15-251
Great Theoretical Ideas in Computer Science

Lecture 18:
NP and NP-completeness 2

March 23rd, 2017

Some important reminders from last time

Summary of last time

¢ How do you identify intractable problems?
(problems not in P) e.g. SAI, TSP, Subset-Sum, ...

e Poly-time reductions A <7. B are useful to compare
hardness of problems.

¢ Evidence for intractability of A:
Show L <X A, forall L € C, for a large class C.

® Definitions of C-hard, C-complete.

e What is a good choice for C,
if we want to show, say, SAT is C-hard??

Summary of last time

® The complexity class NP (take C = NP)

® NP-hardness, INP-completeness
® Cook-Levin Theorem: SAT is NP-complete

® Many other languages are NP-complete.

® The P vs NP question

The complexity class NP

Informally:
A language A is in NP if:
w e A iff
there is a “simple” proof (solution) for this fact.

l

|. The length of the proof is polynomial in |w]|.

2. The proof can be verified/checked in polynomial time.

The complexity class NP

Formally:

/Definition:

o

A language A is in NP if
- there is a polynomial-time TM V'
- a constant £
such that for all z € X™:
r € A < Fu with |u| < |z]F st. V(z,u) = 1.

J

If © € A, there is some

If © ¢ A,every“proof” leads V' to reject.

boly-length proof that leads V' to accept.

The Cook-Levin Theorem

/Theorem (Cook 1971 - Levin 1973):

SAT is NP-complete.

o

It easier to show CIRCUIT-SAT is NP-complete.
So we will consider Cook-Levin Theorem to be:

“CIRCUIT-SAT is NP-complete.”

Showing a language is NP-hard

-

-

NP

~

To show L is NP-hard:

<% CIRCUIT-SAT

Pick your favorite NP-hard language K.

Show K S? L.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

'
HAMILTONIAN-CYCLE

!

TSP Red: will show

First:
An important note about reductions

Cook reduction

Cook reductions: poly-time Turing reductions

A <L B
M 4
A (
Tr — No —p oOr

No

“You can solve A in poly-time
using a blackbox that solves B.”

You can call the blackbox poly(|x|) times.

Karp reduction
-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

A <UB
M 4
ef Yes
L =T transform [f(:l:‘) — Mp i ﬁ';

input

Make one call to Mg and directly use its answer as output.

We must have: rec A = f(r)€B
rZd A — f(z)<B

Karp reduction

b)

efinition: Let A and B be two languages.

We say there is a polynomial-time many-one reduction

(Karp reduction)
from A to B if:

there is a polynomial-time computable function
foXt =3
such that:
reA <— f(x) € B.

\Notation: A <; B. y

Karp reduction

- f

| —

- J _ J

A Karp reduction is a Cook reduction.

But not all Cook reductions are Karp reductions.

Karp Reduction: Example

CLIQUE

Input: (G, k) where G is a graph and k is a positive int.
Output: Yes iff G contains a clique of size k.

INDEPENDENT-SET (IS)
Input: (G, k) where G is a graph and k is a positive int.
Output: Yes iff G contains an independent set of size k.

Fact: CLIQUE < IS.

Karp Reduction: Example

Want:
(G, kY — (G, k")

G has a clique of size k iff G’ has an ind. set of size k’

G G’

A

This is called the
complement of G.

Karp Reduction: Example

Proof:

We need to:

|.Defineamap f: X" — X7
2.Show w € CLIQUE = f(w) € IS
3.Show w & CLIQUE — f(w) € IS

(often easier to argue the contrapositive)

4.Argue f is computable in polynomial time.

Karp Reduction: Example

Proof (continued):

|.Defineamap f: X" — X7

def f(w):

- If w is not an encoding (G, k) of a graph G and int k,
map it to €.

- Otherwise w = (G = (V, E), k) .

-Let E* = {{u,v} : {u,v} & F}
- Return (G*™ = (V, E™), k).

not valid encoding > €

(G, k) — (G*, k)

Karp Reduction: Example

Proof (continued):

2.Show w € CLIQUE — f(w) € IS

If we CLIQUE, then w = (G=(V,FE), k)
and G has a clique S C V of size k.

In the complement graph G*, .S is an IS of size k.

So f(w) =(G*, k) € IS

Karp Reduction: Example

Proof (continued):

3.Show w € CLIQUE — f(w) € IS

(Show the contrapositive.)

If f(w) €IS, then f(w)=(G* = (V,E*), k)
and G* hasan IS S C V of size k.

w = (G, k)

In the complement of G*, which is G,
S is a clique of size k.

So w= (G, k) € CLIQUE

Karp Reduction: Example

Proof (continued):

4.Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in

polynomial time.
(for any reasonable encoding scheme)

- creating E*, and therefore G*, can be done in
polynomial time.

Can define NP-hardness with respect to <. .

(what some courses use for simplicity)

Can define NP-hardness with respect to <!’ .

(what experts use)

These lead to different notions of NP-hardness.

Poll |

Which of the following are true!
-if A<! Band B<;, C, then A<l C.
-A <7 B ifandonlyif B<. A.

-if A< B and B €NP, then A € NP.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
4 N
3SAT 3COL
7 N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

3COL is NP-complete

3COL is NP-complete: High level steps
3COL is in NP (exercise).

We know CIRCUIT-SAT is NP-hard.
So it suffices to show CIRCUIT-SAT <!’ 3COL.

We need to:
|.Defineamap f : 2" — X7
2.Show w € CIRCUIT-SAT — f(w) € 3COL
3.Show w & CIRCUIT-SAT — f(w) € 3COL

4.Argue f is computable in polynomial time.

