
March 2nd, 2017

15-251 
Great Theoretical Ideas in Computer Science 

Lecture 14:
Graphs IV:  Stable Matchings



From Last Time



Bipartite maximum matching problem

Input:  A bipartite graph                        .

Output:  A maximum matching in    . G

Bipartite maximum matching problem

G = (X,Y,E)



Important Definition:  Augmenting paths

Let M be some matching.

-  the first and last vertices are not matched by M

An augmenting path with respect to M is an 
alternating path such that:



Algorithm to find maximum matching

OK, but how do you find an augmenting path?

Theorem:
A matching M is maximum if and only if 
there is no augmenting path with respect to M.

Algorithm:

- Start with a single edge as your matching M.

- Find an augmenting path with respect to M.

- Update M according to the augmenting path.

- Repeat until there is no augmenting path w.r.t. M:



Algorithm to find augmenting path

1

2

3

4

5

6

7

8

X Y



Algorithm to find augmenting path

1

2

3

4

5

6

7

8

X Y

- direct edges not in M from left to right  (    to    ).X Y



Algorithm to find augmenting path

1

2

3

4

5

6

7

8

X Y

- direct edges not in M from left to right  (    to    ).X Y

- direct edges in M from right to left  (    to    ).XY



Algorithm to find augmenting path

1

2

3

4

5

6

7

8

X Y

Observation:
There is an augmenting path iff 
there is a directed path from an unmatched 
to an unmatched           .

x 2 X

y 2 Y

- direct edges not in M from left to right  (    to    ).X Y

- direct edges in M from right to left  (    to    ).XY



Algorithm to find augmenting path

1

2

3

4

5

6

7

8

X Y

- for each unmatched            :x 2 X

- do DFS(x),  stop when you find unmatched           .  y 2 Y

Algorithm:

Running time: O(n+m)



Important Note

Theorem:
A matching M is maximum if and only if 
there is no augmenting path with respect to M.

This theorem holds for all graphs.

The algorithm works for bipartite graphs.



How do you solve a problem like this?

1.  Formulate the problem

2.  Ask: Is there a trivial algorithm?

3.  Ask: Is there a better algorithm?

4.  Find and analyze



Hall’s Theorem



Characterization for perfect matchings

Often we are interested in perfect matchings.

X Y

An obstruction:

|X| 6= |Y |

1

2

3

4

5

6

7

8



Characterization for perfect matchings

Often we are interested in perfect matchings.

X Y

If                 , we cannot “cover” all the nodes in    .|X| > |Y | X

If                       , we cannot “cover” all the nodes in    .|X| > |N(X)| X

An obstruction:

1

2

3

4

5

6

7



Characterization for perfect matchings

Often we are interested in perfect matchings.

X Y

An obstruction:

if                      , we cannot “cover” all the nodes in    .

For             :S ✓ X

|S| > |N(S)| S

1

2

3

4

5

6

7

S = {1, 3, 4}
N(S) = {5, 7}



Characterization for perfect matchings

Is this the only type of obstruction?

Theorem [Hall’s Theorem]:

Let                         be a bipartite graph.G = (X,Y,E)

There is a matching covering all vertices in      iffX

Corollary:
G = (X,Y,E)                       has a perfect matching iff

8S ✓ X :                        .|S|  |N(S)|

|X| = |Y |                   and               ,                        .8S ✓ X |S|  |N(S)|



An application of Hall’s Theorem

Rank: 1 2 3 4 5 6 7 8 9 10 J Q K

Suppose a deck of cards is dealt into 13 piles of 4 cards each.

Claim:  there is a way to select one card from each pile
           so that you have one card from each rank.



An application of Hall’s Theorem

..

.

2
2

X Y
we are done 
if we can find 
a perfect matching

..

.

|X| = |Y |

Want to show:

For any            , S ✓ X |S|  |N(S)|.



An application of Hall’s Theorem

..

.

2
2

X Y

For any            ,  
total weight coming out            .

S ✓ X
= 4|S|

All this weight is absorbed by N(S).

Each                  absorbs ≤ 4 units of this weight.y 2 N(S)

=) 4|S|  4|N(S)|          absorbs ≤               units.N(S)=) 4|N(S)|

we are done 
if we can find 
a perfect matching

..

.



Stable matching problem



2-Sided Markets

A market with 2 distinct groups of participants
each with their own preferences.



2-Sided Markets

1.
2.
3.
4.

1.  Alice
2.  Bob
3.  Charlie
4.  David

1.  Bob
2.  David
3.  Alice
4.  Charlie

. 

. 

.

Other examples:
medical residents - hospitals
students - colleges
professors - colleges

..

.



Aspiration:  A Good Centeralized System

What can go wrong?

Alice

Bob

Charlie

David

Macrosoft

Moogle

Umbrella

KLG

Suppose Alice gets “matched” with Macrosoft.
         Charlie gets “matched” with Umbrella.

But, say,  Alice prefers Umbrella over Macrosoft
and Umbrella prefers Alice over Charlie.



Formalizing the problem

An instance of the problem can be represented as a
complete bipartite graph

Goal: Find a stable matching.

+  preference list of each node.

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

X Y

Students Companies

a

b

c

d

e

f

g

h

|X| = |Y | = n



Formalizing the problem

What is a stable matching?

X Y

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

2. Cannot contain an unstable pair:
A pair (x, y) unmatched 
  but they prefer each other over their current partners.



Formalizing the problem

X Y

What is a stable matching?

a

b

e

f

(e,f)

(e,f)

(a,b)

(a,b)

1. It has to be a perfect matching.

(a, e) is an unstable pair.

2. Cannot contain an unstable pair:
A pair (x, y) unmatched 
  but they prefer each other over their current partners.



Formalizing the problem

X Y

Goal: Find a stable matching.

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(Is it guaranteed to always exist?)

|X| = |Y | = n

An instance of the problem can be represented as a
complete bipartite graph +  preference list of each node.



A variant:  Roommate problem

a

b

c

d

(c,b,d)

(a,c,d)

(b,a,d)

(a,c,b)

A non-bipartite version

Does this have a stable matching?



Stable matching:  Is there a trivial algorithm?
X Y

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Try all possible perfect matchings, 
and check if it is stable.

Trivial algorithm:

# perfect matchings in terms              :n = |X|



# perfect matchings in terms              :n = |X|

Stable matching:  Is there a trivial algorithm?
X Y

a

b

c

d

e

f

g

h

(e,f,h,g)

(e,g,h,f)

(e,h,f,g)

(e,f,g,h)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

(a,b,c,d)

Try all possible perfect matchings, 
and check if it is stable.

n!

Trivial algorithm:



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

hello
handsome



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

Nice.
Now I don’t have to

marry Brad.



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

#FeelTheBern
Trump



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3

whatever



The Gale-Shapley proposal algorithm

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3

1 2 3



The Gale-Shapley proposal algorithm

Cool, but does it work correctly?

- Does it always terminate?

- Does it always find a stable matching?

While there is a man m who is not matched:

- Let w be the highest ranked woman in m’s list
  to whom m has not proposed yet.

- If w is unmatched, or w prefers m over her current match:

- Match m and w.  
  (The previous match of w is now unmatched.)

(Does a stable matching always exist?)



The Gale-Shapley proposal algorithm always terminates 
with a stable matching after at most       iterations. 

Gale-Shapley algorithm analysis

1.  Number of iterations is at most      . n2

3 things to show:

2.  The algorithm terminates with a perfect matching. 

3.  The matching has no unstable pairs.

A constructive proof that a stable matching always exists.

n2

Theorem:



Gale-Shapley algorithm analysis

No man proposes to a woman more than once.

So each man makes at most      proposals.n

# iterations = # proposals

There are      men in total.n

# proposals           . n2=)
# iterations           . n2=)

1.  Number of iterations is at most      . n2



Gale-Shapley algorithm analysis

A man is not matched

All men must be matched.=)
All women must be matched=)

2.  The algorithm terminates with a perfect matching. 

If we don’t have a perfect matching:

Second implication:
There are an equal number of men and women.

Contradiction



Gale-Shapley algorithm analysis

A man is not matched

All men must be matched.=)
All women must be matched=)

Contradiction

2.  The algorithm terminates with a perfect matching. 

If we don’t have a perfect matching:

First implication:

A man got rejected by every woman:
case1:  she was already matched,  or
case2:  she got a better offer 

Observe:  once a woman is matched, she stays matched.

Either way, she was matched at some point.



Gale-Shapley algorithm analysis
3.  The matching has no unstable pairs.

Case 1: m never proposed to w

Case 2: m proposed to w

by (i),  m prefers w’ over w

w rejected m           by (ii),  w prefers m’ over m=)

Consider any unmatched (m,w).  WTS: it cannot be unstable.

“Improvement” Lemma: 
   (i)  A man can only go down in his preference list.
   (ii)  A woman can only go up in her preference list.

Unstable pair:  
  (m,w) unmatched 
  but they prefer each other.

m

m’

w’

w



Further questions

Does the order of how we pick men matter?
Would it lead to different matchings?

The Gale-Shapley proposal algorithm always terminates 
with a stable matching after at most       iterations. n2

Theorem:

Does this algorithm favor men or women or neither?
Is the algorithm “fair”?



Further questions

best(m) = highest ranked valid partner of m

Not at all obvious this would be a matching,
let alone a stable matching!

m and w are valid partners if there is a stable matching
in which they are matched.

Theorem:
Gale-Shapley algorithm returns {(m, best(m)) : m    X }.2



Further questions

worst(w) = lowest ranked valid partner of w

Theorem:
Gale-Shapley algorithm returns {(worst(w), w) : w    Y }.2



Real-world applications

Variants of the Gale-Shapley algorithm 
is used for:

- matching medical students and hospitals

- matching students to high schools (e.g. in New York)

- matching users to servers

...

- matching students to universities (e.g. in Hungary)



The Gale-Shapley Proposal Algorithm (1962)

Nobel Prize in Economics 2012

"for the theory of stable allocations and the practice of market design."


