

I can't find an efficient algorithm, but neither can all these famous people.

The big chasm between poly-time and exp-time.

poly-time solvable

What is **P** ?

P The set of <u>languages</u> that can be decided in $O(n^k)$ steps for some constant k.

"complexity class"

The theoretical divide between efficient and inefficient:

 $L \in \mathsf{P} \longrightarrow \mathsf{efficiently} \text{ solvable (tractable)}.$ $L \notin \mathsf{P} \longrightarrow \mathsf{not} \mathsf{efficiently} \mathsf{ solvable}.$

Subset Sum Problem

Given a list of integers, determine if there is a subset of the integers that sum to 0.

Subset Sum Problem

Given a list of integers, determine if there is a subset of the integers that sum to 0.

Exhaustive Search (Brute Force Search):

> Try every possible subset and see if it sums to 0.

subsets is $2^n \implies$ running time at least 2^n

Note: checking if a given subset sums to 0 is easy.

Theorem Proving Problem (informal description)

Given a mathematical proposition P and an integer k, determine if P has a proof of length at most k.

Exhaustive Search (Brute Force Search):

> Try every possible "proof" of length at most k, and check if it corresponds to a valid proof.

Note: checking if a given proof is correct is easy.

Traveling Salesperson Problem (TSP)

Is there an order in which you can visit the cities so that ticket cost is < \$50000?

Exhaustive Search (Brute Force Search):

> Try every possible order and compute the cost.

Note: checking if a given solution has the desired cost is **easy**.

Traveling Salesperson Problem (TSP)

Input:

A graph G = (V, E), edge weights w_e (non-negative, and target t.

<u>Output:</u>

Yes, iff there is a cycle of cost at most t that visits every vertex exactly once.

Traveling Salesperson Problem (TSP)

Input:

A graph G = (V, E), edge weights w_e (non-negative, and target t.

<u>Output:</u>

Yes, iff there is a cycle of cost at most t that visits every vertex exactly once.

Satisfiability Problem (SAT)

Input: A Boolean propositional formula. e.g. $(x_1 \land \neg x_2) \lor (\neg x_1 \land x_3 \land x_4) \lor x_3$

<u>Output:</u> Yes iff there is an assignment to the variables that makes the formula True.

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input variables. Evaluate the formula to see the output.

Note: checking if a given truth assignment makes the formula True is **easy**.

Circuit Satisfiability Problem (Circuit-SAT)

- Input: A Boolean circuit.
- Output: Yes iff there is an assignment to the input gates that makes the circuit output 1.

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input gates. Evaluate the circuit to see the output.

Note: checking if a given assignment makes the circuit output I is easy.

Sudoku Problem

Given a partially filled *n* by *n* sudoku board, determine if there is a solution.

-								
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

	Α	8		4							6		E	7	
2				E	Α					С	F				3
D	С	4	7									Α	6	9	G
		F		5	G					Α	D		в		
	G		6		С	Α			7	8		4		в	
		9			2	G			Α	в			С		
				1		6	4	F	G		3				
			2									3			
			5									в			
				3		F	D	8	4		5				
		С			в	2			3	G			9		
	D		Е		6	7			в	1		2		4	
		3		7	1					5	4		G		
G	F	2	Α									С	7	5	4
6				D	9					F	С				1
	5	1		8							G		3	Ε	

J	4	Ν									С		В	2	М	Ρ				Е		Η		0
Η	D		0		6						8			1	А	в	G	С	Ε	5	L			F
	8		I		А	K	0	3	в	М		L	F	5	1		Η	7		С			6	J
в			A				G	L		Ν	J		Η	6	8					D	М	1	2	7
	L	1	5		М		4	2	Ν			Ρ				D	J		6	9	В	8	A	
F	Η		Ν	0	4	5				D				М	J		Ι			6		9	С	8
5				М		6	F							K	9	A	С				1		L	
	1				Ι	2		J	K		7		А	В					Ν		Η	0		
6	А		E	G	9			С		L			0		2	5	7	1	8	F		J	K	М
Ι	J			Κ	D	L					1				Е	G		3	Η				В	5
М	5	3	L	7	Ν	Α	С	I			F	В		G			Κ	Е			0	2	J	Η
	F				в	G		0		1	9			Ε		7		L	5	K	D	6		
Κ							1			5	0	Η			6			9		Ν				
D	G					J	5	Η	3			Κ	P		в			N		1	С	Ε	8	
1		С		В	7	F	6	Κ	D	2		М		Ν			4		J				5	9
L	I			5			A	Ε		В		1	7		F		Ν	J				С		D
8	6	А	Η						С	0						Ι					F	5	7	
3	С	В	1				L		F	9				А	4				7	8	2	Ν		6
		Ε	G			7		1	5	С			L			2				н				K
		F			0						Η	J		4	С				D	3	Ε	Ι	1	L
	N	6	F	Η					М	Е	K	3				9	Р					G	0	2
G	0	5	3	С	Ρ		E	8		F		6							4	В	J	7		Ι
	9	Ι	D	8	L	В		6		G			4	Η	5	J			С	А		F		1
		J		1	G			F	7				5	9	Ν	L		2	А		6			С
	В				С			9				А			G		8					Κ	D	Ε

