
15-251: Great Theoretical Ideas in Computer Science 

Boolean Formulas and Circuits 

Spring 2017, Lecture 15 



Today 

• Briefly mention the “P versus NP” problem 

• Remind you of Boolean formulas 

• Tell you about  Boolean circuits 

• Relate circuit size to algorithmic efficiency 

• See why circuits are a good approach to P vs. NP 

• See why circuits are a  bad  approach to P vs. NP 
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P versus NP 

One if not the most famous unsolved problems in 

all of Computer Science and all of Mathematics 

I can state it for you in ten minutes 

Warning:  You won’t get the full, glorious 

  perspective on why “P versus NP” 

  is so important until Lectures 17–19 

 



Boolean formulas 

You’ve seen these before in Concepts: 
 

(( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 

x, y, z, …    Boolean variables, values 0/1 (or T/F) 

¬, ∧, ∨, …  Boolean connectives (or operations) 

A B ¬A (A∧B) (A∨B) (A→B) (A↔B) 

0 0 1 0 0 1 1 

0 1 1 0 1 1 0 

1 0 0 0 1 0 0 

1 1 0 1 1 1 1 



Boolean formulas 

You’ve seen these before in Concepts. 
 

Stuff like this: 

(( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 

x, y, z, …    Boolean variables, values 0/1 (or T/F) 

¬, ∧, ∨, …  Boolean connectives (or operations) 

Truth assignment:    0/1 value for each variable 

A formula is satisfiable if there’s a truth assignment 

to the variables making the whole formula true 



x y z (( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 

0 0 0                       0 

0 0 1                       0 

0 1 0                       0 

0 1 1                       1 

1 0 0                       0 

1 0 1                       0 

1 1 0                       1 

1 1 1                       1 

Truth tables 

all possible 

truth assignments 

resulting 

truth value 

Satisfiable:   At least one 1 in truth table 

Unsatisfiable:  No 1’s in truth table 

Tautology:   All  1’s in truth table 



An unsolved problem in 
Computer Science/Mathematics: 

 

Who invented truth tables? 

Wittgenstein? Russell? Peirce? 

Łukasiewicz? 

Post? 

Jevons? Ladd–Franklin? 



Another unsolved problem in 
Computer Science/Mathematics: 

 

What is the intrinsic complexity of SAT? 

 

SAT:  Given as input a Boolean formula, 

 decide if it is satisfiable or not. 

Question: Is SAT decidable? 

Answer:  Yes. 



SAT is decidable 

Say the input formula is G. 

Brute-Force-Algorithm(G): 

    Enumerate all truth assignments α. 

    For each α, compute the truth value it gives G. 

    If any of them satisfy G, then ACCEPT, else REJECT. 

Remark:  RAM pseudocode should have some 

       more detail, but I expect you could fill it in. 



SAT is decidable 

Say the input formula is G. 

Brute-Force-Algorithm(G): 

    Enumerate all truth assignments α. 

    For each α, compute the truth value it gives G. 

    If any of them satisfy G, then ACCEPT, else REJECT. 

Say the input length (encoding size) of G is N. 

Say the # of variables in G is n.   

(Although we usually write n for input length, 

for SAT it’s super-traditional to use it for # of variables.) 

(Note: n ≤ N.) 



SAT is decidable 

Say the input formula is G. 

Brute-Force-Algorithm(G): 

    Enumerate all truth assignments α. 

    For each α, compute the truth value it gives G. 

    If any of them satisfy G, then ACCEPT, else REJECT. 

Say the input length (encoding size) of G is N. 

Say the # of variables in G is n.   (Note: n ≤ N.) 

# of truth assignments? 2n 

    Running time of Brute-Force:   Ω(2n) 



SAT is decidable 

Say the input formula is G. 

Brute-Force-Algorithm(G): 

    Enumerate all truth assignments α. 

    For each α, compute the truth value it gives G. 

