15-251 Great Theoretical Ideas in Computer Science Lecture 13: Graphs III: Maximum Matchings

February 28th, 2017

matching machines and jobs

Job n

Job I

Job 2

matching professors and courses

- 15-110 15-112 15-122 15-150 15-251
 - •

matching rooms and courses

GHC 4401	15-110
DH 2210	15-112
GHC 5222	15-122
WEH 7500	15-150
DH 2315	15-251
• •	•

matching students and internships

matching kidney donors and patients

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Remember the CS life lesson

If your problem has a graph, great. If not, try to make it have a graph!

First step: Formulate the problem

Purpose:

- Get rid of all the distractions
- Identify the crux of the problem

- Get a clean mathematical model that is easy to reason about.

Bipartite Graphs

G = (V, E) is bipartite if:

- there exists a bipartition of $\,V\,$ into $\,X\,$ and $\,Y\,$
- each edge connects a vertex in ${\boldsymbol X}$ to a vertex in ${\boldsymbol Y}$

Given a graph G = (V, E), we could ask, is it bipartite?

Bipartite Graphs

Given a graph G = (V, E), we could ask, is it bipartite?

Poll

Is this graph bipartite?

- -Yes
- No
- Beats me

Poll Answer

Is this graph bipartite? $4 \xrightarrow{2}{4} \xrightarrow{9}{4} \xrightarrow{10}{11}$ $6 \xrightarrow{5}{8} \xrightarrow{12} 3 \xrightarrow{4}$

bipartite = 2-colorable

Color the vertices with 2 colors so that no edge's endpoints get the same color.

5

6

10

Important Characterization

An obstruction for being bipartite:

Contains a cycle of odd length.

Is this the only type of obstruction?

<u>Theorem:</u>

A graph G=(V,E) is bipartite <u>if and only if</u> it contains no cycles of odd length.

Bipartite Graphs

Often we write the bipartition explicitly:

$$G = (X, Y, E)$$

Bipartite Graphs

Great at modeling relations between two classes of objects.

Examples:

X =machines, Y =jobs

An edge $\{x, y\}$ means x is capable of doing y.

X = professors, Y = courses

An edge $\{x, y\}$ means x can teach y.

X =students, Y =internship jobs

An edge $\{x, y\}$ means x and y are interested in each other.

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

A matching :

Often, we are interested in finding a matching in a bipartite graph

maximum matching

Maximum matching: a matching with largest number of edges (among all possible matchings).

Often, we are interested in finding a matching in a bipartite graph

Maximal matching: a matching which cannot contain any more edges.

Often, we are interested in finding a **matching** in a bipartite graph

Perfect matching: a matching that covers all vertices.

Poll

How many different perfect matchings does the graph have (in terms of n)?

|X| = |Y| = n

Important Note

We can define matchings for <u>non-bipartite</u> graphs as well.

Important Note

We can define matchings for <u>non-bipartite</u> graphs as well.

Maximum matching problem

The problem we want to solve is:

Maximum matching problem

Input: A graph
$$G = (V, E)$$
.

Output: A maximum matching in G.

Actually, we want to solve the following restriction:

<u>Bipartite</u> maximum matching problem

Input: A *bipartite* graph G = (X, Y, E).

Output: A maximum matching in G.

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

Bipartite maximum matching problem

Input: A *bipartite* graph G = (X, Y, E). **Output:** A maximum matching in G.

Is there a (trivial) algorithm to solve this problem?

- Try all possible subsets of the edges.

Running time: $\Omega(2^m)$

How do you solve a problem like this?

I. Formulate the problem

2. Ask: Is there a trivial algorithm?

3. Ask: Is there a better algorithm?

4. Find and analyze

A good first attempt:

What if we picked edges "greedily"?

A good first attempt:

What if we picked edges "greedily"?

A good first attempt:

What if we picked edges "greedily"?

A good first attempt:

What if we picked edges "greedily"?

maximal matching but not maximum

Is there a way to get out of this local optimum?

What is interesting about the path 4 - 8 - 2 - 5 - 1 - 7?

A good first attempt:

What if we picked edges "greedily"?

maximal matching

but not maximum

Bipartite maximum matching problem

A good first attempt:

What if we picked edges "greedily"?

Let M be some matching.

An *alternating path* with respect to M is a path in G such that:

 the edges in the path alternate between being in M and not being in M

An *augmenting path* with respect to M is an alternating path such that:

- the first and last vertices are **not** matched by M

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

matching = red edges

Augmenting path: 4-8

An augmenting path need **not** contain *any* of the edges of the matching.

augmenting path \implies can obtain a bigger matching.

augmenting path \implies can obtain a bigger matching.

In fact, it turns out:

no augmenting path \implies maximum matching.

<u>Theorem:</u>

A matching M is maximum <u>if and only if</u> there is **no** augmenting path with respect to M.

Proof:

If there is an augmenting path with respect to M, we saw that M is not maximum.

Want to show:

If M not maximum, there is an augmenting path w.r.t. M.

Let M^* be a maximum matching. $|M^*| > |M|$.

Let **S** be the set of edges contained in **M*** or **M** but not both.

 $S = (M^* \cup M) - (M \cap M^*)$

Proof (continued):

Let **S** be the set of edges contained in **M*** or **M** but not both.

 $S = (M^* \cup M) - (M \cap M^*)$

(will find an augmenting path in S)

What does **S** look like?

Each vertex has degree I or 2. (why?)

So **S** is a collection of disjoint cycles and paths. (exercise)

The edges alternate **red** and **blue**.

Proof (continued):

Let **S** be the set of edges contained in **M*** or **M** but not both.

$$S = (M^* \cup M) - (M \cap M^*)$$

So **S** is a collection of disjoint cycles and paths. The edges alternate red and blue.

red > # blue in S

red = # blue in cycles

So \exists a path with # red > # blue.

This is an *augmenting path* with respect to M.

Theorem:

 \leftarrow

A matching M is maximum if and only if there is no augmenting path with respect to M.

Summary of proof:

If there is an augmenting path, not a max matching.

If the matching M is not maximum, $\exists M^*$ s.t. $|M^*| > |M|$.

Can find an augmenting path w.r.t. M in the "symmetric difference" of M* and M.

Next time:

- Algorithm to find a maximum matching in bipartite graphs.

- Stable matchings.

Questions about the midterm exam