Sudoku Problem

Given a partially filled *n* by *n* sudoku board, determine if there is a solution.

Exhaustive Search (Brute Force Search):

> Try every possible way of filling the empty cells and check if it is valid.

Note: checking if a given solution is correct is **easy**.

In our quest to understand efficient computation,

(and life, the universe, and everything)

we come across:

P vs NP problem

"Can creativity be automated?"

Biggest open problem in all of Computer Science. One of the biggest open problems in all of Mathematics.

The P vs NP question is the following:

Can the Sudoku problem be solved in polynomial time?

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

	Α	8		4							6		Е	7	
2				E	Α					С	F				3
D	С	4	7									A	6	9	G
		F		5	G					Α	D		в		
	G		6		С	Α			7	8		4		в	
		9			2	G			Α	в			С		
				1		6	4	F	G		3				
			2									3			
			5									в			
				3		F	D	8	4		5				
		С			в	2			3	G			9		
	D		Е		6	7			в	1		2		4	
		3		7	1					5	4		G		
G	F	2	Α									С	7	5	4
6				D	9					F	С				1
	5	1		8							G		3	Ε	

																					_		_	
J	4	Ν									С		в	2	Μ	Ρ				Е		Η		0
Η	D		0		6						8			1	Α	в	G	С	E	5	L			F
	8		I		А	Κ	0	3	в	М		L	F	5	1		Н	7		С			6	J
В			A				G	L		Ν	J		Η	6	8					D	М	1	2	7
	L	1	5		М		4	2	Ν			Ρ				D	J		6	9	В	8	A	
F	Η		Ν	0	4	5				D				М	J		Ι			6		9	С	8
5				М		6	F							Κ	9	A	С				1		L	
	1				Ι	2		J	K		7		A	в					Ν		H	o		
6	A		E	G	9			С		L			0		2	5	7	1	8	F		J	K	М
Ι	J			Κ	D	L					1				Е	G		3	Η				В	5
М	5	3	L	7	Ν	A	С	I			F	в		G			Κ	Е			0	2	J	Η
	F				в	G		0		1	9			E		7		L	5	K	D	6		
Κ	-						1			5	0	H			6			9		N		-	\vdash	
D	G					J	5	Н	3		-	K	P		B			N		1	С	E	8	
1		С		в	7	F	6	Κ	D	2		М		Ν			4		J				5	9
L	Ι			5			A	E		В		1	7		F		Ν	J				С		D
8	6	A	Η						С	0						Ι					F	5	7	
3	С	в	1				L		F	9				A	4				7	8	2	N		6
		E	G			7		1	5	С			L			2				н				K
		F			0						Η	J		4	С				D	3	E	I	1	L
	Ν	6	F	Η					М	Е	Κ	3				9	Р					G	0	2
G	0	5	3	С	Ρ		E	8		F		6							4	в	J	7		Ι
	9	Ι	D	8	L	В		6		G			4	Η	5	J			С	А		F		1
		J		1	G			F	7				5	9	Ν	L		2	A		6			C
	В				С			9				A			G		8					Κ	D	Ε

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

The P vs NP question is the following:

Can TSP be solved in poly-time?

The P vs NP question is the following:

Can the Theorem Proving problem be solved in poly-time?

The P vs NP question is the following:

Can SAT be solved in poly-time?

$(x_1 \land \neg x_2) \lor (\neg x_1 \land x_3 \land x_4) \lor x_3$

What the bleep is going on?!?

An important goal for a computer scientist

Identifying and dealing with intractable problems

After decades of research and billions of dollars of funding, no poly-time algs for:

SAT, Theorem Proving, TSP, Sudoku, ...

Can we prove there is no poly-time alg?

poly-time algs.

Goal:

Find evidence these problems are computationally hard (i.e., they are not in P)

A central concept for comparing the "difficulty" of problems.

will differ based on context

Right now we are interested in poly-time decidability vs not poly-time decidability

Want to define: $A \leq B$ (B is at least as hard as Aw.r.t. poly-time decidability.)