    If any of them satisfy G, then ACCEPT, else REJECT. 

Say the input length (encoding size) of G is N. 

Say the # of variables in G is n.   (Note: n ≤ N.) 

    Running time of Brute-Force:   Ω(2n) 

    Running time of Brute-Force:   O(2n∙N) 



An unsolved problem in 
Computer Science/Mathematics 

 

What is the intrinsic complexity of SAT? 
 

SAT:  Given as input a Boolean formula, 

 decide if it is satisfiable or not. 

We saw SAT is decidable in O(2N∙N) time. 

This is precisely the P versus NP problem! 

Is SAT decidable in polynomial O(Nc) time? 



 Is SAT decidable in polynomial O(Nc) time? 

Warning:  You won’t get the full, glorious 

  perspective on why “P versus NP” 

  is so important until Lectures 17–19 

 

The P versus NP problem 



Is SAT decidable in polynomial O(Nc) time? 

The P versus NP problem 

Most(?) people believe the answer is NO. 

Why is it so hard to prove this? 

Polynomial-time algorithms can do 

so many amazing, surprising things! 

Very hard to prove efficient algorithm don’t exist. 



Boolean formulas as binary trees 

(( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 

∧ 

→ ↔ 

¬ y ∨ y 

x x z 



Boolean formulas as binary trees 

∧ 

→ ↔ 

¬ y ∨ y 

x x z 

Variables at the leaves 



Boolean formulas as binary trees 

∧ 

→ ↔ 

¬ y ∨ y 

x x z 

Variables at the leaves 

Connectives at the internal nodes 

Connectives have fan-in 2 (except ¬ has fan-in 1) 



Boolean formula conventions 

(( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 
∧ 

→ ↔ 

¬ y ∨ y 

x x z 

has size 5, 

for example 

• The “size” of a formula is the # of leaves 

(which is also # of variable-appearances). 
 



Boolean formula conventions 

• The “size” of a formula is the # of leaves 

(which is also # of variable-appearances). 
 

• Sometimes →, ↔, other connectives allowed. 

Sometimes just ¬, ∧, ∨.      

This is “without (much) loss of generality”. 
 

• ((((a ∧ b) ∧ c) ∧ d) ∙∙∙ ∧ z) is often written as 

    (a ∧ b ∧ c ∧ d ∧ ∙∙∙ ∧ z),   similarly for ∨. 
 

Doesn’t affect “size” but does affect “depth”. 



((((a ∧ b) ∧ c) ∧ d) 

∧ 

a ∧ 

b ∧ 

c d 

(a ∧ b ∧ c ∧ d) 

∧ 

a d b c 

“Allowing unlimited fan-in” 



x y z (( ¬x → y ) ∧ ((x ∨ z) ↔ y)) 

0 0 0                       0 

0 0 1                       0 

0 1 0                       0 

0 1 1                       1 

1 0 0                       0 

1 0 1                       0 

1 1 0                       1 

1 1 1                       1 

More on truth tables 

all possible 

truth assignments 

resulting 

truth value 

Every n-variable formula yields a truth table. 

Two different n-variable formulas 
can have the same truth table. 



x y z (x ∧ y) ∨ (y ∧ z)  d 

0 0 0                       0 

0 0 1                       0 

0 1 0                       0 

0 1 1                       1 

1 0 0                       0 

1 0 1                       0 

1 1 0                       1 

1 1 1                       1 

More on truth tables 

all possible 

truth assignments 

resulting 

truth value 

Every n-variable formula yields a truth table. 

Two different n-variable formulas 
can have the same truth table. 



x y z (y ∧ (x ∨ z))  d 

0 0 0                       0 

0 0 1                       0 

0 1 0                       0 

0 1 1                       1 

1 0 0                       0 

1 0 1                       0 

1 1 0                       1 

1 1 1                       1 

More on truth tables 

all possible 

truth assignments 

resulting 

truth value 

Every n-variable formula yields a truth table. 

