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The big chasm between poly-time and exp-time.

poly-time solvable
best we can say:

exp-time solvable

matrix 
multiplication

MST
max matching

shortest path

testing primality

…

scheduling

TSP

Hamiltonian cycle

Pokémon

subset-sum

…



What is P ?

The set of languages that can be decided in 

O(nk)                       steps for some constant    .k

P

The theoretical divide between efficient and inefficient:

efficiently solvable (tractable).

not efficiently solvable.

L 2

L 62

P

P

“complexity class”



Exponential running time examples

Given a list of integers, determine if there is a subset 
of the integers that sum to 0.

-3 -2 7 99 5 14

Subset Sum Problem



Exponential running time examples

Exhaustive Search (Brute Force Search):

> Try every possible subset and see if it sums to 0.

-3 -2 7 99 5 14

Subset Sum Problem

checking if a given subset 
sums to 0 is easy.

Note:

# subsets is running time at least =)2n 2n

Given a list of integers, determine if there is a subset 
of the integers that sum to 0.



Exponential running time examples

Theorem Proving Problem
(informal description)

Given a mathematical proposition P and an integer k,
determine if P has a proof of length at most k.

Exhaustive Search (Brute Force Search):

> Try every possible “proof” of length at most k,
   and check if it corresponds to a valid proof.

checking if a given proof 
is correct is easy.

Note:



Exponential running time examples

Is there an order in which you can visit the cities
so that ticket cost is < $50000?

Traveling Salesperson Problem (TSP)

Exhaustive Search (Brute Force Search):

> Try every possible order and compute the cost.

checking if a given solution 
has the desired cost is easy.

Note:



Exponential running time examples

1

2 4

5
24

Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)and target   . t

Output:
Yes, iff there is a cycle of cost at most 
that visits every vertex exactly once.

t

Traveling Salesperson Problem (TSP)



Yes, iff there is a cycle of cost at most 
that visits every vertex exactly once.

Exponential running time examples

1

2 4

5
24

Input:

A graph                   ,  edge weights G = (V,E) we (non-negative, 
integral)

Output:

and target   . t

t

Traveling Salesperson Problem (TSP)



Exponential running time examples

Satisfiability Problem (SAT)

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input 
variables. Evaluate the formula to see the output.

checking if a given truth 
assignment makes the 
formula True is easy.

Note:

Output: Yes iff there is an assignment to the variables
that makes the formula True.

e.g.
Input: A Boolean propositional formula.

(x1 ^ ¬x2) _ (¬x1 ^ x3 ^ x4) _ x3



Exponential running time examples

Circuit Satisfiability Problem (Circuit-SAT)

Exhaustive Search (Brute Force Search):

> Try every possible truth assignment to the input 
gates. Evaluate the circuit to see the output.

Input: A Boolean circuit.

Output: Yes iff there is an assignment to the input gates
that makes the circuit output 1.

checking if a given 
assignment makes the 
circuit output 1 is easy.

Note:



Exponential running time examples

Sudoku Problem

Given a partially filled n by n sudoku board, 
determine if there is a solution.



Exponential running time examples

Sudoku Problem

Given a partially filled n by n sudoku board, 
determine if there is a solution.

Exhaustive Search (Brute Force Search):
> Try every possible way of filling the empty cells
   and check if it is valid.

checking if a given solution 
is correct is easy.

Note:



In our quest to understand efficient computation,
(and life, the universe, and everything)

we come across:

Biggest open problem in all of Computer Science.

One of the biggest open problems in all of Mathematics.

P vs NP  problem

“Can creativity be automated?”



So what is the P vs NP question?

The P vs NP question is the following:

Can the Sudoku problem be solved in polynomial time?

WTF?!



So what is the P vs NP question?

The P vs NP question is the following:

Can the Subset Sum problem be solved in poly-time?

-3 -2 7 99 5 14



So what is the P vs NP question?

Can TSP be solved in poly-time?

The P vs NP question is the following:



So what is the P vs NP question?

Can the Theorem Proving problem be solved in 
poly-time?

The P vs NP question is the following:



So what is the P vs NP question?

Can SAT be solved in poly-time?

(x1 ^ ¬x2) _ (¬x1 ^ x3 ^ x4) _ x3

The P vs NP question is the following:



What the bleep is going on?!?



An important goal for a computer scientist

Can we prove there is no poly-time alg?

poly-time
algs.

After decades of research and billions of dollars of funding, 
no poly-time algs for:

SAT,  Theorem Proving,  TSP,  Sudoku, … 

Identifying and dealing with intractable problems



Goal:

Find evidence these problems are computationally hard
(i.e., they are not in P)



Revisiting reductions
A central concept for comparing the “difficulty” of 
problems.

will differ based on context

Right now we are interested in poly-time decidability vs
                                              not poly-time decidability 

Want to define: (    is at least as hard as     A  B
 w.r.t. poly-time decidability.)

