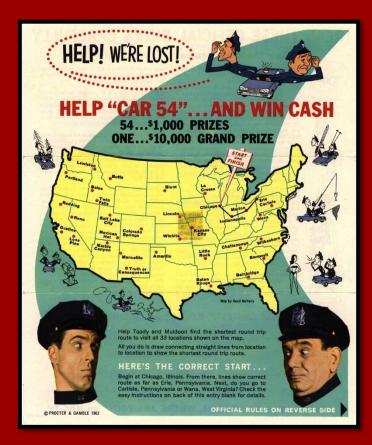
15-251: Great Theoretical Ideas in Computer Science Spring 2017, Lecture 20

Approximation Algorithms



SAT	given a Boolean formula F, is it satisfiable?
3SAT	same, but F is a 3-CNF
Vertex-Cover	given G and k, are there k vertices which touch all edges?
Clique	are there k vertices all connected?
Max-Cut	is there a vertex 2-coloring with at least k "cut" edges?
Hamiltonian- Cycle	is there a cycle touching each vertex exactly once?

SAT	is NP-complete
3SAT	is NP-complete
Vertex-Cover	is NP-complete
Clique	is NP-complete
Max-Cut	is NP-complete
Hamiltonian- Cycle	is NP-complete

3SAT	Given a 3-CNF formula, is it satisfiable?
Vertex-Cover	Given G and k, are there k vertices which touch all edges?
Clique	Given G and k, are there k vertices which are all mutually connected?
Max-Cut	Is there a vertex 2-coloring with at least k "cut" edges?
Hamiltonian- Cycle	Is there a cycle touching each vertex exactly once?

3SAT

Vertex-Cover	Given G, find the size of the smallest $S \subseteq V$ touching all edges.

Clique Given G, find the size of the largest clique (set of mutually connected vertices).

Max-Cut Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-Cycle

3SAT	Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.
Vertex-Cover	Given G, find the size of the smallest $S \subseteq V$ touching all edges.
Clique	Given G, find the size of the largest clique (set of mutually connected vertices).
Max-Cut	Given G, find the largest number of edges 'cut' by some vertex 2-coloring.
Hamiltonian- Cycle	

3SAT	Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.
Vertex-Cover	Given G, find the size of the smallest $S \subseteq V$ touching all edges.
Clique	Given G, find the size of the largest clique (set of mutually connected vertices).
Max-Cut	Given G, find the largest number of edges 'cut' by some vertex 2-coloring.
TSP	Given G with edge costs, find the cost of the cheapest cycle touching each vertex once.

Decision vs. Optimization/Search NP defined to be a class of **decision problems**. Usually there is a natural 'optimization' version and a natural 'search' version. Given a 3-CNF formula, find a truth assignment 3SAT with the largest number of satisfied clauses. Given G, find the smallest $S \subseteq V$ Vertex-Cover touching all edges. Given G, find the largest clique Clique (set of mutually connected vertices). Given G, find the vertex 2-coloring which 'cuts' Max-Cut the largest number of edges. Given G with edge costs, find the cheapest TSP cycle touching each vertex once.

Decision vs. Optimization/Search NP defined to be a class of **decision problems**. Usually there is a natural 'optimization' version and a natural 'search' version. Technically, the 'optimization' or 'search' versions cannot be in NP, since they're not languages.

We often still say they are NP-hard. This means: *if* you could solve them in poly-time, *then* you could solve any NP problem in poly-time.

Why???

Decision vs. Optimization/Search More interestingly the opposite is usually true too: Given an efficient solution to the decision problem we can solve the 'optimization' and 'search' versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via binary search.

Find a solution (e.g., satisfying assignment) by

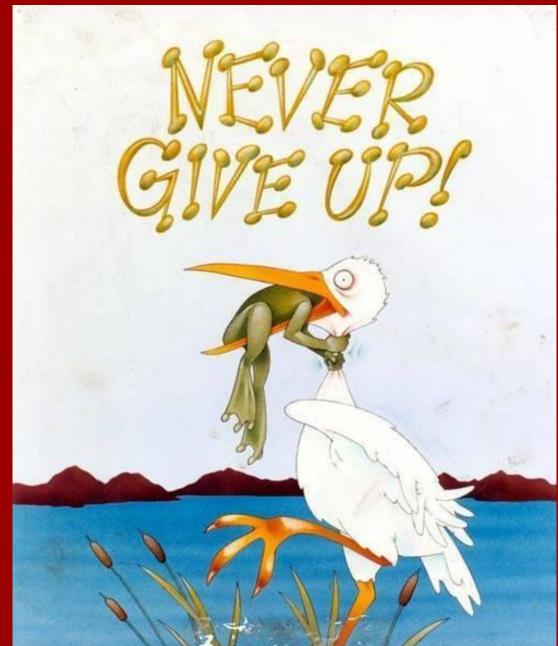
setting variables one by one an, testing each time if there is still a good assignment.