Two different n-variable formulas 
can have the same truth table. 



x y z (y ∧ (x ∨ z))  d 

0 0 0                       0 

0 0 1                       0 

0 1 0                       0 

0 1 1                       1 

1 0 0                       0 

1 0 1                       0 

1 1 0                       1 

1 1 1                       1 

More on truth tables 

all possible 

truth assignments 

resulting 

truth value 

If two n-variable formulas have the same 
truth table, we call them equivalent. 



x y (¬x ∨ y)d 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

More on truth tables 

If two n-variable formulas have the same 
truth table, we call them equivalent. 

x y (x → y) 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

≡ 

x y ¬(¬x ∧ ¬y)d 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x y   (x ∨ y) i 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

≡ 



Boolean functions 

We also think of an n-bit truth table as a 
Boolean function,    f : {0,1}n → {0,1}. 

We think of any formula having that truth table 
as “computing” that Boolean function. 



A Boolean function f : {0,1}3 → {0,1} can be  

      specified by a truth table.  E.g.: 

Or it can be specified by words.  E.g.: 

    “f(x,y,z) = 1 iff at least two input bits are 1” 

x y z f(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 



Question:    

     How many Boolean functions (truth tables) 

     are there on n variables? 

Answer:   22
n 

We know each Boolean formula on n 

variables “computes” one such function. 
 

 

Is every Boolean function (truth table) 

computed by some Boolean formula? 

Question: 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

1  

x1 ∧ x2 ∧ x3 ∧ x4 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

1  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

0  

0  

0  

1  

0  

0  

0  

0  

0  

x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

1  

0  

0  

0  

0  

0  

0  

0  

0  

¬x1 ∧ x2 ∧ x3 ∧ x4 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

We can similarly do 

any truth table 

with exactly one 1. 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

1  

0  

0  

1  

0  

0  

0  

0  

0  

(¬x1 ∧ x2 ∧ x3 ∧ x4) 

∨ 

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4) 

What if there 

are two 1’s? 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

1  

0  

0  

1  

0  

0  

0  

0  

0  

(¬x1 ∧ x2 ∧ x3 ∧ x4) 

∨ 

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4) 

What if there 

are three 1’s? 



Is every truth table computed by some formula? 

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 0 0 0  

1 0 0 1  

1 0 1 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

x1  x2  x3  x4      f 

0  

0  

0  

0  

0  

0  

0  

1  

0  

0  

1  

0  

0  

0  

1  

0  

(¬x1 ∧ x2 ∧ x3 ∧ x4) 

∨ 

(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4) 

∨ 

(x1 ∧ x2 ∧ x3 ∧ ¬x4) 

What if there 

are three 1’s? 



We have just given a “proof by example”  of: 

 

Theorem: 

    Every Boolean function (truth table) over 

    n variables can be computed by a formula. 

 

Actually, we missed a case… 

     …the Boolean function which is always 0. 
 

     Well, it’s computed by (x1 ∧ ¬x1). 



Theorem: 

    Every Boolean function (truth table) over 

    n variables can be computed by a formula. 

 

In fact, by a big ∨ of ∧’s of (possibly negated) variables. 

∨ 

∧ ∧ ∧ 

x1 x2 x3 x1 x2 x3 

¬ 

x1 x2 x3 

¬ ¬ 

“DNF formula” 

Size ≤ 2n∙n 



Theorem: 

    Every Boolean function (truth table) over 

    n variables can be computed by a  

    DNF formula of size ≤ 2n∙n. 

 

    Same statement but with a “CNF formula”: 

    a big ∧ of ∨’s of (possibly negated) variables. 

    Why?? 

     

“De Morgan formulas”! 



Circuits 



∧ 

∨ ∧ 

¬ y ∨ y 

x x z 

Wait, aren’t these circuits? 

Yes they are, but circuits are 

more general than formulas. 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Below is a circuit, but it’s not a formula. 