 $B \text{ poly-time decidable } \Longrightarrow A \text{ poly-time decidable}$ $B \in \mathbf{P} \implies A \in \mathbf{P}$

A not poly-time decidable $\implies B$ not poly-time decidable

 $A \not\in \mathbf{P} \implies B \not\in \mathbf{P}$

Notation: $A \leq_T^P B$ (A poly-time reduces to B) if there is a <u>poly-time</u> machine M_A that decides Ausing an oracle M_B for B as a black-box subroutine.

$\begin{array}{rcl} B \text{ in } P \implies A \text{ in } P \\ A \text{ not in } P \implies B \text{ not in } P \end{array}$

Example

A:

Given a graph and an integer k, does there exist at least k pairs of vertices connected to each other? (by a path)

B:

Given a graph and a pair of vertices (s,t), is s and t connected?

A poly-time reduces to B

The 2 sides of reductions

- I. Expand the landscape of tractable problems.
 - If $A \leq_T^P B$ and B is tractable, then A is tractable.

$$B \in \mathbf{P} \implies A \in \mathbf{P}$$

The 2 sides of reductions

- 2. Expand the landscape of intractable problems.
 - If $A \leq_T^P B$ and A is intractable, then B is intractable.

$$A \not\in \mathsf{P} \implies B \notin \mathsf{P}$$

But we are pretty lousy at showing a problem is intractable.

Maybe we can still make good use of this...

Gathering evidence for intractability

including some that we think should not be in P

If we can show $L \leq_T^P A$ for many L

then that would be good evidence that $A \notin \mathbf{P}$.

Definitions of C-hard and C-complete

Definition: Let C be a set of languages containing P.

We say that language A is $\ensuremath{\mathbb{C}}\xspace$ -hard if

for all $L \in \mathbf{C}$, $L \leq_T^P A$.

"A is at least as hard as every language in C."

Definitions of C-hard and C-complete

Definition: Let C be a set of languages containing P. We say that language A is C-complete if

- A is C-hard;
- *A* ∈ **C**.

" $A\,$ is a representative for hardest languages in C."

Definitions of C-hard and C-complete

Observation:

Suppose A is C-complete.

- If C = P, then $A \in P$.
- If $A \in \mathbf{P}$, then $\mathbf{C} = \mathbf{P}$.

$$\mathbf{C} = \mathbf{P} \iff A \in \mathbf{P}$$

(If we believe $C \neq P$, then we must believe $A \notin P$.)

2 possible worlds

Recall the goal

Good evidence for $A \notin \mathbf{P}$:

A is C-complete for a really rich/large set C
(a set C such that we believe C ≠ P)

So what is a good choice for C ? (if we want to show SAT, Theorem Proving, TSP, ... are C-complete?)

Main Goal Reduces to:

Find a good choice for C

(if we want to show SAT, Theorem Proving, TSP, ... are C-complete)

Finding the right complexity class C

Try I:

C = the set of all languages

Can it be true that SAT is C-complete?

<u>Try 2:</u>

C = the set of all languages "decidable using Brute Force Search (BFS)"

Can it be true that SAT is C-complete?

A complexity class for BFS?

What would be a reasonable definition for: "class of problems decidable using BFS"?

What is common about SAT, Theorem Proving, TSP, Sudoku, etc...?

Seems hard to find a correct solution (solution space is too big!)

The complexity class NP

Informally:

A language is in NP if:

whenever we have a Yes input/instance, there is a "<u>simple</u>" proof (solution) for this fact.

I. The length of the proof is polynomial in the input size.

2. The proof can be verified/checked in polynomial time.

Poll: Test your intuition

Which of these are in **NP**?

- Subset Sum
- TSP
- SAT
- Circuit-SAT
- Sudoku
- HALTS
- $\textbf{-} \left\{ 0^k 1^k : k \in \mathbb{N} \right\}$

The complexity class NP

Formally:

Definition:

A language A is in NP if

- there is a polynomial-time TM $\ V$
- a constant k

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \leq |x|^k \text{ s.t. } V(x, u) = 1.$

If $x \in A$, there is some poly-length proof that leads V to accept.

If $x \notin A$, every "proof" leads V to reject.

The complexity class NP

Formally:

Definition:

A language $A \,$ is in ${\rm NP}$ if

- there is a polynomial-time TM $\ V$
- a constant k

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \leq |x|^k \text{ s.t. } V(x, u) = 1.$

The following are synonyms in this context: proof = solution = certificate

CLIQUE

Input: $\langle G, c \rangle$ where G is a graph and c is a positive int.

