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SAT 
 

 
3SAT 

 
 

Vertex-Cover 
 
 

Clique 
 
 

Max-Cut 
 
 

Hamiltonian- 
Cycle 

 

given a Boolean formula F, 
is it satisfiable? 
 
same, but F is a 3-CNF 
 
given G and k, are there k 
vertices which touch all edges? 
 
are there k vertices all connected? 
 
is there a vertex 2-coloring with 
at least k “cut” edges? 
 
is there a cycle touching each 
vertex exactly once? 
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… is NP-complete 
 

 
… is NP-complete 
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Decision vs. Optimization/Search 

NP defined to be a class of decision problems. 

 

 

3SAT 
 
 

Vertex-Cover 

 
 

Clique 
 

 
Max-Cut 

 
 

Hamiltonian- 
Cycle 

 

 
Given a 3-CNF formula, is it satisfiable? 

 
Given G and k, are there k 
vertices which touch all edges? 
 
Given G and k, are there k vertices  
which are all mutually connected? 

 
Is there a vertex 2-coloring with 
at least k “cut” edges? 

 
Is there a cycle touching each 
vertex exactly once? 

Usually there is a natural ‘optimization’ version. 



Decision vs. Optimization/Search 
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Given G, find the size of the smallest S ⊆ V  
touching all edges. 
 
Given G, find the size of the largest clique 
(set of mutually connected vertices). 

 
Given G, find the largest number of 
edges ‘cut’ by some vertex 2-coloring. 

NP defined to be a class of decision problems. 

Usually there is a natural ‘optimization’ version. 



Decision vs. Optimization/Search 

 

 

3SAT 
 
 

Vertex-Cover 

 
 

Clique 
 

 
Max-Cut 

 
 

Hamiltonian- 
Cycle 

 

 

Given a 3-CNF formula, find the largest number 
of clauses satisfiable by a truth assignment. 
 

Given G, find the size of the smallest S ⊆ V  
touching all edges. 
 
Given G, find the size of the largest clique 
(set of mutually connected vertices). 

 
Given G, find the largest number of 
edges ‘cut’ by some vertex 2-coloring. 

NP defined to be a class of decision problems. 

Usually there is a natural ‘optimization’ version. 



Decision vs. Optimization/Search 

 

 

3SAT 
 
 

Vertex-Cover 

 
 

Clique 
 

 
Max-Cut 

 
 

TSP 
 

 

Given a 3-CNF formula, find the largest number 
of clauses satisfiable by a truth assignment. 
 

Given G, find the size of the smallest S ⊆ V  
touching all edges. 
 
Given G, find the size of the largest clique 
(set of mutually connected vertices). 

 
Given G, find the largest number of 
edges ‘cut’ by some vertex 2-coloring. 
 
Given G with edge costs, find the cost of the 
cheapest  cycle touching each vertex once.  

NP defined to be a class of decision problems. 

Usually there is a natural ‘optimization’ version. 



 

 

3SAT 
 
 

Vertex-Cover 

 
 

Clique 
 

 
Max-Cut 

 
 

TSP 
 

 

Given a 3-CNF formula, find a truth assignment 
with the largest number of satisfied clauses. 
 

Given G, find the smallest S ⊆ V  
touching all edges. 
 
Given G, find the largest clique 
(set of mutually connected vertices). 

 
Given G, find the vertex 2-coloring which ‘cuts’ 
the largest number of edges. 
 
Given G with edge costs, find the cheapest 
cycle touching each vertex once.  

Decision vs. Optimization/Search 

NP defined to be a class of decision problems. 

Usually there is a natural ‘optimization’ version 

and a natural ‘search’ version.  



Decision vs. Optimization/Search 

Technically, the ‘optimization’ or ‘search’ versions 

cannot be in NP, since they’re not languages. 

We often still say they are NP-hard. 
 

This means:  if you could solve them in poly-time, 

  then you could solve any NP problem in poly-time.  

Why??? 

NP defined to be a class of decision problems. 

Usually there is a natural ‘optimization’ version 

and a natural ‘search’ version.  



Decision vs. Optimization/Search 
 

More interestingly the opposite is usually true too:  
 

Given an efficient solution to the decision problem 

we can solve the ‘optimization’ and ‘search’ 

versions efficiently, too.  

Find the number (e.g., of satisfiable clauses) via 

binary search. 

Find a solution (e.g., satisfying assignment) by 

setting variables one by one an, testing each 

time if there is still a good assignment. 
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There is only one idea in this lecture: 



Vertex-Cover 

Given graph G = (V,E) and number k, 

is there a size-k “vertex-cover” for G?  
 

(S ⊆ V is a “vertex-cover” if it touches all edges.) 

G has a vertex-cover of size 3. 



Vertex-Cover 

Given graph G = (V,E) and number k, 

is there a size-k “vertex-cover” for G?  
 

(S ⊆ V is a “vertex-cover” if it touches all edges.) 

G has no vertex-cover of size 2. 

(Because you need ≥ 1 vertex per yellow edge.) 



Vertex-Cover 

Given graph G = (V,E) and number k, 

is there a size-k “vertex-cover” for G?  
 

(S ⊆ V is a “vertex-cover” if it touches all edges.) 

The Vertex-Cover problem is NP-complete.  

 assuming “P ≠ NP”, there is no algorithm 

running in polynomial time 

which, for all graphs G, 

finds the minimum-size vertex-cover. 



Never Give Up 

 assuming “P ≠ NP”, there is no algorithm 

running in polynomial time 

which, for all graphs G, 

finds the minimum-size vertex-cover. 

Subexponential-time algorithms: 

   Brute-force tries all 2n subsets of n vertices. 

   Maybe there’s an O(1.5n)-time algorithm. 

