
15-251: Great Theoretical Ideas in Computer Science 

Graph Algorithms 

Lecture 12 



L.F.O.A. 

Lecture Full Of Acronyms 



The most basic graph algorithms: 

BFS: Breadth-first search 

DFS: Depth-first search 

AFS: Arbitrary-first search 

What problems do these algorithms solve? 



Given a graph G = (V,E)… 

Graph Search Algorithms 

• Check if vertex s can reach vertex t. 

• Decide if G is connected. 

• Identify connected components of G. 

All reduce to:   
 

“Given s∈V, identify all nodes reachable from s.” 

(We’ll call this set CONNCOMP(s).) 

Algorithm AFS(G,s) does exactly this. 



Bonus of AFS(G,s):  
 

Finds a spanning tree of CONNCOMP(s) rooted at s. 

Given G = (V,E), a spanning tree is  

a tree  T  = (V,Eʹ) such that Eʹ ⊆ E. 

More informally, a minimal set of edges 

connecting up all vertices of G. 
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Finds a spanning tree of CONNCOMP(s) rooted at s. 

Given G = (V,E), a spanning tree is  

a tree  T  = (V,Eʹ) such that Eʹ ⊆ E. 
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AFS(G,s):  Finding all nodes reachable from s 
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“Duh, it’s these ones.” 

But it’s not so obvious when the input looks like… 



AFS(G,s):  Finding all nodes reachable from s 

V = { a,b,c,p,q,r,s,t,u,v,w,x,y,z } 

E = { {a,b},{a,c},{b,c},{p,q},{p,x},{q,r}, 

        {q,s},{r,y},{s,u},{s,x},{s,y},{t,u}, 

    {t,x},{u,v},{v,y},{w,x},{y,z}            } 



AFS(G,s):  Finding all nodes reachable from s 

//  Has a “bag” data structure holding   tiles 

//  Each tile has a vertex name written on it 
 

Put  s  into bag 

While bag is not empty: 

 Pick an Arbitrary tile  v  from bag 

 If v is “unmarked”: 

  “Mark” v 

  For each neighbor w of v: 

   Put  w  into bag 

Intent:  

     “Marked” vertices should be those reachable from s. 
 

       w  in bag means we want to keep exploring from w. 



AFS(G,s): 

Put  s  into bag 
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      Pick arbitrary tile  v  from bag 
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            “Mark” v 

            For each neighbor w of v: 

                  Put  w  into bag 
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Want to show: 

Analysis of AFS 

When this algorithm halts, 

{ marked vertices } 

= 

.{ vertices reachable from s }. 

{ marked } ⊆ { reachable }: This is clear. 

{ reachable } ⊆ { marked }: 

Wait, why does the algorithm even halt?! 



Why does AFS halt? 

AFS(G,s): 

Put  s  into bag 

While bag is not empty: 

      Pick arbitrary tile  v  from bag 

      If v is “unmarked”: 

            “Mark” v 

            For each neighbor w of v: 

                  Put  w  into bag 

Every time a bunch of tiles is added to bag,  

 it’s because some vertex v just got marked. 

♦ we add at most |V| bunches of tiles to the bag 

   (since each vertex is marked ≤ 1 time). 

♦ at most finitely many  

tiles ever go into the bag. 

Each iteration through  

        loop removes 1 tile. 

♦ AFS halts after finitely 

        many iterations. 
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A more careful analysis 

AFS(G,s): 

Put  s  into bag 

While bag is not empty: 

      Pick arbitrary tile  v  from bag 

      If v is “unmarked”: 

            “Mark” v 

            For each neighbor w of v: 

                  Put  w  into bag 

Every time a bunch of tiles is added to bag,  

 it’s because some vertex v just got marked. 

In this case, we add deg(v) tiles to the bag. 

Each iteration through  

        loop removes 1 tile. 

♦ AFS halts after ≤ 2|E| 

        many iterations. 

♦ total number of tiles that ever enter the bag is   

= 2|E| ≤  

we forgot about 

this line 

+1 



When a tile  w  is added to the bag, 

it gets there “because of” a neighbor v 

that was just marked. 

(Except for the initial  s .) 

Let’s actually record this info on the tile, 

writing  v→w . 
 

Meaning: “We want to keep exploring from w. 

                        By the way, we got to w from v.” 

(And we’ll write  ⊥→s  initially.) 



