15-251: Great Theoretical Ideas in Computer Science Spring 2017, Lecture 15

Boolean Formulas and Circuits

Today

- Briefly mention the "P versus NP" problem
- Remind you of Boolean formulas
- Tell you about Boolean circuits
- Relate circuit size to algorithmic efficiency
- See why circuits are a good approach to P vs. NP
- See why circuits are a bad approach to P vs. NP

P versus NP

The most famous unsolved problem in Theoretical Computer Science

P versus NP

One if not the most famous unsolved problems in all of Computer Science and all of Mathematics

WikipediA

The Free Encyclopedia

Main page

Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
Related changes
Upload file
Special pages

List of unsolved problems in computer science

From Wikipedia, the free encyclopedia

This article is a list of unsolved problems in computer science. A problem in computer science is considered unsolved when an expert in the field (i.e, a computer scientist) considers it unsolved or when several experts in the field disagree about a solution to a problem.

Contents [hide]	
1	Computational complexity
2	Algorithms
3	Programming language theory
4	Other problems
5	External links

Computational complexity [edit]

- P versus NP problem pften written as "P = NP," which is technically not correct for the problem or those below)

The Free Encyclopedia

日本語

Norsk bokmål
Polski
Português
Română
Русский
Slovenščina
Suomi
Svenska
Українська
中文

List of unsolved problems in mathematics

From Wikipedia，the free encyclopedia

Contents［hide］

1 Lists of unsolved problems in mathematics
1．1 Millennium Prize Problems
2 Other still－unsolved problems
2．1 Additive number theory
2．2 Algebra
2．3 Algebraic geometry
2．4 Algebraic number theory
2．5 Analysis

Millennium Prize Problems［edit］

Of the original seven Millennium Prize Problems set by the Clay Mathematics
Institute，six have vet to be solved，as of August 2015：${ }^{[7]}$
－P versus NP
－hoage conjecture
－Riemann hypothesis
－Yang－Mills existence and mass gap
－Navier－Stokes existence and smoothness
Birch and Swinnerton－Dyer conjecture
The seventh problem，the Poincaré conjecture，has been solved．${ }^{[8]}$ The smooth four－ dimensional Poincaré conjecture－that is，whether a four－dimensional topological sphere can have two or more inequivalent smooth structures－is still unsolved．${ }^{[9]}$

P versus NP

One if not the most famous unsolved problems in all of Computer Science and all of Mathematics

I can state it for you in ten minutes

Warning: You won't get the full, glorious perspective on why "P versus NP" is so important until Lectures 17-19

Boolean formulas

You've seen these before in Concepts:

$$
((\neg x \rightarrow y) \wedge((x \vee z) \leftrightarrow y))
$$

$x, y, z, \ldots \quad$ Boolean variables, values 0/1 (or T/F) $\neg, \wedge, \vee, \ldots$ Boolean connectives (or operations)

A	B	$\neg \mathrm{A}$	$(\mathrm{A} A \mathrm{~B})$	$(\mathrm{A} \vee \mathrm{B})$	$(\mathrm{A} \rightarrow \mathrm{B})$	$(\mathrm{A} \rightarrow \mathrm{B})$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Boolean formulas

You've seen these before in Concepts.

$$
\begin{gathered}
\text { Stuff like this: } \\
((\neg x \rightarrow y) \wedge((x \vee z) \leftrightarrow y))
\end{gathered}
$$

$\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$ Boolean variables, values 0/1 (or T/F)
$\neg, \wedge, \vee, \ldots$ Boolean connectives (or operations)
Truth assignment: 0/1 value for each variable
A formula is satisfiable if there's a truth assignment to the variables making the whole formula true

Truth tables

Satisfiable: At least one 1 in truth table Unsatisfiable: No 1's in truth table Tautology:

All 1's in truth table

An unsolved problem in

 Computer Science/Mathematics: Who invented truth tables?

Russell?

Wittgenstein?
 Post?

Peirce?

Łukasiewicz?

Jevons?

Ladd-Franklin?

Another unsolved problem in Computer Science/Mathematics:

What is the intrinsic complexity of SAT?

SAT: Given as input a Boolean formula, decide if it is satisfiable or not.

Question:
 Is SAT decidable?

Answer: Yes.

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):

Enumerate all truth assignments α.
For each α, compute the truth value it gives G . If any of them satisfy G, then ACCEPT, else REJECT.

Remark: RAM pseudocode should have some more detail, but I expect you could fill it in.