What’s the difference? 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Below is a circuit, but it’s not a formula. 

What’s the difference? 

Circuits can have fan-out > 1. 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Anatomy of a circuit 

gates 

output 

wires 

inputs 

a gate with 
    “fan-in” 2, 
“fan-out” 1 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Anatomy of a circuit 

No “loops” allowed!  (“directed acyclic graph”) 

There is (at least) one “evaluation ordering”. 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Evaluation ordering 

G1:  x  (input) 

G2:  y  (input) 

G3:  z  (input) 

G4:  ∧ (of G1, G2) 

G5:  ¬ (of G4) 

G6:  ∨ (of G2, G3) 

G7:  ∧ (of G4, G6) 

G8:  ∨ (of G5, G7) 

1 2 3 

4 6 

5 7 

8 

Any set of gates can be designated as “output”; 
if unspecified, the “last” gate is the single output. 



¬ 

x 

∧ 

z 

∨ 

y 

∧ 

∨ 

Evaluation ordering 

1 2 3 

4 6 

5 7 

8 

“Size” of a circuit:    # of non-input gates.  
                             (In this example, 5.) 

G1:  x  (input) 

G2:  y  (input) 

G3:  z  (input) 

G4:  ∧ (of G1, G2) 

G5:  ¬ (of G4) 

G6:  ∨ (of G2, G3) 

G7:  ∧ (of G4, G6) 

G8:  ∨ (of G5, G7) 



Circuits as programming languages 

   This is a great way 

   to specify a circuit.    →  

No picture required! 

Looks like code in a  

programming language! 

Looks like circuit size ≈ running time… 

G1:  x  (input) 

G2:  y  (input) 

G3:  z  (input) 

G4:  ∧ (of G1, G2) 

G5:  ¬ (of G4) 

G6:  ∨ (of G2, G3) 

G7:  ∧ (of G4, G6) 

G8:  ∨ (of G5, G7) 



Circuits:  

 Super-simple. 

 Looks like a programming language. 

 Circuit complexity (size) is very concrete. 

 Circuits can compute any Boolean function. 

Why didn’t we use circuits 

(instead of Turing Machines) 

to define computation?! 

Good question, we’ll come back to that… 



Definitional question: 

What gates are “allowed” in circuits? 

∧ with fan-in 2 
∨ with fan-in 2 
¬ with fan-in 1 

Almost always allowed:  

 0 with fan-in 0 
 1 with fan-in 0 

Usually allowed:  

 any fan-in 2 gate; e.g., 
 ≡ (equals),  ⊕ (XOR) 

Sometimes allowed:  

∧ with any fan-in 
∨ with any fan-in 

Often allowed:  

Doesn’t make a big difference, but always ask. 



Let’s build a circuit for 10-bit PALINDROMES 

f : {0,1}10 → {0,1} 

f(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10) = 1  

if and only if input string is same as its reverse 

Let’s be liberal, allow all gates on previous slide. 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

Size? 6 (Depth?           ) 2 

What if we only allow fan-in 2 gates? 



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

∧ 

∧ 

∧ 

Size? 9 (Depth?           ) higher 

What if we only allow fan-in 2 gates? 



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

∧ 

∧ 

∧ 

Circuit size for 10-bit inputs: 9 

Circuit size for 11-bit inputs: 9 

Circuit size for 12-bit inputs: 11 

Circuit size for 13-bit inputs: 11 



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

∧ 

∧ 

∧ 

Continuing this pattern, we can get a circuit 

deciding n-bit inputs for PALINDROME having size… 

( which is Θ(n) ) 



Circuits:  

 Super-simple. 

 Look like a programming language. 

 Circuit complexity (size) is very concrete. 

 Circuits can compute any Boolean function. 

Why didn’t we use circuits 

(instead of Turing Machines) 

to define computation?! 