CIRCUIT-SAT =< 3COL: The construction
|.Defineamap f : 2" — X7

If x is not (C) for a circuit C, map it to €.

So assume x is a valid encoding of a circuit.

Circuit with AND, OR, NOT gates

+

Circuit with only NAND gates

(in addition to input gates and constant gates)

CIRCUIT-SAT =< 3COL: The main gadget
Consider a NAND gate.
r Y

=(z N y)

x and Y represent
some other gates.

—(x A y) becomes the input
of another gate.

For each NAND gate, construct: /

CIRCUIT-SAT =< 3COL: The main gadget

Claim:

A valid coloring of this “gadget”

mimics the behaviour of the
NAND gate.

Colors ={0, I, n}

WLOG:
vertex 0 gets color 0
vertex | gets color |
vertex n gets color

CIRCUIT-SAT =< 3COL: The main gadget

A couple of observations: 0 1

Observationl: n

vertices I, VY

r Ay and —(x Ay)

will not be assigned the color n.

Observation?2:

r Ay and —(x Ay)

will be assigned different colors.

CIRCUIT-SAT =< 3COL: The main gadget

Possible colorings of the vertices

r, ¥y and —(x Ay):

=(z AN y)

T Y A
0 0 I
I I 0
0 I I
I 0 I

CIRCUIT-SAT =< 3COL: Rest of construction

1 .
g 92 vertices are the same vertex.
vertices are the same vertex.

CIRCUIT-SAT =< 3COL: Rest of construction

vertices labeled 0 are all the same.

CIRCUIT-SAT =< 3COL: Rest of construction

vertices labeled | are all the same.

CIRCUIT-SAT =< 3COL: Rest of construction

CIRCUIT-SAT =< 3COL: Rest of construction

Input gates just map to a single vertex.

Gadget for the output gate has one extra edge:

CIRCUIT-SAT =< 3COL: Why does it work!?

Convince yourself that:

w € CIRCUIT-SAT = f(w) € 3COL
w & CIRCUIT-SAT —> f(w) & 3COL

f is computable in polynomial time.

Poll 2

Which of the following are true!

- 3COL Si 2COL is known to be true.
- 3COL Si 2COL is known to be false.
-3COL <;, 2COL is open.
- 2COL Si 3COL is known to be true.
- 2COL Si 3COL is known to be false.
- 2COL <;, 3COL is open.

Every L in NP
lCook—Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
"
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

CLIQUE is NP-complete

Definition of 3SAT Problem
3SAT

Input: A Boolean formula in “conjunctive normal form”
in which every clause has exactly 3 literals.

e.g.:
(2131 V X9 \% £IZ3) N\ (_lilfl \% L4 V .’]35) N\ (332 V X5 V 213‘6)
N e

a clause literal: a variable or its negation

(an OR of literals)

conjunctive normal form: AND of clauses.

(Note: To satisfy the formula, you need to satisfy each clause.)

Output: Yes iff the formula is satisfiable.

Aside: 3SAT isin NP

Q 2(331 \V4 X9 \/.’133) A\ (_I£U1 \/2134 \/32‘5) /\ (ZL‘Q \ x5 \/336)

@ satisfiable

<
can pick one literal from each clause and set them to True

<
the sequence of literals picked does not contain
both a variable and its negation.

What is a good proof that ¢ € 3SAT !?

- a truth assignment to the variables that satisfies the formula.

*- a sequence of literals, one from each clause,
that does not contain both a variable and its negation.

CLIQUE is NP-complete: High level steps
CLIQUE is in NP. v

We know 3SAT is NP-hard.
So suffices to show 3SAT <! CLIQUE.

We need to:
|.Defineamap f : 2" — X7
2.Show w € 3SAT — f(w) € CLIQUE
3.Show w & 3SAT —> f(w) € CLIQUE

4.Argue f is computable in polynomial time.

3SAT < CLIQUE: Defining the map
|.Defineamap f : 2" — X7

not valid encoding of a 3SAT formula +— ¢

otherwise we have valid 3SAT formula ¢
(with m clauses).

o +— (G, k) (we set kK =m)

Construction demonstrated with an example.

3SAT < CLIQUE: Defining the map
Cq A Cs A Cs

QO = (561 \V4 X9 \/LUg) A\ (_liUl \/.CUQ \/.CUg) A\ (513'1 \/5171 \ _ICIZ‘1)
The construction:
X1

* - A vertex for each literal
Gso in each clause.

T - No edges between
two literals in the same clause.

- No edges between
x; and —x; forany 7.

- All other possible edges
present.

I — 3 | -Setktobe#clausesin .

3SAT < CLIQUE: Why it works

If ¢ is satisfiable, then G, contains an m-clique:

@ s satisfiable
—

can pick m literals, one from each clause,
such that we don’t pick a variable and its negation.

—

by construction of G, vertices corresponding to
those literals are all connected (by an edge).

—

G, contains an m-clique.

3SAT < CLIQUE: Why it works

If G, contains an m-clique, then ¢ is satisfiable:

G, has aclique K of size m
—

by construction of G, :

- K must contain exactly one literal from each clause.
- K cannot contain a variable and its negation.

—

©¥ is satisfiable.

3SAT < CLIQUE: Poly-time reduction!?

Creation of G, is poly-time:

Creating the vertex set:

- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:

- there are at most O(m?) possible edges.

- scan input formula to determine if an edge
should be present.

Independent Set is NP-complete

[Corollar)g IS is NP-hard.

Every L in NP
l Cook-Levin Theorem

CIRCUIT-SAT
/ N\
3SAT 3COL
7 N\
SUBSET-SUM CLIQUE
!
VERTEX-COVER

!
HAMILTONIAN-CYCLE

!

TSP

NEXT TIME:

Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

