|5-25|
 Great Theoretical Ideas in Computer Science

Lecture I8:
NP and NP-completeness 2

March 23rd, 2017

Some important reminders from last time

Summary of last time

- How do you identify intractable problems? (problems not in P) e.g. SAT, TSP, Subset-Sum, ...
- Poly-time reductions $A \leq_{T}^{P} B$ are useful to compare hardness of problems.
- Evidence for intractability of A : Show $L \leq_{T}^{P} A$, for all $L \in \mathrm{C}$, for a large class C .
- Definitions of C-hard, C-complete.
- What is a good choice for C, if we want to show, say, SAT is C-hard??

Summary of last time

- The complexity class NP (take $C=N P$)
- NP-hardness, NP-completeness
- Cook-Levin Theorem: SAT is NP-complete
- Many other languages are NP-complete.
- The P vs NP question

The complexity class NP

Informally:

A language A is in NP if:
$w \in A$ iff there is a "simple" proof (solution) for this fact. \downarrow
I. The length of the proof is polynomial in $|w|$.
2. The proof can be verified/checked in polynomial time.

The complexity class NP

Formally:

Definition:

A language A is in NP if

- there is a polynomial-time TM V
- a constant k
such that for all $x \in \Sigma^{*}$:

$$
x \in A \Longleftrightarrow \exists u \text { with }|u| \leq|x|^{k} \text { s.t. } V(x, u)=1
$$

If $x \in A$, there is some poly-length proof that leads V to accept.
If $x \notin A$, every "proof" leads V to reject.

The Cook-Levin Theorem

Theorem (Cook 197I - Levin 1973):
SAT is NP-complete.

It easier to show CIRCUIT-SAT is NP-complete.
So we will consider Cook-Levin Theorem to be:

Showing a language is NP-hard

To show L is NP-hard:
Pick your favorite NP-hard language K.
Show $\mathrm{K} \leq_{T}^{P} \mathrm{~L}$.

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

$$
\mathrm{A} \leq_{T}^{P} \mathrm{~B}
$$

"You can solve A in poly-time using a blackbox that solves B."

You can call the blackbox poly $(|x|)$ times.

Karp reduction

NP-hardness is usually defined using Karp reductions.
Karp reduction (polynomial-time many-one reduction):

$$
\mathrm{A} \leq_{m}^{P} \mathrm{~B}
$$

Make one call to M_{B} and directly use its answer as output. We must have:

$$
\begin{aligned}
& x \in \mathrm{~A} \Longrightarrow f(x) \in \mathrm{B} \\
& x \notin \mathrm{~A} \Longrightarrow f(x) \notin \mathrm{B}
\end{aligned}
$$

Karp reduction

Definition: Let A and B be two languages.

We say there is a polynomial-time many-one reduction from A to B if:
(Karp reduction)
there is a polynomial-time computable function

$$
f: \Sigma^{*} \rightarrow \Sigma^{*}
$$

such that:

$$
x \in \mathrm{~A} \quad \Longleftrightarrow \quad f(x) \in \mathbf{B} .
$$

Notation:

$$
\mathrm{A} \leq_{m}^{P} \mathrm{~B} .
$$

Karp reduction

A Karp reduction is a Cook reduction.
But not all Cook reductions are Karp reductions.

Karp Reduction: Example

CLIQUE

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int. Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)

Input: $\langle G, k\rangle$ where G is a graph and k is a positive int.
Output: Yes iff G contains an independent set of size k.

Fact: CLIQUE \leq_{m}^{P} IS.

Karp Reduction: Example

Want:

$$
\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle
$$

G has a clique of size k iff G has an ind. set of size k^{\prime}

This is called the complement of G.

Karp Reduction: Example

Proof:

We need to:

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS
3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS
(often easier to argue the contrapositive)
4. Argue f is computable in polynomial time.