SAT	is NP-complete
3SAT	is NP-complete
Vertex-Cover	is NP-complete
Clique	is NP-complete
Max-Cut	is NP-complete
Hamiltonian- Cycle	is NP-complete

INVENTS BEAUTIFUL THEORY OF ALGORITHMIC COMPLEXITY

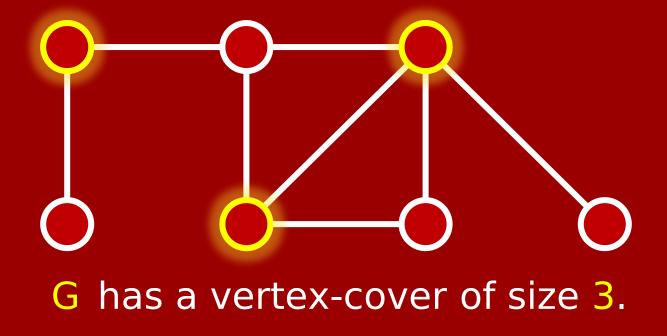
EVERYTHING IS NP-COMPLETE

There is only one idea in this lecture:



Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$



Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

(Because you need \geq 1 vertex per yellow edge.)

Given graph G = (V,E) and number k, is there a size-k "vertex-cover" for G?

 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

The Vertex-Cover problem is NP-complete. ⊗

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Subexponential-time algorithms: Brute-force tries all 2ⁿ subsets of n vertices. Maybe there's an $O(1.5^n)$ -time algorithm. Or $O(1.1^n)$ time, or $O(2^{n\cdot 1})$ time, or... Could be quite okay if n = 100, say. As of 2010: there **is** an $O(1.28^n)$ -time algorithm.

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Special cases: Solvable in poly-time for... tree graphs, bipartite graphs, "series-parallel" graphs...

Perhaps for "graphs encountered in practice"?

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum-size vertex-cover.

Never Give Up

Approximation algorithms:

Try to find *pretty small* vertex-covers.

Still want polynomial time, and for **all** graphs.

→ assuming "P ≠ NP", there is no algorithm running in polynomial time which, for all graphs G, finds the minimum size vertex-cover.

Gavril's Approximation Algorithm

Easy Theorem (from 1976):

There is a **polynomial-time** algorithm that, given **any** graph G = (V,E), outputs a vertex-cover $S \subseteq V$ such that $|S| \leq 2|S^*|$ where S^{*} is the **smallest** vertex-cover.

"A factor 2-approximation for Vertex-Cover."

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...

All of these problems are equally NP-hard.

(There's no poly-time algorithm to find the optimal solution unless P = NP.)

But from the point of view of finding *approximately* optimal solutions, there is an intricate, fascinating, and wide range of possibilities... Today: A case study of approximation algorithms

 A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

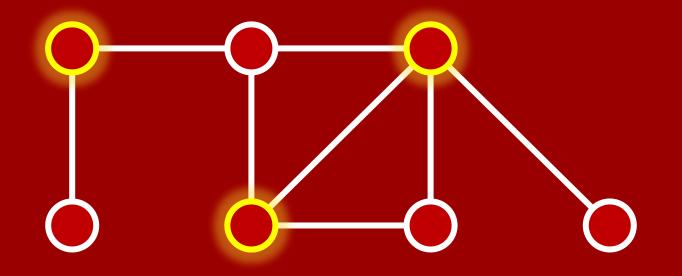
1. A somewhat good approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

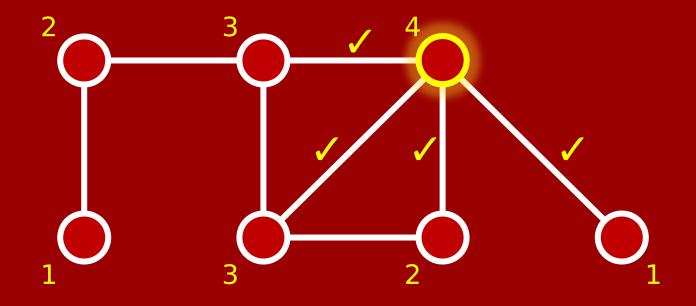
3. Some very good approximation algorithms for TSP.

