|5-25|
 Great Theoretical Ideas in Computer Science

Lecture I3:

Graphs III: Maximum Matchings

February 28th, 2017

Some motivating real-world examples

matching machines and jobs

Job I

Job 2

Job n

Some motivating real-world examples

 matching professors and courses
$15-110$
|5-||2
15-122
15-150
|5-25|

Some motivating real-world examples

matching rooms and courses

GHC 440I$15-110$
DH 2210GHC 5222|5-|22WEH 750015-|50
DH 2315|5-25|

Some motivating real-world examples

matching students and internships

Some motivating real-world examples

matching kidney donors and patients

How do you solve a problem like this?

I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

First step: Formulate the problem

Purpose:

- Get rid of all the distractions
- Identify the crux of the problem
- Get a clean mathematical model that is easy to reason about.

Bipartite Graphs

$G=(V, E)$ is bipartite if:

- there exists a bipartition of V into X and Y
- each edge connects a vertex in X to a vertex in Y

Given a graph $G=(V, E)$, we could ask, is it bipartite?

Bipartite Graphs

Given a graph $G=(V, E)$, we could ask, is it bipartite?

Poll

Is this graph bipartite?

Poll Answer

Is this graph bipartite?

bipartite $=2$-colorable
Color the vertices with 2 colors so that no edge's endpoints get the same color.

Important Characterization

An obstruction for being bipartite:
Contains a cycle of odd length.

Is this the only type of obstruction?

Theorem:

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if and only if it contains no cycles of odd length.

Bipartite Graphs

Often we write the bipartition explicitly:

$$
G=(X, Y, E)
$$

Bipartite Graphs

Great at modeling relations between two classes of objects.
Examples:
$X=$ machines, $Y=$ jobs
An edge $\{x, y\}$ means x is capable of doing y.
$X=$ professors, $Y=$ courses
An edge $\{x, y\}$ means x can teach y.
$X=$ students, $\quad Y=$ internship jobs
An edge $\{x, y\}$ means x and y are interested in each other.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
not a matching

A matching:
A subset of the edges that do not share an endpoint.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
maximum matching

Maximum matching: a matching with largest number of edges (among all possible matchings).

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph

Cannot add more edges.
"local optimum"

Maximal matching: a matching which cannot contain any more edges.

Matchings in bipartite graphs

Often, we are interested in finding a matching in a bipartite graph
perfect matching

a necessary
condition for
perfect matching:

$$
|X|=|Y|
$$

Perfect matching: a matching that covers all vertices.

Poll

How many different perfect matchings does the graph have (in terms of n)?

Important Note

We can define matchings for non-bipartite graphs as well.

Important Note

We can define matchings for non-bipartite graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem
Input: A graph $G=(V, E)$.
Output: A maximum matching in G.

Bipartite maximum matching problem

Actually, we want to solve the following restriction:

Bipartite maximum matching problem
Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

How do you solve a problem like this?

I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Bipartite maximum matching problem

Bipartite maximum matching problem

Input: A bipartite graph $G=(X, Y, E)$.
Output: A maximum matching in G.

Is there a (trivial) algorithm to solve this problem?

- Try all possible subsets of the edges.

Running time: $\Omega\left(2^{m}\right)$

How do you solve a problem like this?

I. Formulate the problem
2. Ask: Is there a trivial algorithm?
3. Ask: Is there a better algorithm?
4. Find and analyze

Bipartite maximum matching problem

A good first attempt:
What if we picked edges "greedily"?

Bipartite maximum matching problem

A good first attempt:
What if we picked edges "greedily"?

Bipartite maximum matching problem

A good first attempt:
What if we picked edges "greedily"?

Bipartite maximum matching problem

A good first attempt: What if we picked edges "greedily"?

maximal matching
but not maximum

Is there a way to get out of this local optimum?
What is interesting about the path $4-8-2-5-I-7$?

Bipartite maximum matching problem

A good first attempt: What if we picked edges "greedily"?

maximal matching
but not maximum

Bipartite maximum matching problem

A good first attempt: What if we picked edges "greedily"?

now maximum

Important Definition: Augmenting paths

Let M be some matching.
An alternating path with respect to M is a path in G such that:

- the edges in the path alternate between being in M and not being in M

An augmenting path with respect to M is an alternating path such that:

- the first and last vertices are not matched by M

Important Definition: Augmenting paths

matching $=$ red edges

Augmenting path:

$$
4-8-2-5-1-7
$$

augmenting path \Longrightarrow can obtain a bigger matching.

Important Definition: Augmenting paths

matching $=$ red edges
Augmenting path:
2-5-1-7

An augmenting path need not contain all the edges of the matching.
augmenting path \Longrightarrow can obtain a bigger matching.

Important Definition: Augmenting paths

matching $=$ red edges

Augmenting path:

$$
4-8
$$

An augmenting path
need not contain
any of the edges of the matching.
augmenting path \Longrightarrow can obtain a bigger matching.

Augmenting paths and maximum matchings

augmenting path \Longrightarrow can obtain a bigger matching. In fact, it turns out:
no augmenting path \Longrightarrow maximum matching.

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Augmenting paths and maximum matchings

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:
If M not maximum, there is an augmenting path w.r.t. M.
Let M^{*} be a maximum matching. $\left|M^{*}\right|>|M|$.

Let \mathbf{S} be the set of edges
contained in M^{*} or M but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

Augmenting paths and maximum matchings

Proof (continued):

Let \mathbf{S} be the set of edges contained in M^{*} or M but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

(will find an augmenting path in S)
What does S look like?
Each vertex has degree I or 2. (why?)
So \mathbf{S} is a collection of disjoint cycles and paths.
The edges alternate red and blue.
(exercise)

Augmenting paths and maximum matchings

Proof (continued):

Let \mathbf{S} be the set of edges contained in M^{*} or M but not both.

$$
S=\left(M^{*} \cup M\right)-\left(M \cap M^{*}\right)
$$

So S is a collection of disjoint cycles and paths. The edges alternate red and blue.

> \# red > \# blue in S \# red $=$ \# blue in cycles

So \exists a path with \# red > \# blue.
This is an augmenting path with respect to M.

Augmenting paths and maximum matchings

Theorem:

A matching M is maximum if and only if there is no augmenting path with respect to M.

Summary of proof:
\Longrightarrow
If there is an augmenting path, not a max matching.

If the matching M is not maximum, $\exists M^{*}$ s.t. $\left|M^{*}\right|>|M|$.
Can find an augmenting path w.r.t. M in the "symmetric difference" of M^{*} and M.

Next time:

- Algorithm to find a maximum matching in bipartite graphs.
- Stable matchings.

Questions about the midterm exam