Karp Reduction: Example

Proof (continued):

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
def $f(w)$:

- If w is not an encoding $\langle G, k\rangle$ of a graph G and int k, map it to ϵ.
- Otherwise $w=\langle G=(V, E), k\rangle$.
- Let $E^{*}=\{\{u, v\}:\{u, v\} \notin E\}$
- Return $\left\langle G^{*}=\left(V, E^{*}\right), k\right\rangle$.
not valid encoding $\mapsto \epsilon$

$$
\langle G, k\rangle \mapsto\left\langle G^{*}, k\right\rangle
$$

Karp Reduction: Example

Proof (continued):

2. Show $w \in$ CLIQUE $\Longrightarrow f(w) \in$ IS

If $w \in$ CLIQUE, then $w=\langle G=(V, E), k\rangle$
and G has a clique $S \subseteq V$ of size k.

In the complement graph G^{*}, S is an IS of size k.

So $f(w)=\left\langle G^{*}, k\right\rangle \in$ IS

Karp Reduction: Example

Proof (continued):

3. Show $w \notin$ CLIQUE $\Longrightarrow f(w) \notin$ IS
(Show the contrapositive.)
If $f(w) \in \mathrm{IS}$, then $f(w)=\left\langle G^{*}=\left(V, E^{*}\right), k\right\rangle$ and G^{*} has an IS $S \subseteq V$ of size k.

$$
w=\langle G, k\rangle
$$

In the complement of G^{*}, which is G,
S is a clique of size k.
So $w=\langle G, k\rangle \in$ CLIQUE

Karp Reduction: Example

Proof (continued):

4. Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in polynomial time.
(for any reasonable encoding scheme)
- creating E^{*}, and therefore G^{*}, can be done in polynomial time.

Can define NP-hardness with respect to \leq_{T}^{P}. (what some courses use for simplicity)

Can define NP-hardness with respect to \leq_{m}^{P}. (what experts use)

These lead to different notions of NP-hardness.

Poll I

Which of the following are true?

- if $A \leq_{m}^{P} B$ and $B \leq_{m}^{P} C$, then $A \leq_{m}^{P} C$.
- $A \leq_{m}^{P} B$ if and only if $B \leq_{m}^{P} A$.
- if $A \leq_{m}^{P} B$ and $B \in \mathbb{N P}$, then $A \in \mathbf{N P}$.

3COL is NP-complete

3COL is NP-complete: High level steps

$3 C O L$ is in NP (exercise).

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT \leq_{m}^{P} 3COL.

We need to:
I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ CIRCUIT-SAT $\Longrightarrow f(w) \in$ 3COL
3. Show $w \notin$ CIRCUIT-SAT $\Longrightarrow f(w) \notin 3 \mathrm{COL}$
4. Argue f is computable in polynomial time.

CIRCUIT-SAT $\leq 3 \mathrm{COL}:$ The construction

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.

If x is not $\langle C\rangle$ for a circuit C, map it to ϵ.

So assume x is a valid encoding of a circuit.

Circuit with AND, OR, NOT gates

Circuit with only NAND gates
(in addition to input gates and constant gates)

CIRCUIT-SAT ≤ 3 COL: The main gadget

Consider a NAND gate.

x and y represent some other gates.
$\neg(x \wedge y)$ becomes the input of another gate.

For each NAND gate, construct:

CIRCUIT-SAT ≤ 3 COL: The main gadget

Claim:

A valid coloring of this "gadget" mimics the behaviour of the NAND gate.

Colors $=\{0, \mathrm{I}, \mathrm{n}\}$

WLOG:
vertex 0 gets color 0
vertex I gets color I
vertex \mathbf{n} gets color n

CIRCUIT-SAT ≤ 3 COL: The main gadget

A couple of observations:

Observation I:

vertices x, y

$$
x \wedge y \text { and } \neg(x \wedge y)
$$

will not be assigned the color n .

Observation2:

$$
x \wedge y \text { and } \neg(x \wedge y)
$$

will be assigned different colors.

CIRCUIT-SAT ≤ 3 COL: The main gadget

Possible colorings of the vertices x, y and $\neg(x \wedge y)$:

x	y	$\neg(x \wedge y)$
0	0	I
I	I	0
0	I	I
I	0	I

CIRCUIT-SAT ≤ 3 COL: Rest of construction

blue vertices are the same vertex.

 red vertices are the same vertex.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled 0 are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled I are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

vertices labeled n are all the same.