Given graph G = (V,E) try to find the smallest "vertex-cover" for G.

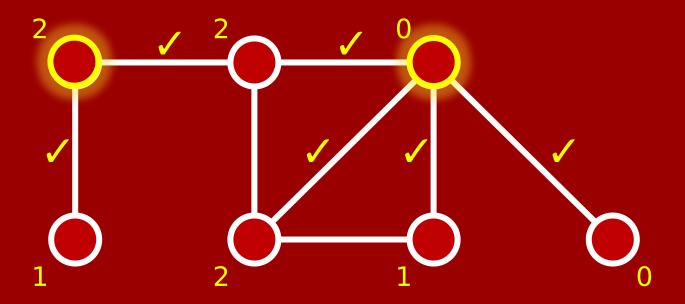
 $(S \subseteq V \text{ is a "vertex-cover" if it touches all edges.})$

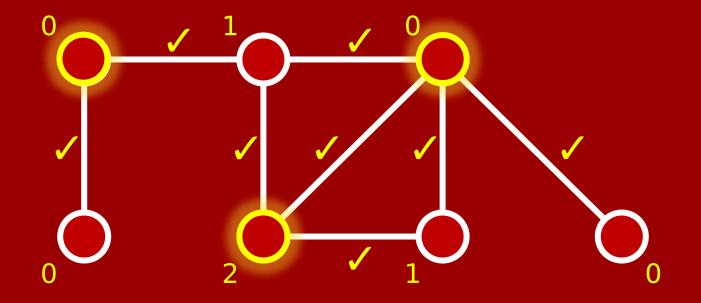


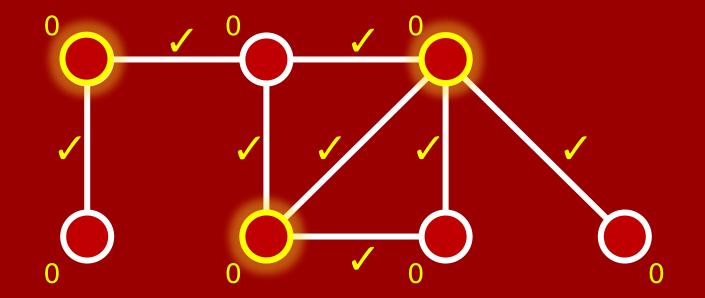
A possible Vertex-Cover algorithm Simplest heuristic you might think of: GreedyVC(G) $S \leftarrow \emptyset$ while **not** all edges marked as "covered" find $v \in V$ touching most unmarked edges $S \leftarrow S \cup \{v\}$ mark all edges v touches



(Break ties arbitrarily.)







Done. Vertex-cover size 3 (optimal) ©.

GreedyVC analysis

Correctness:

✓ Always outputs a valid vertex-cover.

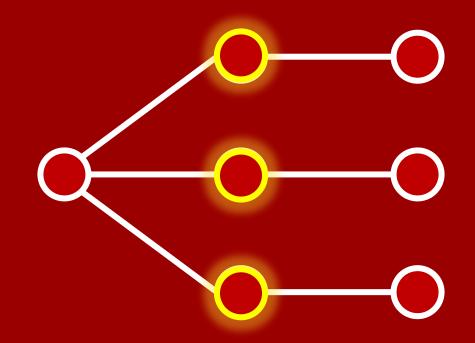
Running time:

Polynomial time.

Solution quality:

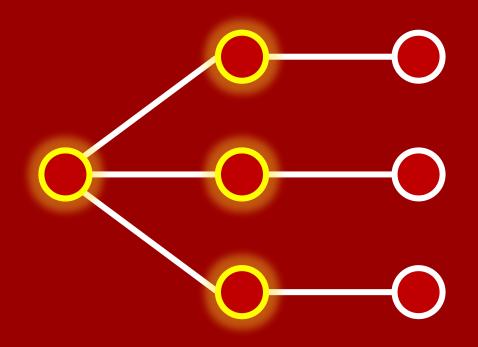
- This is the interesting question.
- There must be some graph G where it
 - doesn't find the smallest vertex-cover.
 - Because otherwise... P = NP!

