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Some important reminders from last time



Summary of last time
How do you identify intractable problems?
(problems not in P) e.g.  SAT,  TSP, Subset-Sum, …

Poly-time reductions                are useful to compare 
hardness of problems.

A P
T B

Evidence for intractability of    :
Show               ,   for all         C,  for a large class C. L P

T A
A

L 2

Definitions of   C-hard,    C-complete.

What is a good choice for  C, 
if we want to show, say,   SAT  is  C-hard?? 



Summary of last time

The complexity class NP   ( take  C = NP ) 

NP-hardness,     NP-completeness

Cook-Levin Theorem:   SAT  is  NP-complete

Many other languages are NP-complete.

The P vs NP question



The complexity class NP

1.  The length of the proof is polynomial in       .

2.  The proof can be verified/checked in polynomial time.

|w|

Informally:

A language     is in NP if: 
            iff
there is a “simple” proof (solution) for this fact.

A
w 2 A



The complexity class NP

Formally:

If           , there is some poly-length proof that leads       to accept.x 2 A V

If           , every “proof” leads       to reject.x /2 A V

Definition:

A language      is in NP ifA

- a constant k
- there is a polynomial-time TM V

such that for all             :x 2 ⌃⇤

x 2 A () 9u with |u|  |x|k s.t. V (x, u) = 1.



The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

It easier to show CIRCUIT-SAT is NP-complete.

So we will consider Cook-Levin Theorem to be:

“CIRCUIT-SAT is NP-complete.”



Showing a language is NP-hard

NP P
T CIRCUIT-SAT

To show L is NP-hard:

Pick your favorite NP-hard language K.

Show K       L.P
T



Every L in NP

Cook-Levin Theorem

Red:  will show

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



First: 
An important note about reductions



Cook reduction

“You can solve A in poly-time 
  using a blackbox that solves B.”

x

Yes
or

No

y

MA

MB
Yes
or
No

You can call the blackbox poly(|x|) times.

Cook reductions: poly-time Turing reductions

A        BP
T



Karp reduction

NP-hardness is usually defined using Karp reductions.

Make one call to MB and directly use its answer as output.

Karp reduction (polynomial-time many-one reduction):
A BP

m

MA

MB
input

or
Yes

Notransform
f

x

f(x)

We must have: Ax 2 f(x) 2=) B

f(x) 62
x 62 A =) B



Karp reduction

Definition: Let  A and B be two languages.

there is a polynomial-time computable function

f : ⌃⇤ ! ⌃⇤

such that:         

We say there is a polynomial-time many-one reduction 

from A to B if: 

Notation:                    A       B.P
m

(Karp reduction)

x 2
f(x) 2   A                                B.()



Karp reduction

⌃⇤ ⌃⇤

A

B
f

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.



Karp Reduction:  Example

CLIQUE

Input:            where G is a graph and k is a positive int.

Output:  Yes iff G contains a clique of size k.

hG, ki

INDEPENDENT-SET (IS)

Input:            where G is a graph and k is a positive int.

Output:  Yes iff G contains an independent set of size k.

hG, ki

Fact:  CLIQUE         IS.P
m



Karp Reduction:  Example

G

G has a clique of size k  iff  G’ has an ind. set of size k’

Want:

G0

This is called the 
complement of G.

hG, ki 7! hG0, k0i



Karp Reduction:  Example

Proof:

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

2. Show        CLIQUE                        IS=)w 2 f(w) 2

We need to:

3. Show        CLIQUE                        IS=)w 62 f(w) 62
(often easier to argue the contrapositive)



Karp Reduction:  Example

Proof (continued):

- If w is not an encoding            of a graph G and int k,  
  map it to    . 

hG, ki
✏

- Otherwise w =                          .hG = (V,E), ki
- Let E⇤ = {{u, v} : {u, v} 62 E}
- Return                             .  hG⇤ = (V,E⇤), ki

def         :f(w)

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

hG, ki 7! hG⇤, ki
not valid encoding 7! ✏



Karp Reduction:  Example

Proof (continued):

2. Show        CLIQUE                        IS=)w 2 f(w) 2

In the complement graph G*,      is an IS of size k.S

hG⇤, ki 2 ISf(w) =So

If          CLIQUE,  then      =   w hG = (V,E), ki
 and G has a clique            of size k.S ✓ V

w 2



Karp Reduction:  Example

Proof (continued):

(Show the contrapositive.)

3. Show        CLIQUE                        IS=)w 62 f(w) 62

If              IS,  then       = 
  and G* has an IS             of size k.

f(w) 2 hG⇤ = (V,E⇤), kif(w)

S ✓ V

In the complement of G*, which is G,
      is a clique of size k.S

w = hG, ki 2So CLIQUE

w = hG, ki



Karp Reduction:  Example

Proof (continued):

4. Argue      is computable in polynomial time.f

- checking if the input is a valid encoding can be done in  
  polynomial time.
  (for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in 
  polynomial time.



Can define NP-hardness with respect to        .P
T

P
mCan define NP-hardness with respect to        .

These lead to different notions of NP-hardness.

(what experts use)

(what some courses use for simplicity)



Poll 1

Which of the following are true?

- if                 and               ,  then               . A P
m B B P

m C A P
m C

-                if and only if                . A P
m B B P

m A

- if                 and         NP,  then        NP. A P
m B B 2 A 2



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



3COL is NP-complete



3COL is NP-complete:  High level steps

3COL is in NP (exercise).