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):

Enumerate all truth assignments α.
For each α, compute the truth value it gives G . If any of them satisfy G , then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N. Say the \# of variables in G is n . (Note: $\mathrm{n} \leq \mathrm{N}$.)
(Although we usually write n for input length, for SAT it's super-traditional to use it for \# of variables.)

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):

Enumerate all truth assignments α.
For each α, compute the truth value it gives G . If any of them satisfy G, then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N. Say the \# of variables in G is n . (Note: $\mathrm{n} \leq \mathrm{N}$.) \# of truth assignments? 2^{n} Running time of Brute-Force: $\Omega\left(2^{n}\right)$

SAT is decidable

Say the input formula is G.

Brute-Force-Algorithm(G):

Enumerate all truth assignments α.
For each α, compute the truth value it gives G. If any of them satisfy G, then ACCEPT, else REJECT.

Say the input length (encoding size) of G is N. Say the \# of variables in G is n. (Note: $n \leq N$.)

Running time of Brute-Force: $\mathrm{O}\left(2^{\mathrm{n}} \cdot \mathrm{N}\right)$ Running time of Brute-Force: $\Omega\left(2^{n}\right)$

An unsolved problem in

Computer Science/Mathematics

What is the intrinsic complexity of SAT?
SAT: Given as input a Boolean formula, decide if it is satisfiable or not.

We saw SAT is decidable in $\mathrm{O}\left(2^{\mathrm{N}} \cdot \mathrm{N}\right)$ time. Is SAT decidable in polynomial $\mathrm{O}\left(\mathrm{N}^{C}\right)$ time?
This is precisely the \mathbf{P} versus NP problem!

The P versus NP problem

Is SAT decidable in polynomial $\mathrm{O}\left(\mathrm{N}^{\mathrm{C}}\right)$ time?

Warning: You won't get the full, glorious perspective on why "P versus NP" is so important until Lectures 17-19

The P versus NP problem

Is SAT decidable in polynomial $\mathrm{O}\left(\mathrm{N}^{C}\right)$ time?

Most(?) people believe the answer is NO.
Why is it so hard to prove this?

Polynomial-time algorithms can do so many amazing, surprising things!

Very hard to prove efficient algorithm don't exist.

Boolean formulas as binary trees

$$
((\neg x \rightarrow y) \wedge((x \vee z) \leftrightarrow y))
$$

Boolean formulas as binary trees

 Variables at the leaves

Boolean formulas as binary trees

 Variables at the leavesConnectives at the internal nodes
Connectives have fan-in 2 (except \neg has fan-in 1)

Boolean formula conventions

- The "size" of a formula is the \# of leaves (which is also \# of variable-appearances).
$((\neg x \rightarrow y) \wedge((x \vee z) \leftrightarrow y))$ has size 5 , for example

Boolean formula conventions

- The "size" of a formula is the \# of leaves (which is also \# of variable-appearances).
- Sometimes $\rightarrow, \leftrightarrow$, other connectives allowed. Sometimes just \neg, \wedge, \vee. This is "without (much) loss of generality".
- $((((a \wedge b) \wedge c) \wedge d) \cdots \wedge z)$ is often written as
($a \wedge b \wedge c \wedge d \wedge \cdots \wedge z$), similarly for \vee.
Doesn't affect "size" but does affect "depth".

$$
((((a \wedge b) \wedge c) \wedge d)
$$

$$
(a \wedge b \wedge c \wedge d)
$$

"Allowing unlimited fan-in"

More on truth tables

Every n -variable formula yields a truth table.
Two different n-variable formulas can have the same truth table.

More on truth tables

Every n -variable formula yields a truth table.
Two different n-variable formulas can have the same truth table.

More on truth tables

	X	y	2	($\mathrm{y} \wedge(\mathrm{x} \vee \mathrm{z})$)	
	0	0	0	0	
	0	0	1	0	
all possib	0	1	0	0	
all possible truth assignments	0	1	1	1	
,	1	0	0	0	
	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

Every n -variable formula yields a truth table.
Two different n -variable formulas can have the same truth table.

More on truth tables

	X	Y	z	$(\mathrm{y} \wedge(\mathrm{x} \vee \mathrm{z})$)	
	0	0	0	0	
	0	0	1	0	
,	0	1	0	0	
all possible truth assignments	0	1	1	1	
	1	0	0	0	
	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

If two n-variable formulas have the same truth table, we call them equivalent.