A bad graph for GreedyVC



Smallest? 3

A bad graph for GreedyVC

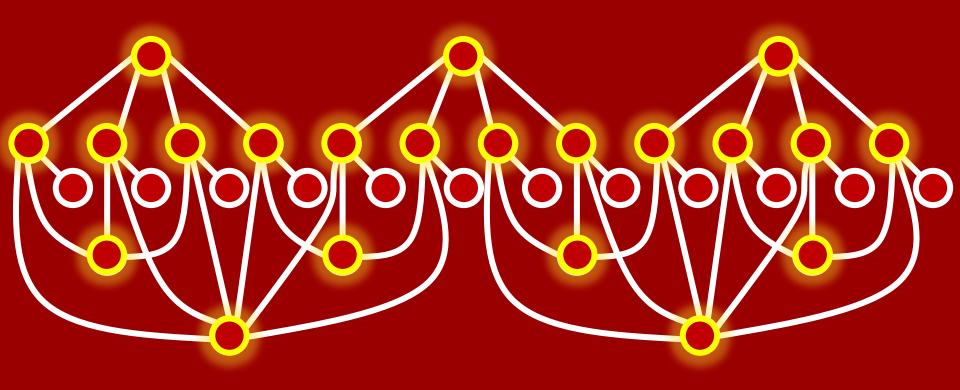


3

4

Smallest? GreedyVC? So GreedyVC is **not** a 1.33-approximation. (Because 1.33 < 4/3.)

A worse graph for GreedyVC



Smallest?

GreedyVC?

21

So GreedyVC is **not** a 1.74-approximation. (Because 1.74 < 21/12.)

Even worse graph for GreedyVC Well... it's a good homework problem. We know GreedyVC is **not** a 1.74-approximation. GreedyVC is **not** a 2.08-approximation. Fact: GreedyVC is **not** a 3.14-approximation. Fact: GreedyVC is **not** a 42-approximation. Fact: GreedyVC is **not** a 999-approximation. Fact:

Greed is Bad (for Vertex-Cover)

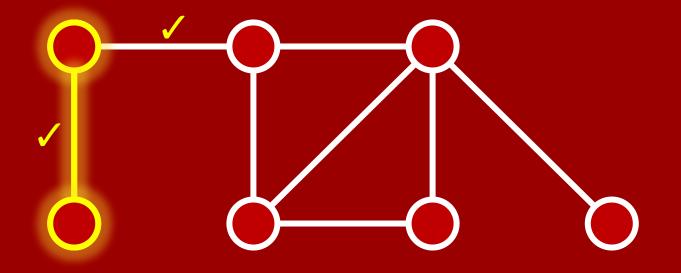
Theorem: \forall C, GreedyVC is **not** a C-approximation.

In other words: For any constant C, there is a graph G such that [GreedyVC(G)] > C · [Min-Vertex-Cover(G)].

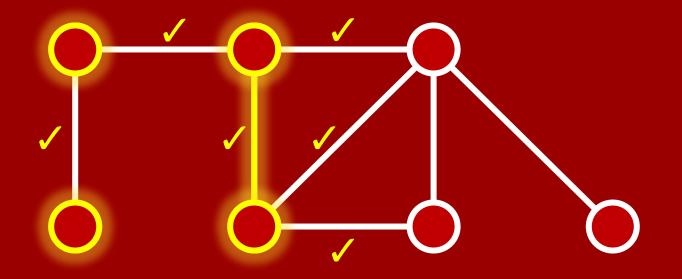
Gavril to the rescue

GavrilVC(G) S ← Ø while **not** all edges marked as "covered" let {v,w} be any unmarked edge S ← S ∪ {v,w} ? mark all edges v,w touch

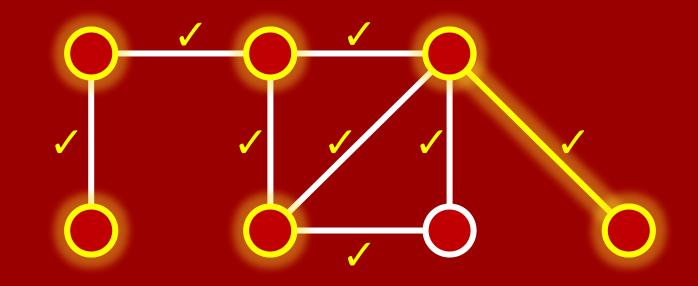
GavrilVC example



GavrilVC example



GavrilVC example



3

6

Smallest: GavrilVC:

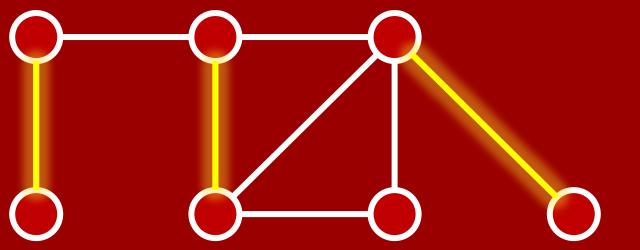
So GavrilVC is **at best** a **2**-approximation.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T. Say it picked edges $e_1, e_2, ..., e_T \in E$. **Key claim**: $\{e_1, e_2, ..., e_T\}$ is a <u>matching</u>. Because... when e_j is picked, it's unmarked, so its endpoints are not among $e_1, ..., e_{j-1}$. So **any** vertex-cover must have ≥ 1 vertex from each e_j .



Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its |S| = 2T. Say it picked edges $e_1, e_2, ..., e_T \in E$. **Key claim**: $\{e_1, e_2, ..., e_T\}$ is a <u>matching</u>. Because... when e_i is picked, it's unmarked, so its endpoints are not among $e_1, ..., e_{i-1}$. So **any** vertex-cover must have ≥ 1 vertex from each e_i . Including the **minimum** vertex-cover S^* , whatever it is. Thus $|S^*| \ge T$. So for Gavril's final vertex-cover S,

 $|S| = 2T \le 2|S^*|.$

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

"k-Coverage" problem

"Pokémon-Coverage" problem

Let's say you have some Pokémon,

and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the # of distinct Pokémon.

"Pokémon-Coverage" problem

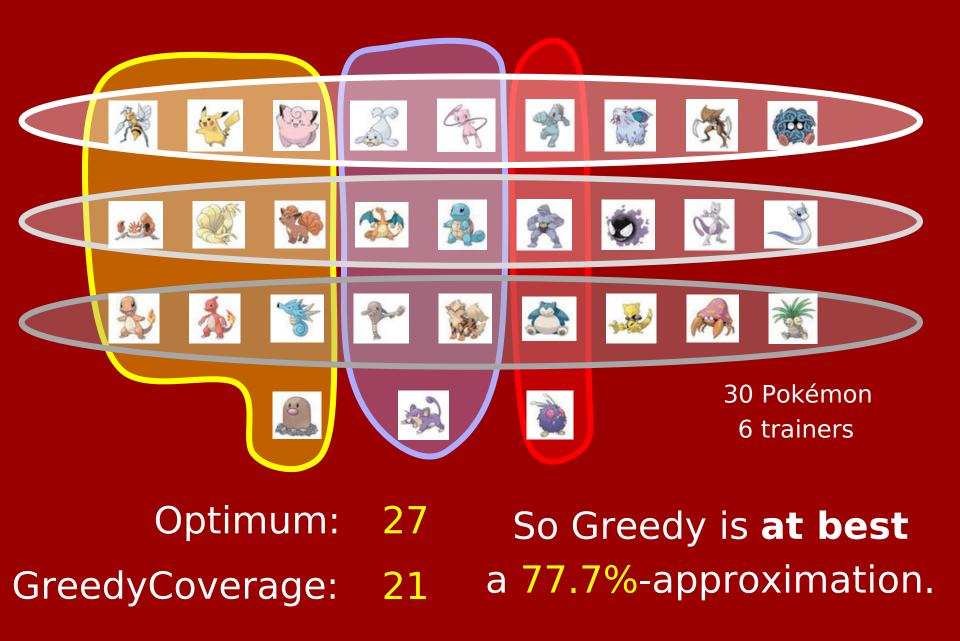
This problem is NP-hard. ⊗

Approximation algorithm?

We could try to be greedy again...

GreedyCoverage()
for i = 1...k
add to the team the trainer bringing in the
most new Pokémon, given the team so far

Example with k=3:



Greed is Pretty Good (for k-Coverage)

Theorem: GreedyCoverage is a 63%-approximation for k-Coverage. More precisely, 1-1/ewhere e \approx 2.718281828...

Proof: (Don't read if you don't want to.)

Let P* be the Pokémon covered by the best k trainers. Define $r_i = |P^*| - \#$ Pokémon covered after i steps of Greedy. We'll prove by induction that $r_i \leq (1-1/k)^i \cdot |P^*|$. The base case i=0 is clear, as $r_0 = |P^*|$. For the inductive step, suppose Greedy enters its ith step. At this point, the number of uncovered Pokémon in P* must be $\geq r_{i-1}$. We know there are some k trainers covering all these Pokémon. Thus one of these trainers must cover at least r_{i-1}/k of them. Therefore the trainer chosen in Greedy's ith step will cover $\geq r_{i-1}/k$ Pokémon. Thus $r_i \leq r_{i-1} - r_{i-1}/k = (1-1/k) \cdot r_{i-1} \leq (1-1/k) \cdot (1-1/k)^{i} |P^*|$ by induction. Thus we have completed the inductive proof that $r_i \leq (1-1/k)^i \cdot |P^*|$. Therefore the Greedy algorithm terminates with $r_k \leq (1-1/k)^k \cdot |P^*|$. Since $1-1/k \le e^{-1/k}$ (Taylor expansion), we get $r_k \le e^{-1} \cdot |P^*|$. Thus Greedy covers at least $|P^*| - e^{-1} \cdot |P^*| = (1-1/e) \cdot |P^*| Pokémon.$ This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

