$\mathrm{n}=1$
$\mathrm{n}=2$

$$
m=1
$$

necessary
and sufficient

$$
m=2
$$

necessary
and sufficient

$\mathrm{n}=1$
$\mathrm{n}=2$

Done

$$
\mathrm{m}=0
$$

$$
m=1
$$

necessary
and sufficient

$$
m=2
$$

necessary
and sufficient

$$
n=4
$$

$$
m=3
$$

necessary and sufficient

$\mathrm{n}-1$ edges are always sufficient

 to connect an n-vertex graph
"path graph"

$\mathrm{n}-1$ edges are also necessary

to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma:

Let G be a graph with k connected components.
Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then G' has either k or k-1 connected components.

Lemma:

Let G be a graph with k connected components.
Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then G' has either k or k-1 connected components.

Example G with $\mathrm{k}=3$ components:

Case 1: u, v in different components

Then we go down to k-1 components.

Lemma:

Let G be a graph with k connected components.
Let G ' be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then G' has either k or k-1 connected components.

Case 2: u,v in same component

Still have k components.

Bonus observation:

Adding $\{u, v\}$ creates a cycle, since u,v were already connected.

Lemma:

Let G be a graph with k connected components.
Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then G^{\prime} has either k or k-1 connected components.

Case 1: u, v in different components

No cycle created, since it would have to involve
u \& v, but they weren't previously connected.

Lemma:

Let G be a graph with k connected components.
Let G^{\prime} be formed by adding an edge between $\mathrm{u}, \mathrm{v} \in \mathrm{V}$.
Then either:
a cycle was created, and G' has k components;
or no cycle was created, and G' has k-1 components.

Lemma: Let G be a graph with k connected components.
Let G ' be formed by adding an edge between $u, v \in \mathrm{~V}$.
Then either: a cycle was created, and G' has k components; or no cycle was created, and G ' has $\mathrm{k}-1$ components.

Theorem:

A connected n-vertex graph G has $\geq \mathrm{n}-1$ edges.
Proof: Imagine adding in G's edges one by one. Initially, n connected components.
Each edge can decrease \# components by ≤ 1. Have to get down to 1 . Hence $\geq \mathrm{n}-1$ edges.

Bonus:

G has exactly $\mathrm{n}-1$ edges iff it's acyclic (has no cycles).
Such a graph is called a tree.

Trees

Example trees with $\mathrm{n}=9$ vertices.

$0-0-0-0-0-0-0-0$

Definition/Theorem:
An n-vertex tree is any graph with at least 2 of the following 3 properties: connected; n-1 edges; acyclic. It will also automatically have the third.

Tree definitions

Leaf:
Vertex of degree 1.

Tree definitions

Leaf:

Vertex of degree 1.

Internal node:
Vertex of degree > 1 .

Tree definitions

Leaf:
Vertex of degree 1.

Internal node:
Vertex of degree > 1 .

Rooted tree:

Tree with any one vertex designated as "root".
Always drawn with root on top, rest of tree "hanging down" from it.

Tree definitions

For rooted trees, we use "family tree" terminology: parent, child, sibling, ancestor, descendant, etc.

Rooted tree:

Tree with any one vertex designated as "root".
Always drawn with root on top, rest of tree "hanging down" from it.

Tree definitions

For rooted trees, we use "family tree" terminology: parent, child, sibling, ancestor, descendant, etc.

Binary tree:

Rooted tree where each node has at most two children.

Study Guide

Definitions:

Seriously, there were about 100 of them.

Theorems:
Sum of degrees $=2 \mid$ ㅌ․
The Theorem/Definition of trees.