More on truth tables

x	y	$(\mathrm{x} \rightarrow \mathrm{y})$			
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$			
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$			
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	y	$(\neg \mathrm{x} \vee \mathrm{y})$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$			
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$			

x	y	$(x \vee y)$
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{x}	\mathbf{y}	$\neg(\neg \mathbf{x} \wedge \neg \mathbf{y})$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

If two n-variable formulas have the same truth table, we call them equivalent.

Boolean functions

We also think of an n-bit truth table as a Boolean function, $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

We think of any formula having that truth table as "computing" that Boolean function.

A Boolean function $f:\{0,1\}^{3} \rightarrow\{0,1\}$ can be specified by a truth table. E.g.:

X	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Or it can be specified by words. E.g.:
" $f(x, y, z)=1$ iff at least two input bits are 1 "

Question:

How many Boolean functions (truth tables) are there on n variables?

Answer: $2^{2^{n}}$

We know each Boolean formula on n variables "computes" one such function.

Question:

Is every Boolean function (truth table) computed by some Boolean formula?

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f
0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{0}$
0	0	1	1	0
0	1	0	0	0
0	1	0	1	$\mathbf{0}$
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	$\mathbf{0}$
1	0	1	0	0
1	0	1	1	0
1	1	0	0	$\mathbf{0}$
1	1	0	1	$\mathbf{0}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{1}$

$$
x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}
$$

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	$\neg X_{1} \wedge \neg X_{2} \wedge \neg X_{3} \wedge \neg X_{4}$
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	$X_{1} \wedge \neg X_{2} \wedge X_{3} \wedge \neg X_{4}$
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

Is every truth table computed by some formula?

X_{1}	X_{2}	X_{3}	X_{4}	f
0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{0}$
0	0	1	1	$\mathbf{0}$
0	1	0	0	0
0	1	0	1	$\mathbf{0}$
0	1	1	0	0
0	1	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	$\mathbf{0}$
1	0	1	1	0
1	1	0	0	$\mathbf{0}$
1	1	0	1	$\mathbf{0}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{0}$

$$
\neg X_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}
$$

Is every truth table computed by some formula?

X_{1}	x_{2}	X_{3}	X_{4}	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

We can similarly do any truth table with exactly one 1.

Is every truth table computed by some formula?

Is every truth table computed by some formula?

Is every truth table computed by some formula?

X_{1}				f	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	What if there
0	0	1	1	0	
0	1	0	0	0	are three l's?
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	1	$\left(\neg x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}\right)$
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	1	$\left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{4}\right)$
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	$\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge \neg x_{4}\right)$
1	1	1	0	1	
1	1	1	1	0	

We have just given a "proof by example" © of:

Theorem:

Every Boolean function (truth table) over n variables can be computed by a formula.

Actually, we missed a case...
...the Boolean function which is always 0.
Well, it's computed by $\left(x_{1} \wedge \neg x_{1}\right)$.

Theorem:

Every Boolean function (truth table) over n variables can be computed by a formula.

In fact, by a big \vee of \wedge 's of (possibly negated) variables.

Theorem:

Every Boolean function (truth table) over n variables can be computed by a DNF formula of size $\leq 2^{n}$.n.

Same statement but with a "CNF formula": a big \wedge of \vee 's of (possibly negated) variables.

Why?? "De Morgan formulas"!

Circuits

Wait, aren't these circuits?

Yes they are, but circuits are more general than formulas.

Below is a circuit, but it's not a formula.

What's the difference?

Below is a circuit, but it's not a formula.

What's the difference?
Circuits can have fan-out > 1.

Anatomy of a circuit

Anatomy of a circuit

No "loops" allowed! ("directed acyclic graph")
There is (at least) one "evaluation ordering".

Evaluation ordering

Any set of gates can be designated as "output"; if unspecified, the "last" gate is the single output.

Evaluation ordering

"Size" of a circuit: \# of non-input gates. (In this example, 5.)

Circuits as programming languages

This is a great way to specify a circuit. \rightarrow No picture required!

Looks like code in a programming language!
G_{1} : x (input)
G_{2} : y (input)
G_{3} : z (input)
$\mathrm{G}_{4}: \wedge\left(\right.$ of $\left.\mathrm{G}_{1}, \mathrm{G}_{2}\right)$
G_{5} : $\neg\left(\right.$ of $\left.\mathrm{G}_{4}\right)$
$\mathrm{G}_{6}: \vee\left(\right.$ of $\left.\mathrm{G}_{2}, \mathrm{G}_{3}\right)$
$\mathrm{G}_{7}: \wedge\left(\mathrm{of} \mathrm{G}_{4}, \mathrm{G}_{6}\right)$
$\mathrm{G}_{8}: \vee\left(\mathrm{of} \mathrm{G}_{5}, \mathrm{G}_{7}\right)$

Looks like circuit size \approx running time...