3. Some very good approximation algorithms for TSP.

TSP

(Traveling Salesperson Problem)

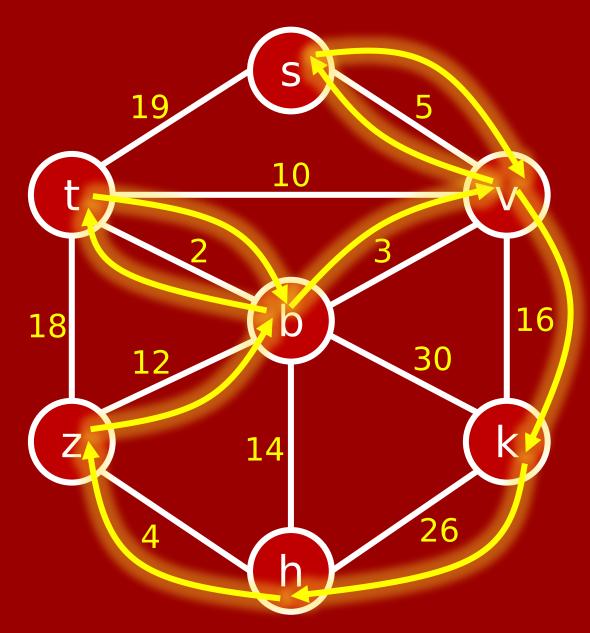
Many variants. Most common is "Metric-TSP":

Input: A graph G=(V,E) with edge costs.

Output: A "tour": i.e., a walk that visits each vertex **at least** once, and starts and ends at the same vertex.

Goal: Minimize total cost of tour.

TSP example



Cheapest tour:

- 3 + 5
- + 5 + 16 + 26
- + 4 + 12 + 2 + 2

= 71

TSP is probably the most famous NP-complete problem.

It has inspired many things...

Textbooks

Gerhard Reinelt

Lecture Notes in Computer Science

The Traveling Salesman

Computational Solutions for TSP Applications

CONBINATORIAL OPTIMIZATION

The Traveling Salesman Problem and Its Variations

Gregory Gotin and Abraham P. Punnen (Eds.)

ceton Series in APPLIED MATHEMATICS

The

TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem

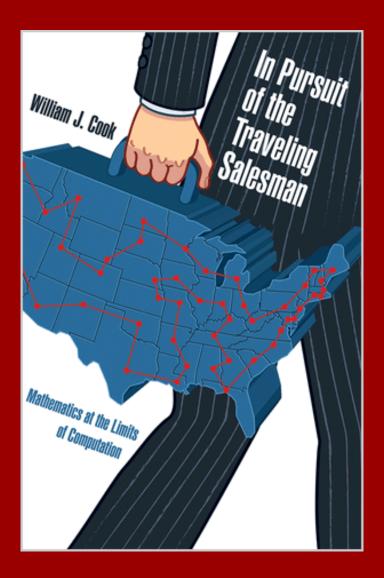
A Computational Study

David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook

2 Springer

(address) in the second second

"Popular" books



Museum exhibits

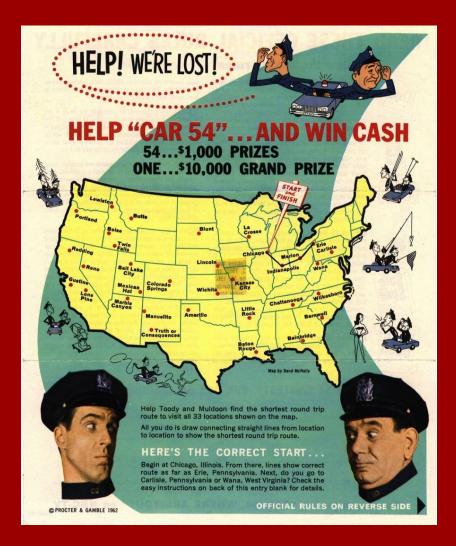
Movies

	0001011011000110110000100000011011110
1100110001000000111011101101	0000110100101100011011010000010000001
	1100100000011100110110111101101100011
	0011110010010000001100001011011100110
	01101110011000110110010101111001001100
	11100000111001001101111011011010101010
01011100110110010100100000	$^{11}011100110010000100000111001$
10111011101100101010100001	10000100000111011101101001
0111010001101000011011110	00010000001100001011011100
1111001001000000110100001	10111 1101001011101000110000101
1101000110100101101111011	001011 1000000110110101100101011
0111001110100011000010110	010000 10010011001011100110110
0101011100100111011001100	11010 100101101110110111000101 0000 0011011001010100011011100
1000010000001101111011100	
1001100101011101000010000	J11001100001011100110110100
$1011011110110111000100000 \\ 0110111001100$.0110001000000110110101101001
	01011011100010000001101101011001010
0100000011101110110100001	10111010001110011011011110110010101
1101100110010101110010001	00100000011000100110100101101110011
$0010001101001011011100110\\0101011011000110011000100$	$01000000110110101111001011100110110\\11010101101$
0100010000001101110011011	00000011011000110010101110011011100 1100000110010101101
	10100011010000110000101101100010100000
	0100001000000110111101100110001000000
	0010110111001100111001000000110110101
	000111001001101111011000000101110100001
0000001100011011101010101	1000010110001101110010001
11110111001101110011001	21101011110010010000001110
	1110101011001010010000001110100011011
	1011110111010101110100001011000010000
	00000011101110110100101111010001101000
00100000011011010111100	00110111101100100011110010
01000000110001001110101	011001010100000000000000000000000000000
	00011010000110010100100000001110011011
	1001000000110111101100110001000000111
	01110011011001010101000010010000001100
0010111010000100000011011000	110111101110111001010110101110111011000
0101110100011001010111001000	1000000110110101100001011100100110101
1001011000010('1011101	000110 0011001000000
0111010001101(0101001	001110 '00100011001010
0100000011001(10011C	011100 0000 00010110111001
10010000100000 001101	110111 01110 110010000011
10100011101110 '1000	100101 000011 1011011100010
00000111010001 1 0010	011100 000117 0010110101100
11001101111011 1 010	000001 00110 1110101011100
10011100110010 00 000	011011 ^ 110101010110110
0011001000010(106 90	000110 .10010101110010
0010000011010 101 1	101110 .1101110011001110
1101100011110(0000) 1011000110110(0110(
1011001101001(11101.	110110 11000111100100100000011 100001 100010010000000111
01000110100001 010111	011000 00011011010111100100100
00001110011011 1011015	010101 10110111000100000010011
11011000100110 0110100	111011 01110100011010010110111
1011011100010(11011110	100010 11000010110111000100000
	0101011100100110010101010000000000000
1000110110010101010101010000011100	0100110010101011011100111010001101000101
	000100000011011010101001010010000000100
0111011011110110010000100000	0110000101101110011001000010000001101
10101100001011010110110010100	010000001101101011001010000000011100
	1001000110011001100001011100110111010
	0000001101011011001010110010101110000
	010000100000111000001100101011100100 1010010000001110100011010000110010100
100000011100110110000010110110	01011001010010111000001101000011010000
TDAVELLIN	C CALECMAN

TRAVELLING SALESMAN

TRAVELLINGSALESMANMOVIE.COM @TRAVSALEMOVIE

'60s sitcom-themed household-goods conglomerate ad/contests



People genuinely want to solve large instances.

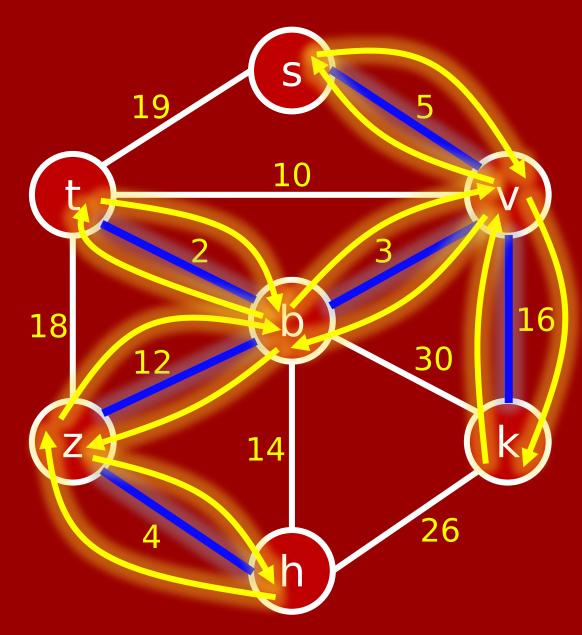
Applications in:

- Schoolbus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing
- •

Basic Approximation Algorithm: The MST Heuristic

Given G with edge costs...
1. Compute an MST T for G, rooted at any s∈V.
2. Visit the vertices via DFS from s.

