
15-251: Great Theoretical Ideas in Computer Science 

Gödel’s Incompleteness 
Theorems 

Lecture 16 

Don’t stress, 
Kurt, it’s easy! 



Proving the famous 

“Gödel Incompleteness Theorems” 

is easy if you use computer science. 

It’s a Great Application of Theoretical 

Computer Science to mathematics. 

It’s so easy, let’s spend some time 

learning and reviewing  



Given a vocabulary, some sentences are “tautologies”: 

e.g.:                                                        

(∀x(x=a))→(Next(a)=a) 

∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b))) 

IsCool(c)→(∃x IsCool(x)) 

 

i.e.,  “true for all possible interpretations”, 

“automatically true, for ‘purely logical’ reasons”. 

stuff like   ∀x (¬(x=a)→IsSmarter(Father(a),Father(x))). 

First Order Logic: 



Gödel’s Completeness Theorem (1929): 

“There’s a (computable) 

Deductive Calculus for tautologies.” 

This “Deductive Calculus” has: 
 

   a bunch of axioms,  

        (all of which are obviously tautologies); 
 

   one deduction rule:  from A and A→B, deduce B. 

Everything deducible is a tautology. 

Gödel showed: every tautology is deducible. 



Gödel’s Completeness Theorem (1929): 

“There’s a (computable) 

Deductive Calculus for tautologies.” 

    Actually, Deductive Calculus does not have  

    finitely many axioms.  It has finitely many 

    “axiom schema”.  For example… 
 
 

“if A is any sentence, then A∨¬A is an axiom” 
 

“if IsR is any relation-name and c is any constant-name, 

then IsR(c)→(∃x IsR(x)) is an axiom” 



Gödel’s Completeness Theorem (1929): 

“There’s a (computable) 

Deductive Calculus for tautologies.” 

   “Computability”: 

 There’s an algorithm (say, a TM) which,  

        given a sentence, decides if it is an axiom. 
 
 

“if A is any sentence, then A∨¬A is an axiom” 
 

“if IsR is any relation-name and c is any constant-name, 

then IsR(c)→(∃x IsR(x)) is an axiom” 



Upshot of the Completeness Thm. 

There is a TM algorithm which, given a 

tautological sentence S, finds a 

deduction of it in the Deductive Calculus. 

Corollary: 

for k = 1, 2, 3, … 

 for all strings x of length k,  

  check if x is a deduction of S 

Proof: 



The set of tautologies is interesting, 
but it’s not THAT interesting. 

1. Think of some universe you want to reason about. 

2. Invent an appropriate vocabulary  

   (constant, function, relation names). 

3. ADD in some computable axioms (schemas)  

which are true under the interpretation you  

have in mind. 

4. See what these axioms entail.  

(By Gödel’s theorem, equivalent to what you can 

 deduce from the axioms in Deductive Calculus.) 

 

More typical use of first order logic: 



Ex. 1:  Arithmetic of ℕ  (Peano axioms) 

∀x ¬(Successor(x)=0) 
∀x ∀y (Successor(x)=Successor(y))→(x=y) 
∀x Plus(x,0)=x 
∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y)) 
∀x Times(x,0)=0 
∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x) 
“Induction:”  For any parameterized formula F(x), 
          (F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x) 

function-names: Successor(x) 
Plus(x,y) 
Times(x,y) 

extra axioms: 

constant-name: 0 



Ex. 2:  Set Theory  (ZFC axioms) 

∀x ∀y ( (∀z   z∈x ↔ z∈y)  →  x = y ) 

∀x ∀y ∃z (x∈z ∧ y∈z) 

… 7 more (computable) axioms & schemas …  

constant-names, function-names: none 

relation-name: IsElementOf(x,y) 
[“x∈y”] 

extra axioms, catchily known as “ZFC”: 



   How would you state/prove some theorem  

          about random walks on graphs?? 
 

  First, define natural numbers in terms of sets. 

  Next, define ordered pairs in terms of sets. 

  Next, define graphs in terms of pairs. 

  Next, define ℤ in terms of pairs (ℕ, ±). 

  Next, define ℚ in terms of (ℤ, ℤ). 

  Next, define functions in terms of pairs. 

  Next, define infinite sequences in terms of functions of ℕ. 

  Next, define ℝ in terms of infinite sequences from ℚ. 

  Next, make some basic definitions for probability theory. 

  Finally, state the theorem you want to prove! 

ZFC:  standard basic axioms (of set theory)       

      that can be used to model and prove 
 

     almost anything in mathematics  



Bertrand Russell Alfred Whitehead 

Principia Mathematica, ca. 1912 

Developed set theory, number theory,  
some real analysis using set theory & FOL. 

page 379: “1+1=2” 



It became generally agreed that 
you could rigorously formalize 

pretty much all mathematical proofs. 

But nobody wants to!   
(by hand, at least) 



Computer-assisted proof 

Proof assistant software like  
HOL Light, Mizar, Coq, Isabelle, does two things:   

1. Checks that a proof encoded 
in ZFC + Deductive Calculus for 

First Order Logic (or typed lambda calculus theory)  is valid. 

2.  Helps user code up such proofs. 

Developing proof assistants is an  
active area of research, particularly at CMU! 



Computer-formalized proofs 

Fundamental Theorem of Calculus (Harrison) 

Fundamental Theorem of Algebra (Milewski) 

Prime Number Theorem (Avigad++ @ CMU) 

Gӧdel’s Incompleteness Theorem (Shankar) 

Jordan Curve Theorem (Hales) 

Brouwer Fixed Point Theorem (Harrison) 

Four Color Theorem (Gonthier) 

Feit-Thompson Theorem (Gonthier) 

Kepler Conjecture (Hales) 

 



Remember:   

There is a TM which will print out and certify 

a proof of, say, the Four Color Theorem, 

coded up in ZFC+Deductive Calculus. 

 

for k = 1, 2, 3, … 

 for all strings P of length k,  

  check if P is a valid deduction of 4CT 

 

 



15-251: Great Theoretical Ideas in Computer Science 

Turing & Computability 

Lecture 7 



Decidable languages 

Definition: 

A language L ⊆ Σ* is decidable if there is  

     a Turing Machine M which: 
 

1.  Halts on every input  x∈ Σ*. 

2.  Accepts inputs x∈L and rejects inputs x∉L.  



The Halting Problem is Undecidable 

Turing’s Theorem: 

Let HALTS ⊆ {0,1}* be the language 

{ ⟨M,x⟩ : M is a TM which halts on input x }. 

Then HALTS is undecidable. 

It’s not: “we don’t know how to solve it efficiently”. 

It’s not: “we don’t know if it’s a solvable problem”. 

We know that it is unsolvable by any algorithm. 



Proof 

Here is the description of another TM called D, 

which uses MHALTS as a subroutine: 

Given as input ⟨M⟩, the encoding of a TM M: 

   D executes MHALTS( ⟨M, ⟨M⟩⟩ ). 

   If this call accepts, D enters an infinite loop. 

   If this call rejects,   D halts        (say, it accepts). 

D: 

Assume MHALTS is a decider TM which decides HALTS. 

By definition, D( ⟨D⟩ ) loops if it halts and halts if it loops. 

                Contradiction.   



15-251: Great Theoretical Ideas in Computer Science 

Gödel’s Incompleteness 
Theorems 

Lecture 15 

Don’t stress, 
Kurt, it’s easy! 



Suppose you just really cannot believe we 

proved that HALTS is undecidable. 

How would you try to write a program H which, 

on input ⟨M,x⟩, decides if M(x) eventually halts? 

Sample input: 

M = “for k = 4, 6, 8, 10, 12, 14, … 

       if k is not the sum of 2 primes then HALT.” 
 

x = ϵ  (empty string) 



Sample input: 

How would you try to write a program H which, 

on input ⟨M,x⟩, decides if M(x) eventually halts? 

Dunno.  Best idea I can think of is:   
Let H simulate M(x).  If M(x) halts 
after 1,000,000,000 steps, output 
“it halts”.  If M(x) still hasn’t halted 

after 1,000,000,000 steps, um… 

M = “for k = 4, 6, 8, 10, 12, 14, … 

       if k is not the sum of 2 primes then HALT.” 
 

x = ϵ  (empty string) 



I have a crazy and 
sort of awesome idea 

for how to write H. 

Kurt, you 
mathematicians 

always make things 
too complicated.   

 

Let me explain it. 

All 
right, 
fine. 



How would you try to write a program H which, 

on input ⟨M,x⟩, decides if M(x) eventually halts? 

Idea for H: 

“ for k = 1, 2, 3, … 

      for all strings P of length k,  

    •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 

              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) loops”    ” 



Idea for H: 

“ for k = 1, 2, 3, … 

      for all strings P of length k,  

    •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 

              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) loops”    ” 

By my theorem:  this TM H, 
like all algorithms, does not 
decide the Halting Problem. 



Conclusion: 
 

There is some TM M and some string x such that 

ZFC+Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 

But M(x) either halts or it loops! 

One of these two statements is true! 

 There is a true mathematical statement 

that cannot be proved (in ZFC+Deductive Calculus). 



This is basically 

Gödel’s First Incompleteness Theorem. 



“ for k = 1, 2, 3, … 

      for all strings P of length k,  

    •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually halts’ 

              If so, let H halt and output “yes, M(x) halts” 

 •  Check if P is a valid ZFC + Deductive Calculus 

     proof of the statement ‘M(x) eventually loops’ 

              If so, let H halt and output “no, M(x) halts”    ” 

Conclusion: 
 

There is some TM M and some string x such that 

ZFC+Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 



Actually, this is not a correct conclusion, 

because there’s another possibility: 

ZFC+Deductive Calculus might have a proof 

that ‘M(x) eventually halts’ even though it loops, 

or ‘M(x) eventually loops’ even though it halts. 

Conclusion: 
 

There is some TM M and some string x such that 

ZFC+Deductive Calculus cannot prove either of 

‘M(x) eventually halts’ or ‘M(x) eventually loops’. 



Actually, this is not a correct conclusion, 

because there’s another possibility: 

ZFC+Deductive Calculus might have a proof 

that ‘M(x) eventually halts’ even though it loops, 

or ‘M(x) eventually loops’ even though it halts. 

I.e., ZFC might be unsound:  

it might prove some false statements. 

This would kind of upend all of mathematics. 

Now, almost everyone believes ZFC is sound. 

But theoretically, it’s a possibility. 



What we’ve actually proven so far: 

ZFC + Deductive Calculus cannot be both 

 complete 

and  sound. 

 Complete: 

   for every sentence S, either S or ¬S is provable. 

 

 Sound: 

   for every S, if S is provable then S is true. 



Question:  

 What did this proof use about ZFC? 

Answer:        Not too much.  

 • You can define TM’s and TM computation in it. 

 • Its axioms/axiom schemas are computable. 

What we’ve actually proven so far: 

ZFC + Deductive Calculus cannot be both 

 complete 

and  sound. 



Any mathematical proof system which is 

        “sufficiently expressive” (can define TM’s) 

               and has computable axioms 

 cannot be both complete and sound. 

Gödel’s First Incompleteness Theorem: 

Side remark:      

    Even Peano Arithmetic is “sufficiently expressive”.   

     You can define TM’s and TM computation in it, 

 though it is a pain in the neck. 



A smart-aleck’s attempt to circumvent 

   Gödel’s First Incompleteness Theorem: 

“Let’s assume ZFC is sound.  Gödel’s Theorem 

  says that there’s some true statement S  

  which can’t be proved in ZFC.  Let’s just 

  upgrade ZFC by adding S as an axiom!” 

Doesn’t help: 

ZFC+S is a sufficiently expressive system 

with computable axioms.  So by Gödel’s 

Theorem, there’s still some other S/ 

which is true but can’t be proved. 



A smart-aleck’s attempt to circumvent 

   Gödel’s First Incompleteness Theorem: 

“Maybe add in S/ as another axiom?” 

Still doesn’t help: 

Apply Gödel’s Theorem to ZFC+S+S/, 

get yet another true statement S// which 

is true but cannot be proved. 

“Maybe add in all true statements as axioms?” 

Okay fine, but now the set of axioms is not 

computable.  So it’s kind of a pointless system. 



Any mathematical proof system which is 

        “sufficiently expressive” (can define TM’s) 

               and has computable axioms 

 cannot be both complete and sound. 

Gödel’s First Incompleteness Theorem: 

Sound: 

   for every S, 

   if S is provable 

   then S is true. 

 

Whoahhhh, dude. 
   

How can you say 
a statement S is 
true if you can’t 

prove it? 



Response 1 

Don’t get all confused. If I asked you yesterday,  
 

   “Hey, is it true that 1 is the only number  

    which appears in Pascal’s Triangle more 

    than ten times?”, 
 

you wouldn’t be, like,  

   “Whoahhhh dude, what does true mean?” 
 

Ordinary mathematical concepts and reasoning  

   don’t suddenly become invalid just because   

                   you’re studying logic. 

Don’t get all confused. 



Response 2 

Just so that nobody gets confused, 

I’ll prove an even stronger version 

which doesn’t mention “truth”. 



Any mathematical proof system which is 

        “sufficiently expressive” (can define TM’s) 

              and has computable axioms 

  cannot be both complete and consistent. 

Gödel’s 1st:  full version 
(with strengthening by J. Barkley Rosser) 

 Complete: 

   for every sentence S, either S or ¬S is provable. 
 

