
15-251: Great Theoretical Ideas in Computer Science

Graph Algorithms

Lecture 12

L.F.O.A.

Lecture Full Of Acronyms

The most basic graph algorithms:

BFS: Breadth-first search

DFS: Depth-first search

AFS: Arbitrary-first search

What problems do these algorithms solve?

Given a graph G = (V,E)…

Graph Search Algorithms

• Check if vertex s can reach vertex t.

• Decide if G is connected.

• Identify connected components of G.

All reduce to:

“Given s∈V, identify all nodes reachable from s.”

(We’ll call this set CONNCOMP(s).)

Algorithm AFS(G,s) does exactly this.

Bonus of AFS(G,s):

Finds a spanning tree of CONNCOMP(s) rooted at s.

Given G = (V,E), a spanning tree is

a tree T = (V,Eʹ) such that Eʹ ⊆ E.

More informally, a minimal set of edges

connecting up all vertices of G.

Bonus of AFS(G,s):

Finds a spanning tree of CONNCOMP(s) rooted at s.

Given G = (V,E), a spanning tree is

a tree T = (V,Eʹ) such that Eʹ ⊆ E.

s y

r p

t v

x

q

u

z w

Bonus of AFS(G,s):

Finds a spanning tree of CONNCOMP(s) rooted at s.

Given G = (V,E), a spanning tree is

a tree T = (V,Eʹ) such that Eʹ ⊆ E.

s y

r p

t v

x

q

u

z w

Bonus of AFS(G,s):

Finds a spanning tree of CONNCOMP(s) rooted at s.

Given G = (V,E), a spanning tree is

a tree T = (V,Eʹ) such that Eʹ ⊆ E.

s y

r p

t v

x

q

u

z w

AFS(G,s): Finding all nodes reachable from s

s y

r p

t v

x

q

u

z w

a

b c

G

“Duh, it’s these ones.”

But it’s not so obvious when the input looks like…

AFS(G,s): Finding all nodes reachable from s

V = { a,b,c,p,q,r,s,t,u,v,w,x,y,z }

E = { {a,b},{a,c},{b,c},{p,q},{p,x},{q,r},

 {q,s},{r,y},{s,u},{s,x},{s,y},{t,u},

 {t,x},{u,v},{v,y},{w,x},{y,z} }

AFS(G,s): Finding all nodes reachable from s

// Has a “bag” data structure holding tiles

// Each tile has a vertex name written on it

Put s into bag

While bag is not empty:

 Pick an Arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

Intent:

 “Marked” vertices should be those reachable from s.

 w in bag means we want to keep exploring from w.

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

1

2 5

6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

1

2 5

6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

6

✓

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

6

✓

1 2

5
7

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

6

✓

1 2

5
7

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5
7

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5

7

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5

7

✓

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5

7

✓

2

3 6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5

7

✓

2

3 6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

1 2

5

✓

2

3 6

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

2

5

✓

2

3 6

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

2

5

✓

2

3 6

1

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

1

5 6 7 8

2 3 4 G:

s = 1

✓

2 5

✓

2

5

✓

2

3 6

et cetera

Want to show:

Analysis of AFS

When this algorithm halts,

{ marked vertices }

=

.{ vertices reachable from s }.

{ marked } ⊆ { reachable }: This is clear.

{ reachable } ⊆ { marked }:

Wait, why does the algorithm even halt?!

Why does AFS halt?

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

Every time a bunch of tiles is added to bag,

 it’s because some vertex v just got marked.

♦ we add at most |V| bunches of tiles to the bag

 (since each vertex is marked ≤ 1 time).

♦ at most finitely many

tiles ever go into the bag.

Each iteration through

 loop removes 1 tile.

♦ AFS halts after finitely

 many iterations.

A more careful analysis

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

Every time a bunch of tiles is added to bag,

 it’s because some vertex v just got marked.

In this case, we add deg(v) tiles to the bag.

Each iteration through

 loop removes 1 tile.

♦ AFS halts after finitely

 many iterations.

♦ total number of tiles that ever enter the bag is

= 2|E| ≤

A more careful analysis

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

Every time a bunch of tiles is added to bag,

 it’s because some vertex v just got marked.

In this case, we add deg(v) tiles to the bag.

Each iteration through

 loop removes 1 tile.

♦ AFS halts after ≤ 2|E|

 many iterations.

♦ total number of tiles that ever enter the bag is

= 2|E| ≤

A more careful analysis

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

Every time a bunch of tiles is added to bag,

 it’s because some vertex v just got marked.

In this case, we add deg(v) tiles to the bag.

Each iteration through

 loop removes 1 tile.

♦ AFS halts after ≤ 2|E|

 many iterations.

♦ total number of tiles that ever enter the bag is

= 2|E| ≤

we forgot about

this line

+1

When a tile w is added to the bag,

it gets there “because of” a neighbor v

that was just marked.

(Except for the initial s .)

Let’s actually record this info on the tile,

writing v→w .

Meaning: “We want to keep exploring from w.

 By the way, we got to w from v.”

(And we’ll write ⊥→s initially.)

AFS(G,s):

Put s into bag

While bag is not empty:

 Pick an Arbitrary tile v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put w into bag

AFS(G,s):

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary tile p→v from bag

 If v is “unmarked”:

 “Mark” v

 For each neighbor w of v:

 Put v→w into bag

AFS(G,s):

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary tile p→v from bag

 If v is “unmarked”:

 “Mark” v and record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

1

5 6 7 8

2 3 4
✓

2 5

2

5

2

3 6 ✓ ✓

AFS(G,s):

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary tile p→v from bag

 If v is “unmarked”:

 “Mark” v and record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

1

5 6 7 8

2 3 4

1→2 1→5

6→2

6→5

7→2

7→3

7→6

✓

⊥

✓ ✓
parent

1

5 6 7 8

2 3 4

1→2 1→5

✓

6→2

6→5
✓

7→2

7→3

7→6

✓

⊥

Suppose the next few tiles pulled are

6→2 , 6→5 , 7→3 .

Then AFS would reach the following state…

6→2 6→5 7→3

parent

1

5 6 7 8

2 3 4

1→2 1→5

7→2

7→6

✓

⊥

Suppose the next few tiles pulled are

6→2 , 6→5 , 7→3 .

Then AFS would reach the following state…

6→2 6→5 7→3

✓

✓ ✓

Then remaining tiles would be pulled & discarded.

parent

p
a
re

n
t

p
a
re

n
t

✓ ✓
parent

AFS(G,s):

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary tile p→v from bag

 If v is “unmarked”:

 “Mark” v and record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

Theorem: Every vertex in CONNCOMP(s) gets marked.

Equivalently: For all vertices y, if there’s a path from

 s to y of length k, then y gets marked.

Proof: By induction on k.

Base case k = 0: Indeed, s gets marked.

Theorem: Every vertex in CONNCOMP(s) gets marked.

Induction step: Suppose it’s true for some k∈ℕ.

Now suppose ∃ a length-(k+1) path from s to some y.

Write it as (s, …, x, y).

By induction, x gets marked.

When x gets marked by the algorithm, x→y goes in bag.

We proved the bag eventually empties.

Thus x→y will come out, and the algorithm will mark y.

So (s, …, x) is a length-k path.

So we’ve proved AFS(G,s) indeed marks CONNCOMP(s).

Corollary: The parent() information recorded by AFS

 encodes a spanning tree of G rooted at s.

From now on, let’s assume CONNCOMP(s) is all of G.

Proof:

It certainly records a bunch of edges.

Each vertex in G, except s, has exactly one parent edge.

Thus there are |V|−1 edges.

Further, it’s clear that for all vertices v,

 parent(parent(···parent(v)···)) must reach s.

♦ all vertices are connected to s, hence to each other.

♦ parent edges form a tree (|V|−1 edges, connected).

Instantiations of AFS

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

1

5 6 7

2 3
(actually implemented

using an array)

(Assume sorted adjacency

list representation.)

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

(actually implemented

using an array)

DFS is cute because many

programming languages

allow recursion, which means

the compiler takes care of

implementing the stack for you!

DFS: Depth-First Search

When the bag is a “stack”.

LIFO: Last-In First-Out.

(actually implemented

using an array)

RecursiveDFS(v)

 if v unmarked

 mark v

 for each w ∈ N(v)

 RecursiveDFS(w)

BFS: Breadth-First Search

When the bag is a “queue”.

FIFO: First-In First-Out.

1

5 6 7

2 3

(usually implemented

using a linked list)

(Assume sorted adjacency

list representation.)

BFS: Breadth-First Search

1

5 6 7

2 3

(Assume sorted adjacency

list representation.)

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

1

5 6 7

2 3

(Assume sorted adjacency

list representation.)

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

1

5 6 7

2 3

(Assume sorted adjacency

list representation.)

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

1

5 6 7

2 3

(Assume sorted adjacency

list representation.)

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

1

5 6 7

2 3

(Assume sorted adjacency

list representation.)

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

BFS bonus property:

 Vertices marked in increasing

 order of distance from s.

BFS(G,s)

 ···

 parent(v) := p

 dist(v) := dist(parent(v))+1

 ···

1

5 6 7

2 3
1 0

1 1

2

2

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS: Breadth-First Search

BFS bonus property:

 Vertices marked in increasing

 order of distance from s.

1

5 6 7

2 3
1 0

1 1

2

2

Exercise: Prove this.

So path from s to any v in

BFS tree is a shortest path.

When the bag is a “queue”.

FIFO: First-In First-Out.

(usually implemented

using a linked list)

BFS & DFS: Running time

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary tile p→v from bag

 If v is “unmarked”:

 “Mark” v and record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

Recall: # of tiles put in bag is ≤ 2|E|+1.

Actually, exactly 2|E|+1, assuming G connected.

Bag operations are O(1) time for stack/queue.

Each tile engenders O(1) work.

♦ Total run-time: O(|E|).

BFS & DFS: Running time

AFS(G,s) just finds the connected component of s.

What if we want to find all connected components?

FullAFS(G):

 For all vertices v:

 If v is unmarked

 AFS(G,v)

Overall run-time: O(|V|+|E|) O(|V|+|E|) (Why?)

We have seen AFS, BFS, DFS

Looks like we’re missing something…

CFS! Cheapest-First Search

The goal of CFS is more ambitious than

just finding connected components.

Its goal is to find a

minimum spanning tree (MST).

Cheapest-First Search

Often in life, each edge of a graph G = (V,E)

will have a real number associated to it.

Weighted Graphs

s

v

k z

t

h

b

8 5
10

2 3

18 16 30 12

4 26

14

Variously called:

 weight

 length

 distance

 or cost.

“Cost function”, c : E → ℝ

Positive values only, unless otherwise specified.

+

The year: 1926

The place: Brno, Moravia

Our hero: Otakar Borůvka

Borůvka’s had a pal called Jindřich Saxel

who worked for Západomoravské elektrárny

(the West Moravian Power Plant company).

Saxel asked him how to figure out the most

efficient way to electrify southwest Moravia.

MST

Svitavy

Vyskov

Kyjov Znojmo

Třebíč

Hustopeče

Brno

MST

Edge exists if it’s feasible to connect

 two towns by power lines.

Edge weights might be distance in km,

 or cost in 1000’s of koruna to install lines.

8 5

10

2 3

18 16

30
12

4 26

14

MST

Minimum Spanning Tree (MST) problem:

Input: A weighted graph G = (V,E),

 with cost function c : E → ℝ+.

Output: Subset of edges of minimum total cost

 such that all vertices connected.

 The edges will form a tree:

If you had a cycle, you could delete any edge

on it and still be connected, but cheaper.

s

v

k z

t

h

b

8 5
10

2 3

18 16 30 12

4 26

14

MST

Example:

In this case, there’s a unique solution,

of cost 5+2+3+12+16+4=42.

MST

Convenient assumption: Edges have distinct costs.

In this case, not hard to show the MST is unique.

Thus we can speak of the MST, not just an MST.

 A hint for the little trick

 that shows this is WLOG:

“Whether [the] distance from

Brno to Břeclav is 50 km

or 50 km and 1 cm

is a matter of conjecture.”

MST via Cheapest-First Search

Often known as Prim’s Algorithm,

due to a 1957 publication by

Robert C. Prim.

Jarník

Actually first discovered by

Vojtěch Jarník, who described it

in a letter to Borůvka, and

published it in 1930.

Borůvka himself had published a

different algorithm in 1926.

MST via Cheapest-First Search

Let s be any vertex

Put ⊥→s into bag

While bag is not empty:

 Pick an Arbitrary edge p→v from bag

 If v is “unmarked”:

 “Mark” v, record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

MST via Cheapest-First Search

Let s be any vertex

Put ⊥→s into bag

While bag is not empty:

 Pick the cheapest edge p→v from bag

 If v is “unmarked”:

 “Mark” v, record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

Unsorted list.

O(|E|) time to scan for cheapest edge.

O(|E|2) total run-time.

JARNÍK-PRIM(G):

 Naive

implementation:

MST via Cheapest-First Search

O(log |E|) time for both bag operations.

O(|E| log |E|) total run-time.

Let s be any vertex

Put ⊥→s into bag

While bag is not empty:

 Pick the cheapest edge p→v from bag

 If v is “unmarked”:

 “Mark” v, record parent(v) := p

 For each neighbor w of v:

 Put v→w into bag

Sophisticated

implementation:

JARNÍK-PRIM(G):

“Priority Queue”.

s

v

k z

t

h

b

8 5
10

2 3

18 16 30 12

4 26

14

Example:

MST via Cheapest-First Search

Effectively: CFS grows a tree from s,

always adding the cheapest edge next.

Theorem: JARNÍK–PRIM finds the MST.

MST via Cheapest-First Search

Theorem: For each 0 ≤ k ≤ n−1, the first k

 edges added are all in the MST.

MST via Cheapest-First Search

Proof: By induction on k.

Base case k=0: Vacuously true.

Induction step: Suppose CFS has added k

edges so far (0 ≤ k < n−1), and all are in MST.

We need to show next added edge is also in MST.

MST via Cheapest-First Search

s S

Let S be the set of vertices connected to s so far,

MST via Cheapest-First Search

Let S be the set of vertices connected to s so far,

and let e = {v,w} be next edge added by CFS.

s

v

w

S

e

T

(By definition of CFS, e is the

 cheapest edge out of S.)

Let T be the MST for G.

AFSOC that e ∉ T.

Since T spans G, must exist

 a path from v to w in T.

MST via Cheapest-First Search

Let S be the set of vertices connected to s so far,

and let e = {v,w} be next edge added by CFS.

s

v

w

S

(By definition of CFS, e is the

 cheapest edge out of S.)

Let T be the MST for G.

AFSOC that e ∉ T.
e

T

Since T spans G, must exist

 a path from v to w in T.

Let eʹ={vʹ,wʹ} be first edge

on that path which exits S.

MST via Cheapest-First Search

Let S be the set of vertices connected to s so far,

and let e = {v,w} be next edge added by CFS.

s

v

w

S

(By definition of CFS, e is the

 cheapest edge out of S.)

Let T be the MST for G.

AFSOC that e ∉ T.

eʹ

T

Since T spans G, must exist

 a path from v to w in T.

Let eʹ={vʹ,wʹ} be first edge

on that path which exits S.

vʹ

wʹ

e

MST via Cheapest-First Search

s

v

w

S

eʹ

T

vʹ

wʹ

e

Claim: Tʹ := T − eʹ ∪ {e} is a spanning tree.

If true, we have a contradiction because

cost(eʹ) > cost(e) (why?) and so cost(Tʹ) > cost(T).

Tʹ has |V|−1 edges, so

we just need to check

it’s still connected.

Any walk in T formerly

using eʹ = {v,w} can now

take path from vʹ to v, then

take e, then take path from w to wʹ.

Look carefully at our proof that e ∈ MST.

We didn’t actually use the fact that

 the edges inside S were part of the MST.

All we used: e was the cheapest edge out of S.

Thus we more generally proved…

MST Cut Property:

Let G=(V,E) be a graph with distinct edge costs.

Let S ⊆ V (with S≠∅, S≠V).

Let e∈E be the cheapest edge with

 one endpoint in S and the other not in S.

Then a minimum spanning tree must contain e.

MST Cut Property

Using this, it’s not hard to show that practically

 any natural “greedy” MST algorithm works.

 Kruskal’s Algorithm:

Go through edges in order of cheapness.

Add edge as long as it doesn’t make a cycle.

 Borůvka’s Algorithm:

Start with each vertex a connected component.

Repeatedly: add the cheapest edge coming out

 of each connected component.

Run-time Race for MST

(an amusing story)

The “classical” (pre-1960) MST algorithms,

Borůvka, Jarník–Prim, Kruskal,

all run in time O(m log m).

That is very good.

In practice, these algorithms are great.

Nevertheless, algorithms & data structures

wizards tried to do better.

Run-time Race for MST

Remember log*(m)?

It is the number of times you need to

take log to get down to 2.

For all real-world purposes, log*(m) ≤ 5.

 Fredman & Tarjan invent the

 “Fibonacci heap” data structure.

 Run-time improved from O(m log(m)).

to O(m log*(m)).

1984:

Run-time Race for MST

 Fredman & Tarjan invent the

 “Fibonacci heap” data structure.

 Run-time improved from O(m log(m)).

to O(m log*(m)).

1984:

Tarjan

Not Fredman

Also not Fredman

Run-time Race for MST

 Gabow, Galil, T. Spencer, Tarjan

 improved the algorithm.

 Run-time improved from O(m log*(m)) to…

t O(m log (log*(m))).

1986:

Run-time Race for MST

Gabow Galil Tarjan & Not-Spencer

 Gabow, Galil, T. Spencer, Tarjan

 improved the algorithm.

 Run-time improved from O(m log*(m)) to…

t O(m log (log*(m))).

1986:

Run-time Race for MST

 Chazelle invents “soft heap” data structure.

 Run-time improved from O(m log(log*(m))) to…

t O(m α(m) log(α(m))).

1997:

I will tell you what function α(m) is in a second.

I assure you, it’s comically slow-growing.

Chazelle

Run-time Race for MST

 Chazelle improves it down to O(m α(m)). 2000:

α(m) is called the Inverse-Ackermann function.

log*(m) = # of times you need to do log to get down to 2

log**(m) = # of times you need to do log* to get down to 2

log***(m) = # of times you need to do log** to get down to 2

…

α(m) = # of *’s you need so that log***…***(m) ≤ 2

It’s incomprehensibly, preposterously slow-growing!

Run-time Race for MST

 Meanwhile, Karger, Klein, and Tarjan

 give an algorithm with run-time O(m).

It’s a randomized algorithm:

O(m) is the expected value of the running time.

1995:

Karger Klein Tarjan

Run-time Race for MST

 Pettie and Ramachandran gave a new

 deterministic MST algorithm.

 They proved its running time is O(optimal).

2002:

Pettie Ramachandran

Run-time Race for MST

 Pettie and Ramachandran gave a new

 deterministic MST algorithm.

 They proved its running time is O(optimal).

2002:

Would you like to know its running time?

So would we.

Its running time is unknown.

All we know is: whatever it is, it’s optimal.

Definition:

 Minimum Spanning Tree

Algorithms and analysis:

 AFS

 BFS

 DFS

 CFS (Jarník–Prim algorithm)

Study Guide

