15-251 Great Theoretical Ideas in Computer Science Lecture 18: NP and NP-completeness 2

March 23rd, 2017

Some important reminders from last time

Summary of last time

- How do you identify *intractable* problems?
 (problems not in P) e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_T^P B$ are useful to compare hardness of problems.
- Evidence for intractability of A: Show $L \leq_T^P A$, for all $L \in \mathbb{C}$, for a large class \mathbb{C} .
- Definitions of C-hard, C-complete.
- What is a good choice for **C**, if we want to show, say, SAT is **C**-hard??

Summary of last time

- The complexity class NP (take C = NP)
- NP-hardness, NP-completeness
- Cook-Levin Theorem: SAT is NP-complete
- <u>Many</u> other languages are NP-complete.
- The P vs NP question

The complexity class NP

Informally:

A language A is in NP if: $w \in A$ iff there is a "<u>simple</u>" proof (solution) for this fact.

I. The length of the proof is polynomial in |w|.

2. The proof can be verified/checked in polynomial time.

The complexity class NP

Formally:

Definition:

A language A is in NP if

- there is a polynomial-time TM $\ V$
- a constant k

such that for all $x \in \Sigma^*$:

 $x \in A \iff \exists u \text{ with } |u| \le |x|^k \text{ s.t. } V(x, u) = 1.$

If $x \in A$, there is some poly-length proof that leads V to accept.

If $x \notin A$, every "proof" leads V to reject.

The Cook-Levin Theorem

Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

It easier to show CIRCUIT-SAT is NP-complete.

So we will consider **Cook-Levin Theorem** to be:

"CIRCUIT-SAT is NP-complete."

Showing a language is NP-hard

To show L is NP-hard:

Pick your favorite NP-hard language K. Show K \leq_T^P L.

First: An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

"You can solve A in poly-time using a blackbox that solves B."

You can call the blackbox poly(|x|) times.

Karp reduction

NP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

$$\mathsf{A} \leq^P_m \mathsf{B}$$

Make one call to M_B and directly use its answer as output.

 $\begin{array}{lll} \underline{\text{We must have:}} & x \in \mathsf{A} & \Longrightarrow & f(x) \in \mathsf{B} \\ & x \not\in \mathsf{A} & \Longrightarrow & f(x) \not\in \mathsf{B} \end{array}$

Karp reduction

Definition: Let A and B be two languages.

We say there is a polynomial-time many-one reduction (Karp reduction) from A to B if:

there is a polynomial-time computable function

$$f: \Sigma^* \to \Sigma^*$$

such that:

$$x \in \mathsf{A} \quad \iff \quad f(x) \in \mathsf{B}.$$

Notation:

$$\mathsf{A} \leq^P_m \mathsf{B}$$

Karp reduction

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.

CLIQUE

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **Output**: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: $\langle G, k \rangle$ where G is a graph and k is a positive int. **Output**: Yes iff G contains an independent set of size k.

Fact: CLIQUE \leq_m^P IS.

Want:

$$\langle G, k \rangle \mapsto \langle G', k' \rangle$$

G has a clique of size k iff G' has an ind. set of size k'

This is called the complement of *G*.

Proof:

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- **2.** Show $w \in \mathsf{CLIQUE} \implies f(w) \in \mathsf{IS}$
- 3. Show $w \notin \mathsf{CLIQUE} \implies f(w) \notin \mathsf{IS}$

(often easier to argue the contrapositive)

4. Argue f is computable in polynomial time.

Proof (continued):

I. Define a map $f: \Sigma^* \to \Sigma^*$.

def f(w):

- If w is not an encoding $\langle G, k \rangle$ of a graph G and int k, map it to ϵ .
- Otherwise w = $\langle G = (V, E), k \rangle$.
- Let $E^* = \{\{u, v\} : \{u, v\} \notin E\}$
- Return $\langle G^* = (V, E^*), k \rangle$.

not valid encoding
$$\mapsto \epsilon$$

 $\langle G, k \rangle \mapsto \langle G^*, k \rangle$

Proof (continued): 2. Show $w \in \text{CLIQUE} \implies f(w) \in \text{IS}$

If $w \in \text{CLIQUE}$, then $w = \langle G = (V, E), k \rangle$ and G has a clique $S \subseteq V$ of size k.

In the complement graph G^* , S is an IS of size k.

So $f(w) = \langle G^*, k \rangle \in \mathbf{IS}$

Proof (continued):

3. Show $w \notin \mathsf{CLIQUE} \implies f(w) \notin \mathsf{IS}$

(Show the contrapositive.)

If $f(w) \in IS$, then $f(w) = \langle G^* = (V, E^*), k \rangle$ and G^* has an IS $S \subseteq V$ of size k. $w = \langle G, k \rangle$

In the complement of G^* , which is G, S is a clique of size k.

So
$$w = \langle G, k \rangle \in$$
 CLIQUE

Proof (continued):

4. Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in polynomial time. (for any reasonable encoding scheme)
- creating E^* , and therefore G^* , can be done in polynomial time.