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

3. Show        CIRCUIT-SAT                        3COL=)w 62 f(w) 62

2. Show        CIRCUIT-SAT                        3COL=)w 2 f(w) 2

We need to:

We know CIRCUIT-SAT is NP-hard. 
So it suffices to show CIRCUIT-SAT        3COL.P

m



CIRCUIT-SAT ≤ 3COL:  The construction

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

  If     is not        for a circuit C,  map it to   .x hCi ✏

So assume      is a valid encoding of a circuit.x

Circuit with AND, OR, NOT gates

(in addition to input gates and constant gates)
Circuit with only NAND gates



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

Consider a NAND gate.

NAND

x

y

¬(x ^ y)

    and     represent 
some other gates.
x

y

¬(x ^ y)              becomes the input
of another gate.

For each NAND gate, construct:



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

A valid coloring of this “gadget”
mimics the behaviour of the 
NAND gate.

Claim:

Colors = {0, 1, n}

WLOG:
   vertex 0 gets color 0
   vertex 1 gets color 1
   vertex n gets color n



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

nObservation1:

vertices     ,x y

¬(x ^ y)x ^ y and

will not be assigned the color n.

Observation2:

¬(x ^ y)x ^ y and

will be assigned different colors.

A couple of observations:



CIRCUIT-SAT ≤ 3COL:  The main gadget

x ^ y

¬(x ^ y)

x

y

0 1

s1 s2
d1 d2

n

Possible colorings of the vertices
   ,       and                 :x

y ¬(x ^ y)

x

y ¬(x ^ y)

0 0 1

1 1 0

0 1 1

1 0 1



CIRCUIT-SAT ≤ 3COL:  Rest of construction

NAND

g1 g2

g1 g2

blue  vertices are the same vertex.

red   vertices are the same vertex.



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled 0 are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled 1 are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

g1 g2

vertices labeled n are all the same.NAND

g1 g2



CIRCUIT-SAT ≤ 3COL:  Rest of construction

Gadget for the output gate has one extra edge:

Input gates just map to a single vertex.



CIRCUIT-SAT ≤ 3COL:  Why does it work?

        CIRCUIT-SAT                        3COL=)

        CIRCUIT-SAT                        3COL=)

      is computable in polynomial time.f

w 2

w 62 f(w) 62

f(w) 2

Convince yourself that:



Poll 2

Which of the following are true?

- 3COL        2COL  is known to be true.

- 3COL        2COL  is known to be false.

P
m

P
m

- 3COL        2COL  is open.P
m

- 2COL        3COL  is known to be true.

- 2COL        3COL  is known to be false.

P
m

P
m

- 2COL        3COL  is open.P
m



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



CLIQUE is NP-complete



Definition of 3SAT Problem

3SAT

Input:  A Boolean formula in “conjunctive normal form” 
in which every clause has exactly 3 literals.

Output:  Yes iff the formula is satisfiable.

a clause
(an OR of literals)

conjunctive normal form: AND of clauses.

(Note:  To satisfy the formula, you need to satisfy each clause.)

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)
e.g.:

literal: a variable or its negation



Aside:  3SAT is in NP

What is a good proof that         3SAT ? ' 2
- a truth assignment to the variables that satisfies the formula.

- a sequence of literals, one from each clause, 
  that does not contain both a variable and its negation. 

(x1 _ ¬x2 _ x3) ^ (¬x1 _ x4 _ x5) ^ (x2 _ ¬x5 _ x6)' =

' satisfiable

()
can pick one literal from each clause and set them to True

()
the sequence of literals picked does not contain 
both a variable and its negation.



CLIQUE is NP-complete:  High level steps

CLIQUE is in NP.

1. Define a map                       .f : ⌃⇤ ! ⌃⇤

4. Argue      is computable in polynomial time.f

3. Show        3SAT                        CLIQUE=)w 62 f(w) 62

2. Show        3SAT                        CLIQUE=)w 2 f(w) 2

We need to:

We know 3SAT is NP-hard. 
So suffices to show 3SAT        CLIQUE.P

m



3SAT ≤ CLIQUE:  Defining the map

f : ⌃⇤ ! ⌃⇤

otherwise we have valid 3SAT formula    
(with m clauses).

'

Construction demonstrated with an example.

1. Define a map                       .

not valid encoding of a 3SAT formula ✏7!

' 7! hG, ki (we set             )k = m



3SAT ≤ CLIQUE:  Defining the map

' = (x1 _ ¬x2 _ x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x1 _ ¬x1)

- No edges between
two literals in the same clause.

- No edges between
         and         for any    .xi ¬xi i

- All other possible edges 
present.

k = 3 - Set k to be # clauses in     . '

The construction:

x1

¬x2

x3

C1

x1 x1 ¬x1C3

¬x1

x2

x3

C2

C1 C2 C3^ ^

G'

- A vertex for each literal
in each clause.



3SAT ≤ CLIQUE:  Why it works

can pick m literals, one from each clause,
such that we don’t pick a variable and its negation.

is satisfiable'

=)

If       is satisfiable,  then        contains an m-clique:' G'

=)

=)

by construction of       , vertices corresponding to 
those literals are all connected (by an edge).

G'

      contains an m-clique.G'



3SAT ≤ CLIQUE:  Why it works

If        contains an m-clique,  then     is satisfiable:'G'

       has a clique  K  of size mG'

=)

- K must contain exactly one literal from each clause.

by construction of       :G'

- K cannot contain a variable and its negation.

=)
' is satisfiable.



3SAT ≤ CLIQUE:  Poly-time reduction?

Creation of        is poly-time:G'

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m2) possible edges.
- scan input formula to determine if an edge 
  should be present.



Independent Set is NP-complete

Corollary: IS is NP-hard.



Every L in NP

Cook-Levin Theorem

CIRCUIT-SAT

3COL3SAT

CLIQUE

VERTEX-COVER

HAMILTONIAN-CYCLE

TSP

SUBSET-SUM



Cook-Levin Theorem:  CIRCUIT-SAT is NP-complete

NEXT TIME:


