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15-251 
Great Theoretical Ideas in Computer Science 

Lecture 2:
Strings and Encodings



Chessboard Puzzle

neighbors in direction
N, S, W, E

If a square has 2 or more
infected neighbors, 
it becomes infected.

Question: What is the min number of infected squares 
needed initially to infect the whole board?

Initially, some of the squares 
are “infected”.



Objects/concepts we want to study and understand

Mathematical model  (formal, precise definitions)

Mathematically/rigorously prove facts/theorems



input
data

output
data“computer”

Computation:  manipulation of data.

How do we mathematically/formally represent data?



We have already done it for communication purposes.

Written communication:

1 2 3

“apple”

“car”

“happy”

“three” or “3”



English alphabet

⌃ = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

Turkish alphabet

⌃ = {a,b,c,ç,d,e,f,g,ḡ,h,ı,i,j,k,l,m,n,o,ö,p,r,s,ş,t,u,ü,v,y,z}

Binary alphabet

⌃ = {0, 1}

What if we had more symbols?

What if we had less symbols?



An element of an alphabet is called a symbol or character. 

An alphabet is a non-empty, finite set 
(usually denoted by    ).⌃

Any (usually finite) sequence of symbols from      is called
a string (or a word) over    .

⌃
⌃

A string is denoted by                      , where each a1a2a3 . . . an ai 2 ⌃.

Example: Some strings over                  :⌃ = {0, 1}

✏ 0 1 01 1011110101101111

Example: Some strings over                     :

✏

⌃ = {a, b, c}

a b c ca caabcccab



Given an alphabet     ,⌃

⌃⇤ denotes the set of all finite length strings over    . ⌃

Examples:

{a}⇤ = {✏, a, aa, aaa, aaaa, aaaaa, . . .}

{✏, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111 . . .}{0, 1}⇤ =

Length of a string   ,      ,  is the number of symbols in   .s |s| s



Written English

Objects/concepts of interest String encoding

apple

⌃ = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

car

happy

Does every string correspond to a valid encoding?

Does every object have a corresponding encoding?

Can two objects have the same encoding?



Given a set      of objects, an encoding of     is 
an injective function    

A A

Enc : A ! ⌃⇤ .

Notation: For            ,         denotes a 2 A hai Enc(a).

Technicality Alert:  not all sets are encodable.



Examples

A = N

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

⌃ = {1}

Does     affect “encodability”?⌃

h36i = “36”

⌃ = {0, 1}
h36i = “100100”

h36i = “111111111111111111111111111111111111”



Examples

A = Z

⌃ = {�, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

⌃ = {0, 1}

⌃ = {1}?

h�36i = “� 36”

h�36i = “1100100”



Examples

A = N⇥ N

⌃ = {0, 1}

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,#}
h(3, 36)i = h3, 36i = “3#36”

Idea:  encode all symbols above using 4 bits (why 4?)

0 ! 0000

1 ! 0001

2 ! 0010

3 ! 0011

4 ! 0100

5 ! 0101

6 ! 0110

7 ! 0111

8 ! 1000

9 ! 1001

# ! 1010

h3, 36i = “0011101000110110”



Examples

A = all undirected graphs

1 4 5

2 3 6

G

“
”

V = {1, 2, 3, 4, 5, 6}
E = {{1,2}, {2,3}, {3,4}, {1,4}, {5,6}}

hGi =



Examples

A = all undirected graphs

1 4 5

2 3 6

0

BBBBBB@

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

1 2 3 4 5 6
1
2
3
4
5
6

G

010100#101000#010100#101000#000001#000010“ ”
hGi =



Examples

A = all Python functions

def isPrime(N):
    if (N < 2):
        return False
    for factor in range(2, N):
        if (N % factor == 0):
            return False
    return True

hisPrimei =
“def isPrime(N):\n    if (N < 2):\n        return False\n    for factor 
in range(2, N):\n        if (N % factor == 0):\n            return False\n    
return True”  



Does       matter?|⌃|

Going from              to              :|⌃| = k |⌃0| = 2

⌃ tencode every symbol of      using      bits,

where                      . t = dlog2 ke

A word of length n
over ⌃

A word of length 
over 

tn
⌃0



Does       matter?|⌃|

Binary    vs    Unary

0
1
2
3
4
5
6
7
8
9
10
11
12

0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100

1
11
111
1111
11111
111111
1111111
11111111
111111111
1111111111
11111111111
111111111111

✏



Does       matter?|⌃|

Binary    vs    Unary

       has length                        in binaryblog2 nc+ 1

n

       has length                        in unarynn

       has length                        in base n blogk nc+ 1 k

Unary is exponentially longer than other bases!



Which sets are encodable?

Encodability = Countability

(Lecture 7)



What about uncountable sets?

Approximate.



Data is represented as finite length strings 
over some finite alphabet.

Reasoning about computation requires 
reasoning about strings.



Inductive Reasoning

(powerful tool for understanding recursive structures) 



Induction Review

Domino Principle

Line up any number of dominos in a row, 
knock the first one over and they will all fall.



Induction Review

Domino Principle

Line up an infinite row of dominoes,
one domino for each natural number. 
Knock the first one over and they will all fall.

Proof: Proof by contradiction: suppose they don’t all fall.
Let k be the lowest numbered domino that remains standing.
Domino k-1 did fall.  But then k-1 knocks over k, and k falls.
So k stands and falls, which is a contradiction.



Induction Review

Mathematical induction:

statements proved instead of dominoes fallen

Infinite sequence of 
dominoes

Infinite sequence of 
statements: S0, S1, S2, …

Fk = “domino k fell” Fk = “Sk  proved”

Establish: 1.  F0

2.  for all k,  Fk           Fk+1=)

Conclude: Fk  is true for all k.



Induction Review

Mathematical induction:

statements proved instead of dominoes fallen

Infinite sequence of 
dominoes

Infinite sequence of 
statements: S0, S1, S2, …

Fk = “domino k fell” Fk = “Sk  proved”

Establish: 1.  F0

2.  for all k,  F0, F1,…,Fk           Fk+1=)

Conclude: Fk  is true for all k.

“Strong” Induction



Different ways of packaging inductive reasoning

Example:

Every natural number > 1 can be factored into primes.

Proof (by contradiction):

Let n be the smallest counter-example.

n cannot be prime, so n = ab,  where 1 < a, b < n.

Since n is the smallest counter-example, 
a and b must have prime factorizations.

Then so does n.  Contradiction.

“Method of Min Counterexample”



Different ways of packaging induction proofs

“Method of Min Counterexample”

Let k be the min number such that Sk is not true.

Show that Sk’  is not true for k’ < k.  Contradiction.

By contradiction.

The general idea of method of min counterexample:



“Invariant Induction”

Example:
At any party, at any point in time,
define a person’s parity as odd/even according to the 
number of hands they have shaken.

Statement:  number of people of odd parity must be even.

Different ways of packaging induction proofs



“Invariant Induction”

Statement:  number of people of odd parity must be even.

Initial state:  
0 hands have been shaken.  0 people have odd parity.
Invariant argument:  

odd odd

even even

odd even

even odd

t <— t-2

At an arbitrary point in the party, 
let t be the number # people with odd parity.

t <— t+2

t <— t

t <— t

parity of t
doen’t change.

Proof:

Different ways of packaging induction proofs



“Invariant Induction”

Time-varying world state:  W0, W,1 W2, …

Want to prove: statement S is true for all world states.

Argue:

Statement S is true for W0.

If S is true for Wk,  it remains true for Wk+1.

The general idea of invariant induction:

Different ways of packaging induction proofs



“Structural Induction”

Induction on objects with a recursive structure.

..

- arrays/lists
- strings
- graphs

.

Different ways of packaging induction proofs



“Structural Induction”

Recursive definition of a string over     : ⌃

- the empty sequence    is a string.  ✏

- if     is a string and           ,  then       is a string.  x a 2 ⌃ ax

Different ways of packaging induction proofs



“Structural Induction”

Recursive definition of a rooted binary tree: 

- a single node r is a binary tree with root r.

- if  T1 and T2 are binary trees with roots r1 and r2,
  then T which has a node r adjacent to r1 and r2

  is a binary tree with root r.

T1
T2

T = r1 r2

r

Every node has 0 or 2 children.

Different ways of packaging induction proofs



“Structural Induction”

Recursive definition of a rooted binary tree: 

- a single node r is a binary tree with root r.

- if  T1 and T2 are binary trees with roots r1 and r2,
  then T which has a node r adjacent to r1 and r2

  is a binary tree with root r.

T1
T2

T = r1 r2

r

Every node has 0 or 2 children.

leaves

internal 
nodes

Different ways of packaging induction proofs



“Structural Induction”

Example: Let T be a binary tree.
               Let LT = # leaves in T.
               Let IT  = # internal nodes in T.
               Then LT = IT + 1.

Different ways of packaging induction proofs



“Structural Induction”

Proof (by structural induction): 

T1
T2

T = r1 r2

r
Let T be an arbitrary binary tree:

We know  LT = LT1 + LT2

and   IT = IT1 + IT2 + 1.

Base case (T is a single node) is true.

By IH:   LT1 = IT1 + 1    and   LT2 = IT2 + 1.

So  LT  =  LT1 + LT2   =   IT1 + 1 + IT2 + 1   =  IT + 1. 