<u>Output</u>: Yes iff G contains a clique of size c.

Fact: CLIQUE is in NP.

<u>Proof</u>: We need to show a verifier TM V exists as specified in the definition of NP.

def V(x, u) :

- if x is not an encoding $\langle G = (V, E), c \rangle$ of a valid graph G and a positive integer c, REJECT.
- if u is not an encoding of a set $S \subseteq V$ of size c, **REJECT**.
- for each pair of vertices in S:
 - if the vertices are not neighbors, **REJECT**.

Proof (continued):

Need to show:

- I. if $x \in \text{CLIQUE}$, there is some proof u (of poly-length) that makes V ACCEPT.
- 2. if $x \notin \text{CLIQUE}$, no matter what u is, V REJECTS.
- 3. V is polynomial-time.

(we leave 3 as an exercise)

Proof (continued):

Need to show:

- I. if $x \in \text{CLIQUE}$, there is some proof u (of poly-length) that makes V ACCEPT.
 - if $x \in \text{CLIQUE}$, then $x = \langle G, c \rangle$ is a valid encoding, and G contains a clique of size c.

Then when u is a valid encoding of this clique, the verifier will accept.

Proof (continued):

Need to show:

- 2. if $x \notin CLIQUE$, no matter what u is, V REJECTS.
 - if $x \notin CLIQUE$, then there are 2 options:
 - x is not a valid encoding $\left\langle G,c\right\rangle .$
 - x is a valid encoding, but G does not contain a clique of size c.

In either case, V rejects for any u. (add a couple of lines of justification)

The complexity class NP

2 Observations:

- I. Every decision problem in NP can be solved using BFS.
 - Go through all potential proofs u, and run V(x, u)
- 2. This is a HYUUGE class! (believe me!) Contains everything in P.

People expect NP contains much more than P.

Coming back to our main goal

Could it be true that one of SAT, Theorem Proving, TSP, Sudoku, etc. is NP-complete?

Is there **any** language that is **NP**-complete??

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

So SAT is in NP. (easy)

And for every L in NP, $L \leq_T^P SAT$.

Karp's 21 NP-complete problems

1972: "Reducibility Among Combinatorial Problems"

0-1 Integer Programming Clique Set Packing Vertex Cover Set Covering Feedback Node Set Feedback Arc Set **Directed Hamiltonian Cycle** Undirected Hamiltonian Cycle 3SAT

Partition Clique Cover Exact Cover Hitting Set Knapsack **Steiner Tree 3-Dimensional Matching** Job Sequencing Max Cut Chromatic Number

Today

Thousands of problems are known to be NP-complete. (including the problems mentioned at the beginning of lecture)

979

Some other "interesting" examples

Super Mario Bros

Given a Super Mario Bros level, is it completable?

Tetris

Given a sequence of Tetris pieces, and a number k, can you clear more than k lines?

How do you show a language is NP-complete?

How did Cook and Levin do it ?!?

How did Karp do it ?!?

IMPORTANT NOTE:

If SAT \leq_T^P L, then L is NP-hard.

(transitivity of \leq^P_T)

How do you show a language is NP-complete?

It is similar to showing undecidability.

- need an initial direct proof that a language is NP-hard. (Cook-Levin Theorem)
- to show other languages are NP-hard, use poly-time reductions.

These are the topics of next 2 lectures.

The P vs NP Question

Good evidence for intractability?

If A is NP-hard, that seems to be good evidence that $A \notin \mathbf{P} \dots$

if you believe $P \neq NP$

But is $P \neq NP???$

The P vs NP question

After years of research:

We are pretty confident that this is one of the deepest questions we have ever asked.

The two possible worlds

What do experts think?

- Two polls from 2002 and 2012
- # respondents in 2002: 100
- # respondents in 2012: 152

	$P \neq NP$	P = NP	Ind	DC	DK
2002	61(61%)	9(9%)	4(4%)	1(1%)	22(22%)
2012	126~(83%)	12~(9%)	5~(3%)	5~(3%)	1(0.6%)

What does **NP** stand for anyway?

- Not Polynomial?
- None Polynomial?
- No Polynomial?
- No Problem?
- Nurse Practitioner?
- It stands for Nondeterministic Polynomial time.

Languages in NP are the languages decidable in polynomial time by a nondeterministic TM.

What does **NP** stand for anyway?

Other contenders for the name of the class:

- Herculean
- Formidable
- Hard-boiled
- **PET** "possibly exponential time"
 - "provably exponential time"
 - "previously exponential time"

How did Cook-Levin show SAT is NP-complete?

How do you show other problems are NP-complete?