Can define NP-hardness with respect to \leq_T^P . (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_m^P . (what experts use)

These lead to different notions of NP-hardness.

Poll I

Which of the following are true?

- if
$$A \leq_m^P B$$
 and $B \leq_m^P C$, then $A \leq_m^P C$.

-
$$A \leq_m^P B$$
 if and only if $B \leq_m^P A$.

- if $A \leq_m^P B$ and $B \in \mathbb{NP}$, then $A \in \mathbb{NP}$.

3COL is NP-complete

3COL is NP-complete: High level steps

3COL is in NP (exercise).

We know CIRCUIT-SAT is NP-hard. So it suffices to show CIRCUIT-SAT \leq_m^P 3COL.

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- **2.** Show $w \in \text{CIRCUIT-SAT} \implies f(w) \in \text{3COL}$
- 3. Show $w \not\in \mathsf{CIRCUIT}\operatorname{-SAT} \implies f(w) \not\in \mathsf{3COL}$

4. Argue f is computable in polynomial time.

I. Define a map $f: \Sigma^* \to \Sigma^*$.

If x is not $\langle C \rangle$ for a circuit C, map it to ϵ .

So assume x is a valid encoding of a circuit.

Circuit with AND, OR, NOT gates

Circuit with only NAND gates (in addition to input gates and constant gates)

Consider a NAND gate.

x and y represent some other gates.

 $\neg(x \wedge y)$ becomes the input of another gate.

For each NAND gate, construct: *

Claim:

A valid coloring of this "gadget" mimics the behaviour of the NAND gate.

 $Colors = \{0, 1, n\}$

WLOG: vertex 0 gets color 0 vertex 1 gets color 1 vertex n gets color n

A couple of observations:

Observation I:

vertices x, y $x \wedge y$ and $\neg(x \wedge y)$ will not be assigned the color n.

Observation2:

$$x \wedge y$$
 and $\neg (x \wedge y)$

will be assigned different colors.

		orings of the $\sqrt{\neg(x \land y)}$:	vertices
x	y	$\neg(x \land y)$	
0	0	- I	
1	- E	0	
0	- E	1 - E	
1	0	1 - E	

Input gates just map to a single vertex.

Gadget for the output gate has one extra edge:

CIRCUIT-SAT \leq 3COL: Why does it work?

Convince yourself that:

- $w \in \text{CIRCUIT-SAT} \implies f(w) \in \text{3COL}$ $w \notin \text{CIRCUIT-SAT} \implies f(w) \notin \text{3COL}$
- f is computable in polynomial time.

Poll 2

Which of the following are true?

- 3COL \leq_m^P 2COL is known to be true.
- 3COL \leq_m^P 2COL is known to be false.
- 3COL \leq_m^P 2COL is open.
- 2COL \leq_m^P 3COL is known to be true.
- 2COL \leq_m^P 3COL is known to be false.
- 2COL \leq_m^P 3COL is open.

CLIQUE is NP-complete

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

Aside: 3SAT is in NP

$$\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg x_5 \lor x_6)$$

- arphi satisfiable
 - \iff

can pick one literal from each clause and set them to True

 \iff

the sequence of literals picked does not contain both a variable and its negation.

What is a good proof that $\varphi \in \mathsf{3SAT}$?

- a truth assignment to the variables that satisfies the formula.

 a sequence of literals, one from each clause, that does not contain both a variable and its negation.

CLIQUE is NP-complete: High level steps

CLIQUE is in NP. <

We know 3SAT is NP-hard. So suffices to show $3SAT \leq_m^P CLIQUE$.

We need to:

- I. Define a map $f: \Sigma^* \to \Sigma^*$.
- 2. Show $w \in \mathsf{3SAT} \implies f(w) \in \mathsf{CLIQUE}$
- 3. Show $w \not\in \mathsf{3SAT} \implies f(w) \not\in \mathsf{CLIQUE}$

4. Argue f is computable in polynomial time.

$3SAT \leq CLIQUE$: Defining the map

I. Define a map $f: \Sigma^* \to \Sigma^*$.

not valid encoding of a 3SAT formula $\mapsto \epsilon$

otherwise we have valid 3SAT formula φ (with *m* clauses).

$$arphi \mapsto \langle G,k
angle$$
 (we set $k=m$)

Construction demonstrated with an example.

$3SAT \leq CLIQUE$: Why it works

If φ is satisfiable, then G_{φ} contains an m-clique:

 φ is satisfiable

can pick m literals, one from each clause, such that we don't pick a variable and its negation.

by construction of G_{φ} , vertices corresponding to those literals are all connected (by an edge).

 G_{φ} contains an m-clique.

$3SAT \leq CLIQUE$: Why it works

If G_{φ} contains an m-clique, then φ is satisfiable:

 G_{φ} has a clique K of size m

by construction of G_{φ} :

- K must contain exactly one literal from each clause.
- K cannot contain a variable and its negation.

arphi is satisfiable.

3SAT ≤ CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $O(m^2)$ possible edges.
- scan input formula to determine if an edge should be present.

Independent Set is NP-complete

NEXT TIME:

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete