15-251: Great Theoretical Ideas in Computer Science
Lecture 11

Graphs: The Basics










Facebook

Vertices = people Edges = friendships



Facebook

# vertices n = 102 # edges m = 1012



World Wide Web

2.2 Link Structure of the Web

Wisi i rent graph of the crawlable Web has roughl 150 million nodes (pages
1.7 billion edges (links). r i

(ir1eere s . aon o} T km W W hothm we hau fnund all ﬂu bad\lmka nf a paltlculal

page but 1f we have dc W nlcndc'd it, we know all of its forward links at that time.

1998 paper
on PageRank

Figure 1: A and B are Backlinks of C

Web pages vary gr 7 in terms of the number of backlinks they have. For example, the
Netscape home page h 804 backlinks in our current database compared to most pages which
have just a few backlinks. Generally, highly linked pages are more “important” than pages

r links. Simple citation counting has been used to speculate on the future winners of the Nobel

Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

Vertices = pages Edges = hyperlinks
(“directed graph”)



World Wide Web

2.2 Link Structure of the Web

While estimates vary, the current graph of the crawlable W
and 1.7 billion edges (links). Ever ge has some number of forward links (outedges) and backlinks
(inedges) (see Figure 1). We can never know whether we have found all the backlinks of a particular
page but if we have downloaded it, we know all of its forward links at that time.

has roughly 150 million nodes (pages)

1998 paper
Figure 1: A and B are Backlinks of C O n P ag e R an k

Web pages vary gr 7 in terms of the number of backlinks they have.
Netscape home p

For example, the
{ 804 backlinks in our current database compared to most pages which
have just a few backlinks. Generally, highly linked pages are more “important” than pages

'w links. Simple citation counting has been used to speculate on the future winners of the Nobel
Prize [San95]. PageRank provides a more sophisticated method for doing citation counting.

Today: Perhaps n=101% m=1013 2
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Graphs from images

planar’ graphs;

drawable with no crossing edges.

These are



Register allocation problem

A compiler encounters: templ := a+tb
tempZ2 := —templ
c := temp2+d

6 variables; can it be done with 4 registers?

G. Chaitin (IBM, 1980) breakthrough:
Let variables be vertices. Put edge between
u and v if they need to be live at same time.
The least number of registers needed is the
chromatic number of the graph.



Register allocation problem

A compiler encounters: templ := a+tb
tempZ2 := —templ
c := temp2+d

6 variables; can it be done with 4 registers?

(or something like that)



Computer Science Life Lesson:

If your problem has a graph, ©.

If your problem doesn’t have a graph,
try to make it have a graph.




Warning:

The remainder of the lecture Is,
approximately, 100 definitions.



Definitions

“parallel edges”

) S
. 2 9’9

4 4
Simple
Undirected Directed General
Graphs Graphs Graphs

(AKA annoying graphs)



Definitions
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Definitions

A graph G is a pair (V,E) where:
V is the finite set of vertices/nodes;
E Is the set of edges.

Each edge e€E Is a pair {u,v},
where u,veV are distinct.

Example:
V={1,2,3,4,5,6}
E={{1.2},{1,4}, {2,4}, {3,6}, 14,5} }



Definitions

(L
G = (V,E) can be ’9
drawn like this: (4
(6

Example: (5)
V={1,2,3,4,5,6}
E={{1.2}, {1,4}, {2,4}, {3,6}, {4,5} }



Notation

1 almost always denotes |V|

11 almost always denotes |E|



Edge cases (haha)

Question:
Can we have a graph with no edges (m=0)?

Answer: @
Yes! For example, @ @
V={1,2,3,4,5,6} @
E=g e ©

Called the “empty graph” with n vertices.



Edge cases

Question:
Can we have a graph with novertices (n=0)?

ANnswer:
Um...... well......



J5 THE WULL-GRAPH A POINTLESS CONWCEFT?

Frank Harary
niversity of Michigan
and Oxford Universicy

Bonald C. Read
University of Waterloe

ABSTRACT

The graph with no points and mo linee is discussed ericically. Arguments

for and against its official sdmittance as a graph are presented. This is

accompanied by an extensive survey of the literature. Paradoxical properties

of the null-graph are noted. No conclusion is reached.



Edge cases

Question:
Can we have a graph with novertices (n=0)?

Answer:
It's to convenient to say no.
We’'ll require V # Q.

One vertex (n = 1) definitely allowed though.
Called the “trivial graph”.

®



More terminology

Suppose e ={u,v} € E Is an edge.

We say:.
u and v are the endpoints of e,
u and v are adjacent,
u and v are incident on e,
uis a neighbor of v,
VIS a neighbor of u.




More terminology

For u € V we define N(u) = {v : {u,v}€E},

the neighborhood of u.

E.qg., In the below graph, N(y) = {v,w,z},
N(z) = {y},

® N(X) = @.

The degree of U Is
deg(u) = [N(u)].

E.g., deg(y)=3, deg(z) = 1, deg(x) = 0.



Theorem:
Let G = (V,E) be a graph. Then Zdeg(u).: 2|E]

ueV

2

2+2+0+3+1 =8
= 2.4

4




Theorem:
Let G = (V,E) be a graph. Then Zdeg(u).: 2|E]

ueV

2+2+0+3+1 =8
= 2.4

4

Remark: Classic “double counting” proof.



Proof of Z deg(u) =:2|E|

uevVv

Tell each vertex to put a “token” on each edge it's incident to.
Vertex u places deg(u) tokens. So one hand,

total number of tokens = Z deg(u)

On the other hand, each edge ends up with exactly 2 tokens, so

total number of tokens = 2|E|.

Therefore Z deg(u) = 2|E|

ueV



Poll:
In an n-vertex graph, what values can m be?
(I.e., what are possibilities for the number of edges?)

m=1
m=n
m:n1.5
m = n?

m =n3



Poll:
In an n-vertex graph, what values can m be?
(I.e., what are possibilities for the number of edges?)

m=1
m=n

m = n1.5



Question:
In an n-vertex graph, how large can m be?
(That is, what Is the max number of edges?)

— 1 1 1
;) _ n(n ): _nZ_En - O(n?)

2 2
5
E.g.. n=5m :(2): 10.

Called the complete graph
on n vertices. Notation: K,

Answer: (




A bogus “definition”
If m=0O(n) we say G is “sparse”.
If m = Q(n?) we say G is “dense”.

This does not actually make sense.
E.g., iIf n =100, m = 1000, Is It
sparse or dense? Or neither?

It does make sense If one has a
sequence or family of graphs.

Anyway, it's handy informal terminology.



Let's go back to talking about K.

In K,,, every vertex has the same degree.

This is called being a regular graph.

We say G Is d-regular if all nodes have degree d.

For example: K, Is (n—1)-regular;
the empty graph is O-reqgular.

What about d-regular for other d?



1-regular graphs

Possible if and only if |V] Is even.

Such a graph is called a perfect matching.



2-regular graphs

Called a 5-cycle

3) »

/”

Called a 3-cycle

2-regular graph is a disjoint collection of cycles.



3-regular graphs

There are lots and lots of possibilities.




A little about “directed graphs”

First, they have a “celebrity couple®-style
nickname, a la:

“Brangelina”



A little about “directed graphs”

Now an edge Is an
ordered pair, e = (u,v).

— G =(V,E), where:

V ={p,q,r,s,t}
- ) E={ (p,d), (p.n, (a,n,
Digraph (r.s), (5.9, (t.S) }

|_'_’

these are
distinct edges



A little about “directed graphs”

Now there’s out-degree
and in-degree

degou(U) = [{v : (uV)EEY

deg;(u) = {v : (v,u)eE}|

E.g. deg,i(p) = 2 deg,,i(s) =1
deg,(p) =0 deg, (s) =2



Storing graphs on a computer

Two traditional methods:

Adjacency Matrix

Adjacency List

For both, assume V ={1, 2, ..., n}.

Our example graph:




Adjacency Matrix

Adjacency matrix A is nxXn array. For digraphs, put 1

r Iff i—] is an edge.

1 ifi, jare adjacent
For general graphs,

All ] =+ et :
1] 0 ifi, jnotadjacent “7 4 edgesioj




Adjacency Matrix

Pros:

Extremely simple.
O(1) time lookup for whether edge is present/absent.

Can apply linear algebra to graph theory...

cons:

Always uses n? space (memory).
Very wasteful for “sparse” graphs (m <« n?).

Takes Q(n) time to enumerate neighbors of a vertex.



Adjacency List

A length-n array Adj, where Adj[i] stores a
pointer to a list of I's neighbors.

Adj =




Adjacency List

Pros:

Space-efficient. Memory usage is... O(n) + O(m)

Efficient to run through neighbors of vertex u:
O(deg(u)) time.

cons:

Single edge lookup can be slow:
To check if (u,v) Is an edge, may take Q(deg(u))
time, which could be Q(n) time.



Storing graphs on a computer

Any other possibilities? Sure!

Adjacency matrix and list
were good enough
for your grandparents.

But you could do something
new and fresh. Maybe add in
a hash table to your adj. list.




Time for more definitions! Yay!

Let’s talk about connectedness.



Here's a graph G = (V,E):
Vv ={1,2,3,45,6,7}
E={{1.3}{1,7}, {2,4}, {2,6},
{3,5}, {3,7}, 4.6}, {5, 7} }

Notice anything peculiar about it?

This graph is not connected.



Terminology

A graph G = (V,E) is connected If
vV uveyvV, visreachable from u.

Vertex v is reachable from u If
there is a path from u to v.

That’s correct, but let’'s say instead:
“if there is a walk from u to v”.




Terminology

Awalk in G Is a sequence of vertices

Vo, Vl’ V2, nnn - \Y (Wlth nz2 O)

n
such that {v;_q, vi;)€E forall 1 <t < n.

We say it is a walk from v, to v,
and its length is n.

Example:

(p,qg,s, np, s, t)isa
walk from p to t of length 7.




Terminology

Awalk in G Is a sequence of vertices
Vo, Vl’ V2, noo oy Vn (Wlth n = O)

such that {v;_q, vi;)€E forall 1 <t < n.

Question:
Is vertex u reachable from u?

Answer:
Yes.
Walks of length O are allowed.



Terminology

A path in G Is a walk with no repeated vertices.

Fact:
There iIs a walk from u to v
Iff there Is a path from u to v.

Because you can always “shortcut”
any repeated vertices in a walk.

Example:
walk (p, g, s, r, p, I, S, t) “shortcuts”
to path (p, g, s, t).




Terminology

A path in G Is a walk with no repeated vertices.

If v is reachable from u, we define the
distance from u to v, dist(u,v),

to be the length of the shortest path
from u to v.

Examples:
dist(p,r) = 1, dist(p,s) = 2,
dist(p,t) = 3, dist(p,p)= 0.




Terminology

A path in G Is a walk with no repeated vertices.

A cycle is a walk (of length at least 3)
from u to u with no repeated vertices
(except for beginning/ending with u).

Example:
(p,r,s,d,p) Is a cycle of length 4.




This 5-vertex graph is connected.



§ &

This 11-vertex graph is not connected.

It has 3 connected components:
{p.q,r,s,t}, {u,v}, {wX.)y,z}



Claim:
“Is reachable from” is an equivalence relation

Proof:
. u IS reachable from u? v
. u reachable from v
< v reachable from u? v
. u IS reachable from v,

V IS reachable from w
= ulis reachable fromw?

Connected components are the equivalence classes.



A little more about digraphs

J

In a digraph, walks have to “follow the arrows”.

Given this, the reachable/walk/path/cycle stuff
Is all the same, except......

U reachable from v

;é v reachable from u

G Is strongly connected Iff
VY Uu,veEV, U Is reachable from v.




Challenge:

Make an n-vertex graph connected
using as few edges as possible.

CHALLENGE CONSIDERED




n=1 n=>2 n=3

Done m=1
m=0 necessary m=2
and sufficient necessary

and sufficient

RN



n=1 1=

Done m=1
m=20 necessary
and sufficient

0P XS

n=3
m=2
necessary

and sufficient

m=3
necessary
and sufficient



n—1 edges are always sufficient
to connect an n-vertex graph

“star graph”

“something
else”

“path graph”

On0n0,0,0,0,0,0,0,



n—1 edges are also necessary
to connect an n-vertex graph

To prove this, we will use a lemma.

Lemma;

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,veV.
Then G' has either k or k—1 connected components.




Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,veV.
Then G' has either k or k-1 connected components.

Example G with k=3
components:

Case 1: u,v In different
components

Then we go down to
k-1 components.



Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,veV.
Then G' has either k or k-1 connected components.

Case 2: u,viIn same
component

Still have k components.

Bonus observation:
Adding {u,v} creates a cycle,

since u,v were already connected.



Lemma:

Let G be a graph with k connected components.

Let G' be formed by adding an edge between u,veV.
Then G' has either k or k-1 connected components.

Case 1: u,v In different
components

No cycle created, since
It would have to involve
u & v, but they weren't
previously connected.



Lemma:

Let G be a graph with k connected components.
Let G' be formed by adding an edge between u,veV.

Then either:
a cycle was created, and G' has k components;

or no cycle was created, and G' has k—1 components.




Lemma: Let G be agraph with k connected components.
Let G' be formed by adding an edge between u,veV.

Then either: a cycle was created, and G' has k components;
or no cycle was created, and G' has k-1 components.

Theorem:
A connected n-vertex graph G has = n—-1 edges.

Proof: Imagine adding in G’s edges one by one.
Initially, n connected components.
Each edge can decrease # components by < 1.
Have to get down to 1. Hence = n—1 edges. .

Bonus:
G has exactly n—1 edges iff it's acyclic (has no cycles).
Such a graph is called a tree.



Trees

Example trees with n = 9 vertices.

o 000000000

Definition/Theorem:
An n-vertex tree is any graph with
at least 2 of the following 3 properties:
connected; n—-1 edges; acyclic.
It will also automatically have the third.



Tree definitions

| eaf: .
Vertex of degree 1. (2)—(3)—(4) 6 (6)

Z 6
&)



Tree definitions

| eaf: v
Vertex of degree 1. (2)—(3)—(4) 6 (6)

Internal node: @ 8)
Vertex of degree > 1.

&)



Tree definitions

| eaf: v
Vertex of degree 1. (2)—(3)—(4) 6 (6)

Internal node: @ 8)
Vertex of degree > 1.

Rooted tree: O
Tree with any one vertex designated as “root”.

Always drawn with root on top,
rest of tree "hanging down” from it.



Tree definitions

For rooted trees, we use
“family tree” terminology:
parent, child, sibling,
ancestor, descendant, etc.

Rooted tree:
Tree with any one vertex designated as “root”.

Always drawn with root on top,
rest of tree "hanging down” from it.



Tree definitions

For rooted trees, we use
“family tree” terminology:
parent, child, sibling,
ancestor, descendant, etc.

Binary tree:
Rooted tree where each node

has at most two children.



Study Guide Definitions:

Seriously, there were
about 100 of them.

Theorems:

Sum of degrees = 2|E|.

The Theorem/Definition
of trees.