Inspirational quotation from a 
famous man: 

 
 

“An algorithm is a finite 
answer to an infinite        

1number of questions” 
 
 

Stephen Kleene 



 
 

“Circuits are an infinite 
answer to an infinite        

1number of questions ” 
 
 

me 

Less Inspirational quote 



Consider the language PALINDROMES ⊆ {0,1}* 

How can we compute it using circuits? 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

∧ 

∧ 

∧ 

Well, for length-10 inputs we had something… 



Consider the language PALINDROMES ⊆ {0,1}* 

How can we compute it using circuits? 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

≡ ≡ ≡ ≡ ≡ 

∧ 

∧ 

∧ 

∧ 

Well, for length-10 inputs we had something… 



Consider the language PALINDROMES ⊆ {0,1}* 

How can we compute it using circuits? 

Well, for length-10 inputs we had something… 

C10 

For length-11 inputs we had something else… 

C11 

For length-12 inputs we had something else… 

C12 

For length-0   inputs we had something else… 

C0 C1 

For length-1   inputs we had something else… 



C10 C11 C12 C0 C1 

This is called a “family of circuits”. 
 

It’s a fine mathematical concept, but we 

don’t like it to use it to define “computation”, 

because it’s infinite. 
 

(It sort of begs the question:  In real life, how do you get Cn?   

   Hopefully, there’s an algorithm that on input n, outputs Cn…) 



C10 C11 C12 C0 C1 

Definition: 

    A family of circuits C is an infinite sequence  

    C0, C1, C2, … where Cn is a circuit with n inputs. 
 

    We say C decides L ⊆ {0,1}* if for all n ∈ ℕ, 

        Cn decides Ln = L ⋂ {0,1}n. 
 

    The size of C is the function S : ℕ → ℕ  

        defined by S(n) = size of Cn. 



Let C be the family of 

circuits where Cn is… 

G1: x1 (input) 

G2: x2 (input) 

 ∙∙∙ 

Gn: xn   (input) 

E1: ≡  (of G1, Gn) 

E2 ≡ (of G2, Gn−1) 

E3: ≡ (of G3, Gn−2) 

 ∙∙∙     

E⌊n/2⌋: ≡ (of G⌊n/2⌋, G⌈n/2⌉+1) 

A1: ∧ (of E1, E2) 

A2: ∧ (of A1, E3) 

A3: ∧ (of A2, E4) 

 ∙∙∙     

A⌊n/2⌋−1: ∧ (of A⌊n/2⌋−1, E⌊n/2⌋) 

Example 

Then C decides the 

language PALINDROMES 

and has size O(n);  

more precisely,  

*only for n ≥ 4; 

special cases for n=0,1,2,3 



Consequence: 

    Every language is computed by a family 

        of circuits of size O(2n∙n). 

Recall: Every n-bit Boolean function computable 

  by a formula/circuit of size O(2n∙n). 

 
(I don’t mean to alarm you, 

but this includes HALT!!) 



Easy improvement: 

    Every language is computed by a family 

        of circuits of size O(2n). 

Recall: Every n-bit Boolean function computable 

  by a formula/circuit of size O(2n∙n). 

 



Slightly trickier improvement: 

    Every language is computed by a family 

        of circuits of size O(2n/n). 

Recall: Every n-bit Boolean function computable 

  by a formula/circuit of size O(2n∙n). 

 

Proved by the great 

Claude Shannon in 1949. 



TM time versus circuit size 

Theorem: 

Suppose there is a TM deciding L in time T(n).  

Then it can be converted into a circuit family 

    deciding L with size S(n) = O(T(n)2). 

If you like a challenge, try to prove this yourself. 
 
 
 

We will need and use this when studying 
 “NP-hardness”. 



TM time versus circuit size 

Theorem: 

Suppose there is a TM deciding L in time T(n).  

Then it can be converted into a circuit family 

    deciding L with size S(n) = O(T(n)2). 

Any L solvable in polynomial time on TMs  

(or in RAM model) has polynomial-size circuits. 

Corollary: 



TM time versus circuit size 

Corollary: 

If you want to show some L is not solvable 

in polynomial time, suffices to show it is not 

solvable by polynomial-size circuit families. 

Any L solvable in polynomial time on TMs  

(or in RAM model) has polynomial-size circuits. 

Corollary: 



Corollary: 

If you want to show some L is not solvable 

in polynomial time, suffices to show it is not 

solvable by polynomial-size circuit families. 

In the ’80s, this was viewed as the approach 

that would solve P versus NP. 
 

“Just” have to show that SAT doesn’t have 

polynomial-size circuit families. 

TM time versus circuit size 



Shannon’s Theorem 1: 

    Every n-bit Boolean function has an  

    ∧/∨/¬ circuit of size O(2n/n) 

Shannon’s Theorem 2: 

    Almost every n-bit Boolean function 

    requires a circuit of size Ω(2n/n) 
        (even when all fan-in 2 gates are allowed) 

“Essentially all computational problems 

  require exponential circuit complexity.” 



Shannon’s Theorem 2: 

    Almost every n-bit Boolean function 

    requires a circuit of size Ω(2n/n). 
 

Proof: 
    Let s = (1/4) 2n/n.  We’ll show: There are ≤ (1.5)2

n 
circuits of size s. 

    But there are way more n-bit Boolean functions: 22n
. 

     

    Think of the “programming language” form of a size-s circuit. 

    After the n input gates, we have s more lines.  Each defined by a 

    gate type (16 choices) and two previous lines (≤ n+s choices). 

    So there are at most [16 ∙ (n+s) ∙ (n+s)]s possible circuits. 

 

    The [∙∙∙] quantity is ≤ 64s2 because n+s ≤ 2s, and 64s2 ≤ (2n)2. 

    So there are at most [(2n)2]s = 22ns = 2(1/2) 2n 
= (1.41…)2

n
 circuits. 



Shannon’s Theorem 2: 

    Almost every n-bit Boolean function 

    requires a circuit of size Ω(2n/n). 

“Essentially all computational problems 

  require exponential circuit complexity.” 

So… what’s an example of one? 

If SAT is an example, we resolve P versus NP! 

Or… can we just find any explicit example?! 



Challenge:  Find an explicit n-bit function 

               requiring large circuit size. 

Shannon:  Practically all functions need Ω(2n/n). 

1965: Kloss & Malyshev show a certain simple 

   function requires size   ≥ 2n −3 

1977: Paul & Stockmeyer show certain simple 

   functions requires size ≥ 2.5n −1.5 

1984: N. Blum showed a certain pretty simply 

   function requires size   ≥ 3n −3 



Consider n = 50 

Shannon:  Practically all functions need Ω(2n/n). 

1965: Kloss & Malyshev show a certain simple 

   function requires size   ≥ 2n −3 

1977: Paul & Stockmeyer show certain simple 

   functions requires size ≥ 2.5n −1.5 

1984: N. Blum showed a certain pretty simple 

   function requires size   ≥ 3n −3 
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Last year:  Find, Golevnev, Hirsch, Kulikov 

 showed a certain function requires size  

                      −O(n.8) ≥ (3+1/86)n 

1965: Kloss & Malyshev show a certain simple 

   function requires size   ≥ 2n −3 

1977: Paul & Stockmeyer show certain simple 

   functions requires size ≥ 2.5n −1.5 

1984: N. Blum showed a certain pretty simple 

   function requires size   ≥ 3n −3 

Great news!! 



This pretty much sums up 

where we are on P versus NP. 



Definitions: 
 

  Boolean formulas 

  Truth tables 

  Boolean functions 

  The SAT problem 

  Circuits 

  Circuit familes & size 
 

 

 

 

Theorems: 
  

 Every function can be 
   computed by a DNF 

 Almost every function 
   requires circuits of 
   size Ω(2n/n). 

Study Guide 