CIRCUIT-SAT ≤ 3 COL: Rest of construction

Input gates just map to a single vertex.

Gadget for the output gate has one extra edge:

CIRCUIT-SAT ≤ 3 COL: Why does it work?

Convince yourself that:

$$
\begin{aligned}
w \in \text { CIRCUIT-SAT } & \Longrightarrow f(w) \in 3 \mathrm{COL} \\
w \notin \text { CIRCUIT-SAT } & \Longrightarrow f(w) \notin 3 \mathrm{COL}
\end{aligned}
$$

f is computable in polynomial time.

Poll 2

Which of the following are true?

- $3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is known to be true.
- $3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is known to be false.
- $3 \mathrm{COL} \leq_{m}^{P} 2 \mathrm{COL}$ is open.
$-2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is known to be true.
$-2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is known to be false.
- $2 \mathrm{COL} \leq_{m}^{P} 3 \mathrm{COL}$ is open.

CLIQUE is NP-complete

Definition of 3SAT Problem

3SAT

Input: A Boolean formula in "conjunctive normal form" in which every clause has exactly 3 literals.
e.g.:

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)
$$

> a clause (an OR of literals)

literal: a variable or its negation
conjunctive normal form: AND of clauses.
(Note: To satisfy the formula, you need to satisfy each clause.)
Output: Yes iff the formula is satisfiable.

Aside: 3SAT is in NP

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{2} \vee \neg x_{5} \vee x_{6}\right)
$$

φ satisfiable

can pick one literal from each clause and set them to True

the sequence of literals picked does not contain both a variable and its negation.

What is a good proof that $\varphi \in$ 3SAT?

- a truth assignment to the variables that satisfies the formula.
- a sequence of literals, one from each clause, that does not contain both a variable and its negation.

CLIQUE is NP-complete: High level steps

CLIQUE is in NP.
We know 3SAT is NP-hard.
So suffices to show 3SAT \leq_{m}^{P} CLIQUE.
We need to:
I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.
2. Show $w \in$ 3SAT $\Longrightarrow f(w) \in$ CLIQUE
3. Show $w \notin$ 3SAT $\Longrightarrow f(w) \notin$ CLIQUE
4. Argue f is computable in polynomial time.

3SAT \leq CLIQUE: Defining the map

I. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$.

not valid encoding of a 3SAT formula

otherwise we have valid 3SAT formula φ (with m clauses).
$\varphi \mapsto\langle G, k\rangle \quad($ we set $k=m)$

Construction demonstrated with an example.

3SAT \leq CLIQUE: Defining the map

$C_{1} \wedge \quad C_{2} \wedge \quad C_{3}$

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{1} \vee \neg x_{1}\right)
$$

G_{φ}

The construction:

- A vertex for each literal in each clause.
- No edges between two literals in the same clause.
- No edges between
x_{i} and $\neg x_{i}$ for any i.
- All other possible edges present.
- Set k to be \# clauses in φ.

3SAT \leq CLIQUE: Why it works

If φ is satisfiable, then G_{φ} contains an m-clique:

φ is satisfiable

can pick m literals, one from each clause, such that we don't pick a variable and its negation.

by construction of G_{φ}, vertices corresponding to those literals are all connected (by an edge).
G_{φ} contains an m-clique.

3SAT \leq CLIQUE: Why it works

If G_{φ} contains an m-clique, then φ is satisfiable:

G_{φ} has a clique K of size m \Longrightarrow
by construction of G_{φ} :

- K must contain exactly one literal from each clause.
- K cannot contain a variable and its negation.

φ is satisfiable.

3SAT \leq CLIQUE: Poly-time reduction?

Creation of G_{φ} is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most $\mathrm{O}\left(\mathrm{m}^{2}\right)$ possible edges.
- scan input formula to determine if an edge should be present.

Independent Set is NP-complete

Corollary: IS is NP-hard.
Every L in NP
Cook-Levin Theorem
CIRCUIT-SAT

3COL
SUBSET-SUM
CLIQUE
1
VERTEX-COVER
 $\stackrel{\downarrow}{\downarrow}$

NEXT TIME:

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