AFS(G,s): 
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While bag is not empty: 

 Pick an Arbitrary tile  v  from bag 

 If v is “unmarked”: 
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  For each neighbor w of v: 
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  “Mark” v and record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 
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Suppose the next few tiles pulled are 

6→2 , 6→5 , 7→3 . 

Then AFS would reach the following state…  

6→2 6→5 7→3 

parent 
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AFS(G,s): 
 

Put  ⊥→s  into bag 

While bag is not empty: 

 Pick an Arbitrary tile  p→v  from bag 

 If v is “unmarked”: 

  “Mark” v and record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 

Theorem:  Every vertex in CONNCOMP(s) gets marked. 



Equivalently: For all vertices y, if there’s a path from  

 s to y of length k, then y gets marked. 

Proof: By induction on k.   

Base case k = 0:  Indeed, s gets marked.  

Theorem:  Every vertex in CONNCOMP(s) gets marked. 

Induction step:  Suppose it’s true for some k∈ℕ. 

Now suppose ∃ a length-(k+1) path from s to some y. 

Write it as (s, …, x, y).   

By induction, x gets marked. 

When x gets marked by the algorithm,  x→y  goes in bag. 

We proved the bag eventually empties. 

Thus  x→y  will come out, and the algorithm will mark y. 

So (s, …, x) is a length-k path. 



So we’ve proved AFS(G,s) indeed marks CONNCOMP(s). 

Corollary:  The parent() information recorded by AFS 

    encodes a spanning tree of G rooted at s. 

From now on, let’s assume CONNCOMP(s) is all of G. 

Proof: 

It certainly records a bunch of edges. 

Each vertex in G, except s, has exactly one parent edge. 

Thus there are |V|−1 edges. 

Further, it’s clear that for all vertices v,  

 parent(parent(···parent(v)···)) must reach s. 

♦ all vertices are connected to s, hence to each other. 

♦ parent edges form a tree (|V|−1 edges, connected). 



Instantiations of AFS 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

1 

5 6 7 

2 3 
(actually implemented 

using an array) 

(Assume sorted adjacency  

list representation.) 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

(actually implemented 

using an array) 

DFS is cute because many 

programming languages 

allow recursion, which means 

the compiler takes care of 

implementing the stack for you! 



DFS:  Depth-First Search 

When the bag is a “stack”. 

LIFO: Last-In First-Out. 

(actually implemented 

using an array) 

RecursiveDFS(v) 

  if v unmarked 

    mark v 

    for each w ∈ N(v) 

      RecursiveDFS(w) 
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BFS:  Breadth-First Search 

BFS bonus property: 

  Vertices marked in increasing 

  order of distance from s. 
 

BFS(G,s) 

    ··· 

    parent(v) := p 

    dist(v) := dist(parent(v))+1 

    ··· 
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Exercise:  Prove this. 
 

So path from s to any v in 

BFS tree is a shortest path. 

 

When the bag is a “queue”. 

FIFO: First-In First-Out. 

(usually implemented 

using a linked list) 



BFS & DFS:  Running time 
 

Put  ⊥→s  into bag 

While bag is not empty: 

 Pick an Arbitrary tile  p→v  from bag 

 If v is “unmarked”: 

  “Mark” v and record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 

Recall:  # of tiles put in bag is ≤ 2|E|+1.  

Actually, exactly 2|E|+1, assuming G connected. 

Bag operations are O(1) time for stack/queue. 

Each tile engenders O(1) work. 

♦ Total run-time:  O(|E|).     



BFS & DFS:  Running time 

AFS(G,s) just finds the connected component of s. 

What if we want to find all connected components? 

FullAFS(G): 

    For all vertices v: 

        If v is unmarked 

            AFS(G,v) 

Overall run-time:  O(|V|+|E|)    O(|V|+|E|) (Why?) 



We have seen AFS, BFS, DFS 

 

Looks like we’re missing something… 

 

CFS!  Cheapest-First Search 

 

The goal of CFS is more ambitious than 

just finding connected components. 
 

Its goal is to find a  

minimum spanning tree (MST). 

Cheapest-First Search 



Often in life, each edge of a graph G = (V,E) 

will have a real number associated to it. 

Weighted Graphs 
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Variously called: 

 weight 

 length 

 distance 

   or cost. 

“Cost function”,  c : E → ℝ 

Positive values only, unless otherwise specified. 

+ 



The year:    1926 

The place:   Brno, Moravia 

Our hero:     Otakar Borůvka 

Borůvka’s had a pal called Jindřich Saxel 

who worked for Západomoravské elektrárny 

(the West Moravian Power Plant company). 

 

Saxel asked him how to figure out the most 

efficient way to electrify southwest Moravia. 

MST 



Svitavy 

Vyskov 

Kyjov Znojmo 

Třebíč 

Hustopeče 

Brno 

MST 

Edge exists if it’s feasible to connect 

    two towns by power lines. 
 

Edge weights might be distance in km, 

    or cost in 1000’s of koruna to install lines. 
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MST 

Minimum Spanning Tree (MST) problem: 

Input:    A weighted graph G = (V,E), 

           with cost function c : E → ℝ+. 

Output: Subset of edges of minimum total cost 

        such that all vertices connected. 
 

       The edges will form a tree: 

If you had a cycle, you could delete any edge 

on it and still be connected, but cheaper. 
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MST 

Example: 

In this case, there’s a unique solution, 

of cost 5+2+3+12+16+4=42. 



MST 

Convenient assumption: Edges have distinct costs. 
 

In this case, not hard to show the MST is unique. 
 

Thus we can speak of the MST, not just an MST. 
 

     A hint for the little trick 

                    that shows this is WLOG: 

“Whether [the] distance from 

Brno to Břeclav is 50 km 

or 50 km and 1 cm 

is a matter of conjecture.” 



MST via Cheapest-First Search 

Often known as Prim’s Algorithm, 

due to a 1957 publication by 

Robert C. Prim. 

Jarník 

Actually first discovered by 

Vojtěch Jarník, who described it 

in a letter to Borůvka, and 

published it in 1930. 

Borůvka himself had published a 

different algorithm in 1926. 



MST via Cheapest-First Search 
 

Let s be any vertex 

Put  ⊥→s  into bag 

While bag is not empty: 

 Pick an Arbitrary edge  p→v  from bag 

 If v is “unmarked”: 

  “Mark” v, record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 



MST via Cheapest-First Search 
 

Let s be any vertex 

Put  ⊥→s  into bag 

While bag is not empty: 

 Pick the cheapest edge  p→v  from bag 

 If v is “unmarked”: 

  “Mark” v, record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 

Unsorted list. 

O(|E|) time to scan for cheapest edge. 

O(|E|2) total run-time. 

JARNÍK-PRIM(G): 

    Naive 

implementation: 



MST via Cheapest-First Search 

O(log |E|) time for both bag operations. 

O(|E| log |E|) total run-time. 

 

Let s be any vertex 

Put  ⊥→s  into bag 

While bag is not empty: 

 Pick the cheapest edge  p→v  from bag 

 If v is “unmarked”: 

  “Mark” v, record parent(v) := p 

  For each neighbor w of v: 

   Put  v→w  into bag 

Sophisticated 

implementation: 

JARNÍK-PRIM(G): 

“Priority Queue”. 
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Example: 

MST via Cheapest-First Search 

Effectively:   CFS grows a tree from s, 

always adding the cheapest edge next. 



Theorem:  JARNÍK–PRIM finds the MST. 

MST via Cheapest-First Search 



Theorem:  For each 0 ≤ k ≤ n−1, the first k 

     edges added are all in the MST. 

MST via Cheapest-First Search 

Proof:  By induction on k.   
 

Base case k=0:  Vacuously true. 
 

Induction step:   Suppose CFS has added k 

edges so far (0 ≤ k < n−1), and all are in MST. 
 

We need to show next added edge is also in MST. 
 



MST via Cheapest-First Search 
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Let S be the set of vertices connected to s so far, 
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Let S be the set of vertices connected to s so far, 
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(By definition of CFS, e is the 

 cheapest edge out of S.) 

Let T be the MST for G. 

AFSOC that e ∉ T. 

Since T spans G, must exist 

   a path from v to w in T.  
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Let S be the set of vertices connected to s so far, 

and let e = {v,w} be next edge added by CFS. 
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(By definition of CFS, e is the 

 cheapest edge out of S.) 

Let T be the MST for G. 

AFSOC that e ∉ T. 
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T 

Since T spans G, must exist 

   a path from v to w in T.  

Let eʹ={vʹ,wʹ} be first edge 

on that path which exits S. 
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MST via Cheapest-First Search 

s 

v 

w 

S 

eʹ 

T 

vʹ 

wʹ 

e 

Claim:  Tʹ := T − eʹ ∪ {e} is a spanning tree. 

If true, we have a contradiction because 

cost(eʹ) > cost(e) (why?) and so cost(Tʹ) > cost(T). 

Tʹ has |V|−1 edges, so 

we just need to check 

it’s still connected. 

Any walk in T formerly 

using eʹ = {v,w} can now 

take path from vʹ to v, then 

take e, then take path from w to wʹ. 



Look carefully at our proof that e ∈ MST. 
 

We didn’t actually use the fact that  

 the edges inside S were part of the MST. 
 

All we used:  e was the cheapest edge out of S. 

 

Thus we more generally proved… 



MST Cut Property: 

Let G=(V,E) be a graph with distinct edge costs. 

Let S ⊆ V  (with S≠∅, S≠V). 

Let e∈E be the cheapest edge with 

 one endpoint in S and the other not in S. 

Then a minimum spanning tree must contain e. 



MST Cut Property 

Using this, it’s not hard to show that practically 

    any natural “greedy” MST algorithm works. 
 

  Kruskal’s Algorithm: 

Go through edges in order of cheapness. 

Add edge as long as it doesn’t make a cycle. 
 

  Borůvka’s Algorithm: 

Start with each vertex a connected component. 

Repeatedly: add the cheapest edge coming out 

                    of each connected component. 



Run-time Race for MST 

(an amusing story) 

The “classical” (pre-1960) MST algorithms, 

Borůvka, Jarník–Prim, Kruskal, 

all run in time O(m log m). 

That is very good. 

In practice, these algorithms are great. 

Nevertheless, algorithms & data structures 

wizards tried to do better. 



Run-time Race for MST 

Remember log*(m)? 
 

It is the number of times you need to  

take log to get down to 2. 
 

For all real-world purposes, log*(m) ≤ 5. 

    Fredman & Tarjan invent the 

    “Fibonacci heap” data structure. 
 

    Run-time improved from O(m log(m)).    

to O(m log*(m)). 

1984: 



Run-time Race for MST 

    Fredman & Tarjan invent the 

    “Fibonacci heap” data structure. 
 

    Run-time improved from O(m log(m)).    

to O(m log*(m)). 

1984: 

Tarjan 

Not Fredman 

Also not Fredman 



Run-time Race for MST 

     Gabow, Galil, T. Spencer, Tarjan 

     improved the algorithm. 
 

        Run-time improved from O(m log*(m)) to… 

t O(m log (log*(m))). 

1986: 



Run-time Race for MST 

Gabow Galil Tarjan & Not-Spencer 

     Gabow, Galil, T. Spencer, Tarjan 

     improved the algorithm. 
 

        Run-time improved from O(m log*(m)) to… 

t O(m log (log*(m))). 

1986: 



Run-time Race for MST 

     Chazelle invents “soft heap” data structure. 
 

 Run-time improved from O(m log(log*(m))) to… 

t O(m α(m) log(α(m))). 

1997: 

I will tell you what function α(m) is in a second. 

I assure you, it’s comically slow-growing. 

Chazelle 



Run-time Race for MST 

     Chazelle improves it down to O(m α(m)). 2000: 

α(m) is called the Inverse-Ackermann function. 

log*(m) = # of times you need to do log to get down to 2 

log**(m) = # of times you need to do log* to get down to 2 

log***(m) = # of times you need to do log** to get down to 2 

… 

α(m) = # of *’s you need so that log***…***(m) ≤ 2 

It’s incomprehensibly, preposterously slow-growing! 



Run-time Race for MST 

     Meanwhile, Karger, Klein, and Tarjan 

     give an algorithm with run-time O(m).  
 

It’s a randomized algorithm:  

O(m) is the expected value of the running time. 

1995: 

Karger Klein Tarjan 



Run-time Race for MST 

     Pettie and Ramachandran gave a new 

     deterministic MST algorithm.  
 

   They proved its running time is O(optimal). 

2002: 

Pettie Ramachandran 



Run-time Race for MST 

     Pettie and Ramachandran gave a new 

     deterministic MST algorithm.  
 

   They proved its running time is O(optimal). 

2002: 

Would you like to know its running time? 

So would we. 

Its running time is unknown. 

All we know is: whatever it is, it’s optimal. 



Definition: 
 

   Minimum Spanning Tree 

 

Algorithms and analysis: 
 

   AFS 

   BFS 

   DFS 

   CFS (Jarník–Prim algorithm) 

 

 

Study Guide 