AB

            poly-time decidable             poly-time decidable=)B A

    not poly-time decidable             not poly-time decidable=) BA

P =) PB 2 A 2

A 62 B 62=)P P



Revisiting reductions

Notation: (      poly-time reduces to     )A B

if there is a poly-time machine        that decides 

using an oracle         for      as a black-box subroutine.

A P
T B

MA

MB B

A

x

Yes
or

No

y

MA

MB
Yes
or
No

B in P          A in P=)
A not in P          B not in P=)



Revisiting reductions

Given a graph and a pair of vertices (s,t),
is s and t connected?

A:

B:

A poly-time reduces to B

Example

Given a graph and an integer k, does there exist at least 
k pairs of vertices connected to each other?

(by a path)



Revisiting reductions

1. Expand the landscape of tractable problems.

B AA P
T BIf                  and     is tractable,  then     is tractable.

P =) PB 2 A 2

The 2 sides of reductions



Revisiting reductions

2. Expand the landscape of intractable problems.

But we are pretty lousy at showing a problem is 
intractable.

Maybe we can still make good use of this…

A P
T BIf                  and     is intractable,  then     is intractable.BA

A 62 B 62=)P P

The 2 sides of reductions



Gathering evidence for intractability

If we can show                for many L P
T A L

including some that we 
think should not be in P  

then that would be good evidence that           . A 62 P



Definitions of C-hard and C-complete

       for all         C ,                     .          

Let C be a set of languages containing P.Definition:

We say that language     is C-hard ifA

L 2 L P
T A

    “    is at least as hard as every language in C.”  A

C

P
T A

P



Definitions of C-hard and C-complete

   “     is a representative for hardest languages in C.” A

Definition:
We say that language     is C-complete ifA
  -      is C-hard;A
  -        C.     A 2

Let C be a set of languages containing P.

C

P
T A

P

A.



Definitions of C-hard and C-complete

Observation:

Suppose      is C-complete.A

- If         P ,  then C = P.A 2
- If  C = P ,  then         P.A 2

() A 2C = P                  P

(If we believe C ≠ P,  then we must believe        P.) A 62

. C-complete
C

P

A

C = C-complete
    = P

.A

2 possible worlds



Recall the goal

So what is a good choice for C ?
(if we want to show  SAT,  Theorem Proving,  TSP, … are C-complete?)

Good evidence for         P :

-      is C-complete for a really rich/large set CA
   ( a set C such that we believe C ≠ P )

A 62



Find a good choice for C
(if we want to show  SAT,  Theorem Proving,  TSP, … are C-complete)

Main Goal Reduces to:



Finding the right complexity class C

C  =  the set of all languages

Can it be true that SAT is C-complete? 

Try 1:

C  =  the set of all languages 
         “decidable using Brute Force Search (BFS)”

Can it be true that SAT is C-complete? 

Try 2:



A complexity class for BFS?

What would be a reasonable definition for: 
           “class of problems decidable using BFS” ?

What is common about 
SAT,  Theorem Proving,  TSP,  Sudoku,  etc…?

Seems hard to find a correct solution 
(solution space is too big!)

BUT,  easy to verify a given solution.



The complexity class NP

Informally:

A language is in NP if: 

1.  The length of the proof is polynomial in the input size.

2.  The proof can be verified/checked in polynomial time.

whenever we have a Yes input/instance,
there is a “simple” proof (solution) for this fact.



Poll:  Test your intuition

- Subset Sum

-

- TSP

- SAT

- Circuit-SAT

- Sudoku

Which of these are in NP?

{0k1k : k 2 N}

- HALTS



The complexity class NP

Definition:

A language      is in NP ifA

Formally:

- a constant k
- there is a polynomial-time TM V

If           , there is some poly-length proof that leads       to accept.x 2 A V

If           , every “proof” leads       to reject.x /2 A V

such that for all             :x 2 ⌃⇤

x 2 A () 9u with |u|  |x|k s.t. V (x, u) = 1.



The complexity class NP

Formally:

proof = solution = certificate

The following are synonyms in this context:

Definition:

A language      is in NP ifA

- a constant k
- there is a polynomial-time TM V

such that for all             :x 2 ⌃⇤

x 2 A () 9u with |u|  |x|k s.t. V (x, u) = 1.



Examples of languages in NP

CLIQUE

Input:            where G is a graph and c is a positive int.

Output:  Yes iff G contains a clique of size c.