MST Heuristic example



Step 1: MST Step 2: DFS

Valid tour? ✓
Poly-time? ✓
Cost?
2 × MST Cost
(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation. **Key Claim:** Optimal TSP cost \geq MST Cost always. This implies the Theorem, since MST Heuristic Cost = $2 \times$ MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution. They form a connected graph on all |V| vertices. Take any spanning tree from within these edges. Its cost is at least the MST Cost. Therefore the original TSP tour's cost is \geq MST Cost.

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor **1.5**-approximation algorithm for (Metric) TSP.

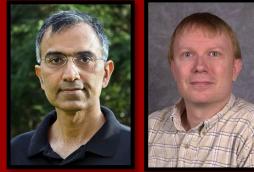
Proof is not too hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

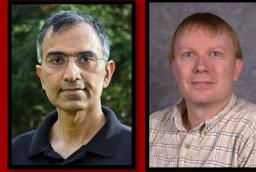
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.3 approximation algorithm.



In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^2 , costs are just the straight-line distances.

This special case is still NP-hard.

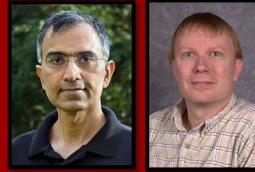
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.1 approximation algorithm.



In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

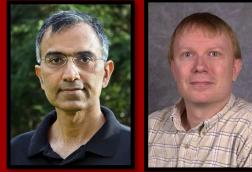
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.01 approximation algorithm.



In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

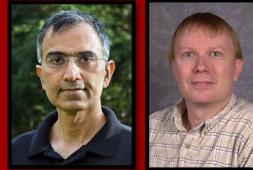
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.001 approximation algorithm.



In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

This special case is still NP-hard.

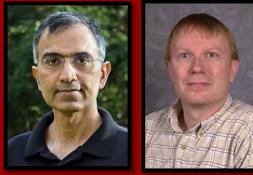
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.0001 approximation algorithm.



In the important special case "Euclidean-TSP", vertices are points in ℝ², costs are just the straight-line distances.

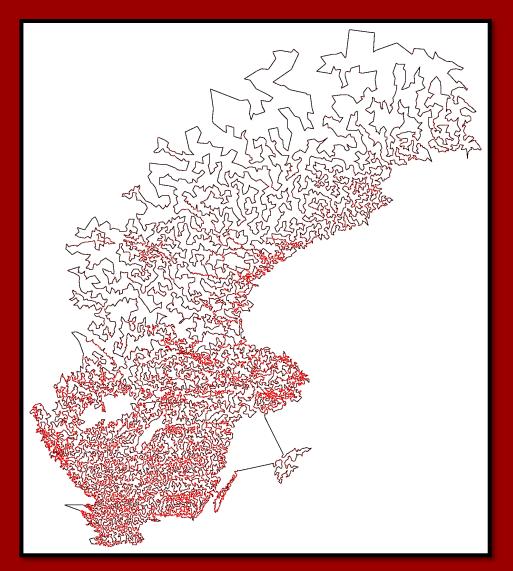
This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor $1+\epsilon$ approximation algorithm, for any $\epsilon > 0$.



(Running time is like $O(n (\log n)^{1/\epsilon})$.)

Euclidean-TSP: NP-hard, but not **that** hard



n > 10,000 is feasible

- 1. A 2-approximation algorithm for Vertex-Cover.
- 2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".
- 3. A $(1+\epsilon)$ -approximation alg. for Euclidean-TSP.

2. A 63% (1–1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)

Theorem: For any $\beta > 1-1/e$, it is NP-hard to factor β -approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works.
Proof length of reduction: ≈ 100 pages.

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea if we can do better.

Theorem (Dinur & Safra, 2002, Annals of Math.): For any $\beta > 10\sqrt{5} - 21 \approx 1.36$, it is NP-hard to β -approximate Vertex-Cover.



Between 1.36 and 2: totally unknown. Raging controversy.

Study Guide

Definitions:

Approximation algorithm.

The idea of "greedy" algorithms.

Algorithms and analysis:

Gavril algorithm for Vertex-Cover.

MST Heuristic for TSP.