Circuits:

Super-simple.
Looks like a programming language.
Circuit complexity (size) is very concrete.
Circuits can compute any Boolean function.

> Why didn't we use circuits
> (instead of Turing Machines) to define computation?!

Good question, we'll come back to that...

Definitional question:

What gates are "allowed" in circuits?
Almost always allowed: \wedge with fan-in 2
\checkmark with fan-in 2
\neg with fan-in 1

Usually allowed:
Sometimes allowed:

> 0 with fan-in 0 1 with fan-in 0
any fan-in 2 gate; e.g.,
\equiv (equals), \oplus (XOR)
Often allowed: ^ with any fan-in \checkmark with any fan-in

Doesn't make a big difference, but always ask.

Let's build a circuit for 10-bit PALINDROMES

$$
\begin{gathered}
f:\{0,1\}^{10} \rightarrow\{0,1\} \\
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right)=1
\end{gathered}
$$

if and only if input string is same as its reverse Let's be liberal, allow all gates on previous slide.

Size? $\quad 6$
 (Depth? 2)

What if we only allow fan-in 2 gates?

Size? 9 (Depth? higher)

What if we only allow fan-in 2 gates?

Circuit size for 10-bit inputs: 9 Circuit size for 11-bit inputs: 9 Circuit size for 12-bit inputs: 11 Circuit size for 13-bit inputs: 11

Continuing this pattern, we can get a circuit deciding n-bit inputs for Palindrome having size... $S(n)= \begin{cases}n-1 & \text { if } n \text { is even } \\ n-2 & \text { if } n \text { is odd }\end{cases}$ (which is $\Theta(n)$)

Circuits:

Super-simple.
Look like a programming language.
Circuit complexity (size) is very concrete.
Circuits can compute any Boolean function.

Why didn't we use circuits
(instead of Turing Machines)
to define computation?!

Inspirational quotation from a famous man:

"An algorithm is a finite answer to an infinite number of questions"

Stephen Kleene

Less Inspirational quote

"Circuits are an infinite answer to an infinite
number of questions $\theta^{\prime \prime}$
me

Consider the language PALINDROMES $\subseteq\{0,1\}^{*}$
How can we compute it using circuits?
Well, for length-10 inputs we had something...

Consider the language PaLINDROMES $\subseteq\{0,1\}^{*}$

 How can we compute it using circuits?Well, for length-10 inputs we had something...

Consider the language Palindromes $\subseteq\{0,1\}^{*}$ How can we compute it using circuits?
Well, for length-10 inputs we had something... For length-11 inputs we had something else... For length-12 inputs we had something else... For length-0 inputs we had something else... For length-1 inputs we had something else...

This is called a "family of circuits".
It's a fine mathematical concept, but we don't like it to use it to define "computation", because it's infinite.
(It sort of begs the question: In real life, how do you get C_{n} ? Hopefully, there's an algorithm that on input n, outputs $\mathrm{C}_{\mathrm{n}} \ldots$)

Definition:

A family of circuits \mathcal{C} is an infinite sequence
$C_{0}, C_{1}, C_{2}, \ldots$ where C_{n} is a circuit with n inputs.
We say C decides $L \subseteq\{0,1\}^{*}$ if for all $n \in \mathbb{N}$, C_{n} decides $L_{n}=L \cap\{0,1\}^{n}$.
The size of C is the function $S: \mathbb{N} \rightarrow \mathbb{N}$ defined by $S(n)=$ size of C_{n}.

Example

Let \mathcal{C} be the family of circuits where C_{n} is...

Then \mathcal{C} decides the language PALINDROMES and has size O(n); more precisely,
$S(n)= \begin{cases}n-1 & \text { if } n \text { is even } \\ n-2 & \text { if } n \text { is odd }\end{cases}$ *only for $n \geq 4$;

Recall:
 Every n-bit Boolean function computable by a formula/circuit of size $O\left(2^{n} \cdot n\right)$.

Consequence:
Every language is computed by a family of circuits of size $O\left(2^{n} \cdot n\right)$.

Recall: Every n-bit Boolean function computable by a formula/circuit of size $O\left(2^{n} \cdot n\right)$.

Easy improvement:
Every language is computed by a family of circuits of size $O\left(2^{n}\right)$.

Recall: Every n-bit Boolean function computable by a formula/circuit of size $O\left(2^{n} \cdot n\right)$.