Fact:  CLIQUE is in NP.

hG, ci



Examples of languages in NP

Proof: We need to show a verifier TM      exists
as specified in the definition of NP.

V

- if    is not an encoding of a set           of size c,  REJECT.u S ✓ V

- ACCEPT

- for each pair of vertices in    :

- if the vertices are not neighbors,  REJECT.

S

V (x, u) :def

- if    is not an encoding                      of a valid graph G
  and a positive integer c,  REJECT.

x

hG = (V,E), ci



Examples of languages in NP

Proof (continued): 
Need to show:

1.  if        CLIQUE,  there is some proof     (of poly-length)x 2
that makes       ACCEPT.

u

V

2.  if        CLIQUE,  no matter what     is,       REJECTS.     u Vx 62

3.      is polynomial-time.     V

(we leave 3 as an exercise)



Examples of languages in NP

Proof (continued): 
Need to show:

1.  if        CLIQUE,  there is some proof     (of poly-length)x 2
that makes       ACCEPT.

u

V

if        CLIQUE,  then                   is a valid encoding, x 2
and G contains a clique of size c.   

x = hG, ci

Then when     is a valid encoding of this clique,
the verifier will accept.

u



Examples of languages in NP

Proof (continued): 
Need to show:

2.  if         CLIQUE,  no matter what     is,       REJECTS.     u Vx 62

if         CLIQUE,  then there are 2 options: x 62
-     is not a valid encoding           .x hG, ci
-     is a valid encoding,  but G does not contain 
   a clique of size c.
x

In either case,      rejects for any    .V u
(add a couple of lines of justification)



The complexity class NP

2 Observations:

 2.  This is a HYUUGE class!

1.  Every decision problem in NP can be solved using BFS.

- Go through all potential proofs    ,  and run u
V (x, u)

People expect NP contains much more than P.

NP-complete
NP

P

Contains everything in P.
(believe me!)



Coming back to our main goal

Could it be true that one of 
SAT,  Theorem Proving,  TSP,  Sudoku,  etc.
is NP-complete? 

Is there any language that is NP-complete??

NP

P
T SAT

?

P

SAT.



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

So SAT is in NP.  (easy)

And for every L in NP,     L        SAT .P
T



Karp’s 21 NP-complete problems

1972:  “Reducibility Among Combinatorial Problems”

0-1 Integer Programming
Clique
Set Packing
Vertex Cover
Set Covering
Feedback Node Set
Feedback Arc Set
Directed Hamiltonian Cycle
Undirected Hamiltonian Cycle
3SAT Chromatic Number

Partition
Clique Cover
Exact Cover
Hitting Set
Knapsack
Steiner Tree
3-Dimensional Matching
Job Sequencing
Max Cut



Today

1979

Thousands of problems are known to be NP-complete.
(including the problems mentioned at the beginning of lecture)



Some other “interesting” examples

Tetris
Given a sequence of Tetris pieces, and a number k,
can you clear more than k lines?

Super Mario Bros
Given a Super Mario Bros level, is it completable?



How do you show a language is NP-complete?

How did Cook and Levin do it ?!?

IMPORTANT NOTE:

If   SAT        L,   then L is NP-hard.P
T

(transitivity of         )P
T

NP

P
T SAT

P

How did Karp do it ?!?



How do you show a language is NP-complete?

It is similar to showing undecidability.

- need an initial direct proof that a language
  is NP-hard.    (Cook-Levin Theorem)

- to show other languages are NP-hard,
  use poly-time reductions.

These are the topics of next 2 lectures.



The P vs NP Question



Good evidence for intractability?

If       is  NP-hard,  
that seems to be good evidence that            … 

A

if you believe P ≠ NP 

But is P ≠ NP???

A 62 P



The P vs NP question

We are pretty confident that this is one of the
deepest questions we have ever asked.

After years of research:



The two possible worlds

NP-c

NP-hard

NP

P

P = NP = NP-c

NP-hard

P ≠ NP P = NP



What do experts think?

Two polls from 2002 and 2012

# respondents in 2002:   100

# respondents in 2012:   152



What does NP stand for anyway?

Not Polynomial?

None Polynomial?

No Polynomial?

Nurse Practitioner?

It stands for Nondeterministic Polynomial time.

Languages in NP are the languages decidable 
in polynomial time by a nondeterministic TM.

No Problem?



What does NP stand for anyway?

Other contenders for the name of the class:

Herculean

Formidable

Hard-boiled

PET “possibly exponential time”

“provably exponential time”

“previously exponential time”



Next 2 Lectures

How did Cook-Levin show SAT is NP-complete?

How do you show other problems are NP-complete?