 Consistent: 

   for every S, you can’t prove both S and ¬S. 



Not only will we prove this, 

there will be a bonus plot twist at the end! 

For simplicity, we fix the mathematical 

proof system to be ZFC. 



Outline of previous proof: 
 

1. Assume ZFC sound. 

2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 

Outline of upcoming stronger proof: 
 

1. Assume ZFC consistent. 

2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 



We’re going to need a lemma. 

Some statements are so simple that, 

assuming they’re true, 

they definitely do have a proof in ZFC. 

Example:  “There are 25 primes less than 100.” 

This definitely has a proof: 

the brute-force, brain-dead enumeration proof! 



Our Brain-Dead Lemma:   
 

 If a particular TM has a particular t-step execution trace,  

         then there is a proof of this fact (in ZFC). 
 

Why?                  Can always write (in ZFC) proofs that look like: 
 
 

“Initially M in the starting state/head/tape configuration. 

  After 1 step, M is in state/head/tape configuration blah. 

After 2 steps, M is in state/head/tape configuration blah. 

After 3 steps, M is in state/head/tape configuration blah. 

… After t steps, M is in state/head/tape configuration blah. 

QED.”   

In particular, if M(x) halts, there is a proof of ‘M(x) halts’. 



Outline of upcoming proof of the 

“truth”-free stronger version of Gödel’s 1st: 

 
 

1. Assume ZFC consistent. 

2.  Reason about a certain TM. 

3. Deduce that ZFC is incomplete. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 
  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 

What can ZFC prove about D(⟨D⟩)?   What can ZFC prove about D(⟨D⟩)?  By consistency, 

     at most one of  ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’. 

   Perhaps ZFC can prove ‘D(⟨D⟩) loops’? 

   Then D on input ⟨D⟩ will find this proof, and thus halt. 

   But if D(⟨D⟩) halts then ZFC can prove ‘D(⟨D⟩) halts’ 

   (by Brain-Dead Lemma).  This contradicts consistency. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

What can ZFC prove about D(⟨D⟩)?   What can ZFC prove about D(⟨D⟩)?  By consistency, 

     at most one of  ‘D(⟨D⟩) halts’ or ‘D(⟨D⟩) loops’. 

   Perhaps ZFC can prove ‘D(⟨D⟩) halts’? 

   Then D(⟨D⟩) will run for some t steps, find this proof, and then  

   enter the ‘go right forever’ state. But by Brain-Dead Lemma,  

   there’s a proof of this fact (the t+1 step execution trace).  

   Thus ZFC can prove ‘D(⟨D⟩) loops’, contradicting consistency. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

Incidentally… does D(⟨D⟩) actually halt or loop? 

It loops. It does not find a proof of either statement. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

It loops. It does not find a proof of either statement. 

Wait a minute. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’.  So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 

we get a proof of ‘D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Did we just find a 

contradiction in mathematics? 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 

we get a proof of ‘D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

Wait a minute. We just showed that D(⟨D⟩) loops. 

If we formalize the last 3 slides in ZFC, 

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’. 

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Proof of stronger Incompleteness Theorem 
 

Assume ZFC consistent. 
 

Let D be the TM which on input ⟨M⟩ does: 

 

 

Great!  We just showed ZFC cannot prove either 

‘D(⟨D⟩) loops’ or ‘D(⟨D⟩) halts’. So ZFC is incomplete. 

If we formalize the last 3 slides in ZFC, 

we get a proof of ‘ZFC consistent → D(⟨D⟩) loops’. 

The only way to avoid a contradiction: 

ZFC cannot prove ‘ZFC consistent’  

  for all strings P of length 1, 2, 3, … 

      • If P is a ZFC proof of ‘M(⟨M⟩) halts’, enter ‘go right forever’ state. 

      • If P is a ZFC proof of ‘M(⟨M⟩) loops’, then halt. 



Assume ZFC   (or any “sufficiently expressive” proof system) 

  is consistent.  Then not only is it incomplete, 

  here’s a true statement it cannot prove: 

“ZFC is consistent”. 

Gödel’s Second Incompleteness Theorem 
(proved independently by von Neumann) 



Assuming ZFC is consistent, here’s 

another statement which  

cannot be proved or disproved in ZFC: 

There is a set A with |ℕ| < |A| < |ℝ|. 

Paul Cohen  (1963) 

i.e., the continuous hypothesis 

is independent from ZFC. 



The statement and proof 

of Gödel’s First and Second 

Incompleteness Theorems. 

Study Guide 