Different ways of packaging induction proofs



“Structural Induction”

The general idea of structural induction:

Base step:  check statement true for base case(s) of def’n.

Recursive/induction step: 
prove statement holds for new objects created by the 
recursive rule,  assuming it holds for old objects used in the 
recursive rule.

Different ways of packaging induction proofs



“Structural Induction”

Why is that valid?

Follows from strong induction on # of applications 
of the recursive rule to create a particular object.

(even though we don’t phrase it explicitly that way)

Previous example:  Could have also packaged it as strong 
induction on the parameter height.

Different ways of packaging induction proofs



“Structural Induction”

Be careful!  What is wrong with the following argument?

Strong induction on height.

Base case true.

Take an arbitrary binary tree T of height h.

Let T’ be the following tree of height h+1:

T1

T’ =

r

r1 r2
blah blah blah

Therefore statement true
for T’ of height h+1.

Different ways of packaging induction proofs



“Structural Induction”

Another example with strings:

Let                      be recursively defined as follows:L ✓ {0, 1}⇤

-            ;✏ 2 L

-  if               ,  then                   .x, y 2 L 0x1y0 2 L

Prove that for any            ,                                     .   w 2 L #(0, w) = 2 ·#(1, w)

number of 0’s in w

number of 1’s in w

Different ways of packaging induction proofs



“Structural Induction”

Proof (by structural induction):

Base case is             and w = ✏ #(0, ✏) = 2 ·#(1, ✏).

By IH:                                     and   #(0, x) = 2 ·#(1, x) #(0, y) = 2 ·#(1, y).

Assume statement is true for all u 2 L, |u| < k.

Let     be an arbitrary element of      with             . w L |w| = k

So                    for some w = 0x1y0 x, y 2 L, |x| < k, |y| < k.

Then: #(0, w) = 2 +#(0, x) + #(0, y)

= 2 + 2 ·#(1, x) + 2 ·#(1, y)

= 2(1 + #(1, x) + #(1, y)) = 2 ·#(1, w)

Different ways of packaging induction proofs



Back to string encodings



input
data

output
data

“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

First Few Weeks



Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc…)
with a finite length (binary) string.

Seen so far:

Before we define algorithm formally,
we should define computational problem formally.



An algorithm solves a computational problem.

Example description of a computational problem:

Given a natural number N, output True if N is prime, 
and output False otherwise.

Example algorithm solving it:

def isPrime(N):
    if (N < 2): return False
    for factor in range(2, N):
        if (N % factor == 0): return False
    return True



input
data

output
dataisPrime

Instance Solution

0 No

1 No

2 Yes

3 Yes

4 No

.

.

.

.

.

.

251 Yes

.

.

.

.

.

.



input
data

output
data+

Instance Solution

0, 0 0

0, 1 1

1, 1 2

2, 2 4

2, 3 5

10, 1 11

100, 99 199

.

.

.

.

.

.



input
data

output
dataSorting

[“vanilla”, “mind”, “Anil”, “yogurt”, “doesn’t”]

Instance

Solution

[“Anil”, “doesn’t”, “mind”, “vanilla”, “yogurt”]



A computational problem is a function

f : A ! B .

A =

B =

set of possible input objects (called instances)
set of possible output objects (called solutions)

But in TCS, we don’t deal with arbitrary objects,
                 we deal with strings (encodings).

f 0 : ⌃⇤ ! ⌃⇤

f : A ! B

Enc

Technicality:
What if              does not correspond to an encoding of 
an instance?

w 2 ⌃⇤



f : ⌃⇤ ! ⌃⇤
Definition: A computational problem is a function
                                                   .

Definition: A decision problem is a function
                                                   .f : ⌃⇤ ! {0, 1}

No, Yes
False, True
Reject, Accept

IMPORTANT DEFINITIONS

Definition: A subset              is called a language. 
                                                  

L ✓ ⌃⇤



IMPORTANT RELATIONSHIP

There is a one-to-one correspondence between 
decision problems and languages.

Instance Solution

✏ 1

0 1

1 1

00 1

01 0

10 0

11 1

000 1

001 0

.

.

.

.

.

.

L ✓ ⌃⇤

{✏, 0, 1, 00, 11, 000, . . .}L =



Our focus will be on languages!
(decision problems)

- Convenient restriction.

- Usually “without loss of generality”.
(more on this next lecture)



Are all languages computable/decidable?

How can we prove that a language is not decidable?

How do we measure complexity of algorithms deciding 
languages?

P = NP?

How do we classify languages according to resources 
needed to decide them?

INTERESTING  QUESTIONS  WE  WILL  EXPLORE 
ABOUT  COMPUTATION 