Slightly trickier improvement:
Every language is computed by a family of circuits of size $O\left(2^{n} / n\right)$.

Proved by the great Claude Shannon in 1949.

Theorem:

Suppose there is a TM deciding L in time $T(n)$.
Then it can be converted into a circuit family deciding L with size $S(n)=O\left(T(n)^{2}\right)$.

If you like a challenge, try to prove this yourself.
We will need and use this when studying "NP-hardness".

Theorem:

Suppose there is a TM deciding L in time $T(n)$.
Then it can be converted into a circuit family deciding L with size $S(n)=O\left(T(n)^{2}\right)$.

Corollary:

Any L solvable in polynomial time on TMs (or in RAM model) has polynomial-size circuits.

Corollary:

If you want to show some L is not solvable in polynomial time, suffices to show it is not solvable by polynomial-size circuit families.

Corollary:

Any L solvable in polynomial time on TMs (or in RAM model) has polynomial-size circuits.

Corollary:

If you want to show some L is not solvable in polynomial time, suffices to show it is not solvable by polynomial-size circuit families.

In the '80s, this was viewed as the approach that would solve \mathbf{P} versus NP.
"Just" have to show that SAT doesn't have polynomial-size circuit families.

Shannon's Theorem 1:

Every n-bit Boolean function has an $\wedge / v / \neg$ circuit of size $O\left(2^{n} / n\right)$

Shannon's Theorem 2:
Almost every n-bit Boolean function requires a circuit of size $\Omega\left(2^{n} / n\right)$
(even when all fan-in 2 gates are allowed)
"Essentially all computational problems require exponential circuit complexity."

Shannon's Theorem 2:

Almost every n-bit Boolean function requires a circuit of size $\Omega\left(2^{n} / n\right)$.

Proof:

Let $s=(1 / 4) 2^{n} / n$. We'll show: There are $\leq(1.5)^{2^{n}}$ circuits of size s. But there are way more n-bit Boolean functions: $2^{2^{n}}$.

Think of the "programming language" form of a size-s circuit. After the n input gates, we have s more lines. Each defined by a gate type (16 choices) and two previous lines ($\leq n+s$ choices). So there are at most $[16 \cdot(n+s) \cdot(n+s)]^{S}$ possible circuits.

The [\cdots] quantity is $\leq 64 s^{2}$ because $n+s \leq 2 s$, and $64 s^{2} \leq\left(2^{n}\right)^{2}$. So there are at most $\left[\left(2^{n}\right)^{2}\right]^{s}=2^{2 n s}=2^{(1 / 2)} 2^{n}=(1.41 \ldots)^{2^{n}}$ circuits.

Shannon's Theorem 2:
Almost every n-bit Boolean function requires a circuit of size $\Omega\left(2^{n} / n\right)$.
"Essentially all computational problems require exponential circuit complexity."

So... what's an example of one?

If SAT is an example, we resolve \mathbf{P} versus NP!

Or... can we just find any explicit example?!

Challenge: Find an explicit n-bit function requiring large circuit size.

Shannon: Practically all functions need $\Omega\left(2^{n} / n\right)$.
1965: Kloss \& Malyshev show a certain simple function requires size $\geq 2 n-3$

1977: Paul \& Stockmeyer show certain simple functions requires size $\geq 2.5 n-1.5$
1984: N. Blum showed a certain pretty simply function requires size $\geq 3 n-3$

Consider n = 50

Shannon: Practically all functions 20 trillion

1965: Kloss \& Malyshev show a certain simple function requires size $\geq 2 n-3$

1977: Paul \& Stockmeyer show certain simple functions requires size $\geq 2.5 n-1.5$
1984: N. Blum showed a certain pretty simple function requires size ≥ 147

1965: Kloss \& Malyshev show a certain simple function requires size $\geq 2 n-3$

1977: Paul \& Stockmeyer show certain simple functions requires size $\geq 2.5 n-1.5$
1984: N. Blum showed a certain pretty simple function requires size $\geq 3 n-3$

Great news!!

Last year: Find, Golevnev, Hirsch, Kulikov showed a certain function requires size $\geq(3+1 / 86) n-O\left(n^{.8}\right)$

This pretty much sums up where we are on \mathbf{P} versus NP.

Definitions:

Study Guide

Boolean formulas Truth tables Boolean functions The Sat problem Circuits Circuit familes \& size

Theorems:
Every function can be computed by a DNF
Almost every function requires circuits of size $\Omega\left(2^{n} / n\right)$.