   Or O(1.1n) time, or O(2n
 

.1
) time, or…

 

   Could be quite okay if n = 100, say. 
 

As of 2010: there is an O(1.28n)-time algorithm. 



Never Give Up 

 assuming “P ≠ NP”, there is no algorithm 

running in polynomial time 

which, for all graphs G, 

finds the minimum-size vertex-cover. 

Special cases: 

   Solvable in poly-time for…  

      tree graphs,  

      bipartite graphs, 

      “series-parallel” graphs… 
 

   Perhaps for “graphs encountered in practice”? 



Never Give Up 

 assuming “P ≠ NP”, there is no algorithm 

running in polynomial time 

which, for all graphs G, 

finds the minimum-size vertex-cover. 

Approximation algorithms: 
  

   Try to find pretty small vertex-covers. 
  

   Still want polynomial time, and for all graphs. 



Gavril’s Approximation Algorithm 

Easy Theorem (from 1976): 

There is a polynomial-time algorithm that, 

given any graph G = (V,E), 

outputs a vertex-cover S ⊆ V such that 

|S| ≤ 2|S*| 

where S* is the smallest vertex-cover. 

“A factor 2-approximation for Vertex-Cover.” 



Not all NP-hard problems created equal! 

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, … 

All of these problems are equally NP-hard. 
 

(There’s no poly-time algorithm to find 

the optimal solution unless P = NP.) 

But from the point of view of finding 

approximately optimal solutions, 

there is an intricate, fascinating, and wide 

range of possibilities… 



Today:     A case study of 

approximation algorithms 

1. A somewhat good approximation algorithm 

  for Vertex-Cover. 

 

2. A pretty good approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



Today:     A case study of 

approximation algorithms 

1. A somewhat good approximation algorithm 

  for Vertex-Cover. 

 

2. A pretty good approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



Vertex-Cover 

Given graph G = (V,E) try to find the 

smallest “vertex-cover” for G. 

 

(S ⊆ V is a “vertex-cover” if it touches all edges.) 



A possible Vertex-Cover algorithm 

Simplest heuristic you might think of: 

GreedyVC(G) 

    S ← ∅ 

    while not all edges marked as “covered” 

        find v∈V touching most unmarked edges  

        S ← S ∪ {v}  

        mark all edges v touches 

 



GreedyVC example 

2 3 4 

2 3 1 1 

✓ 

✓ ✓ ✓ 



GreedyVC example 

2 2 0 

1 2 1 0 

✓ 

✓ ✓ ✓ 

✓ 

✓ 

(Break ties arbitrarily.) 



GreedyVC example 

0 1 0 

1 2 0 0 

✓ 

✓ ✓ ✓ 

✓ 

✓ 

✓ 

✓ 



GreedyVC example 

0 0 0 

0 0 0 0 

✓ 

✓ ✓ ✓ 

✓ 

✓ 

✓ 

✓ 

Done.  Vertex-cover size 3 (optimal) . 



GreedyVC analysis 

Correctness:   

Running time:   

Solution quality: 

✓  Always outputs a valid vertex-cover. 

✓  Polynomial time. 

This is the interesting question. 

There must be some graph G where it 

    doesn’t find the smallest vertex-cover. 

    Because otherwise…  P = NP! 



A bad graph for GreedyVC 

Smallest? 3 



A bad graph for GreedyVC 

GreedyVC? 4 

Smallest? 3 So GreedyVC is not 

a 1.33-approximation. 

(Because 1.33 < 4/3.) 



A worse graph for GreedyVC 

GreedyVC? 21 

Smallest? 12 So GreedyVC is not 

a 1.74-approximation. 

(Because 1.74 < 21/12.) 

??? 



Even worse graph for GreedyVC 

We know GreedyVC is not a 1.74-approximation. 

Well… it’s a good homework problem. 

Fact:        GreedyVC is not a 2.08-approximation. 

Fact:        GreedyVC is not a 3.14-approximation. 

Fact:        GreedyVC is not a    42-approximation. 

Fact:        GreedyVC is not a  999-approximation. 



Theorem:  ∀ C, GreedyVC is not a C-approximation. 

Greed is Bad (for Vertex-Cover) 

In other words:    

 For any constant C, 

    there is a graph G such that  
 

|GreedyVC(G)| > C · |Min-Vertex-Cover(G)|. 



GavrilVC(G) 

    S ← ∅ 

    while not all edges marked as “covered” 

        let {v,w} be any unmarked edge  

        S ← S ∪ {v,w}    

        mark all edges v,w touch 

 

Gavril to the rescue 

! ? 



GavrilVC example 

✓ 

✓ 



GavrilVC example 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 



GavrilVC example 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ ✓ 

GavrilVC: 6 

Smallest: 3 
So GavrilVC is at best 

a 2-approximation. 



Theorem:   

   GavrilVC is a 2-approximation for Vertex-Cover.  

Proof: 

   Say GavrilVC(G) does T iterations. So its |S| = 

   Say it picked edges e1, e2, …, eT ∈ E. 

   Key claim:  {e1, e2, …, eT} is a matching. 

   Because… 

                     so its endpoints are not among e1, …, ej−1. 

   So any vertex-cover must have ≥ 1 vertex from each ej. 

 

when ej is picked, it’s unmarked, 

2T. 



Theorem:   

   GavrilVC is a 2-approximation for Vertex-Cover.  

Proof: 

   Say GavrilVC(G) does T iterations. So its |S| = 

   Say it picked edges e1, e2, …, eT ∈ E. 

   Key claim:  {e1, e2, …, eT} is a matching. 

   Because… 

                     so its endpoints are not among e1, …, ej−1. 

   So any vertex-cover must have ≥ 1 vertex from each ej. 

   Including the minimum vertex-cover S*, whatever it is. 

   Thus |S*| ≥ T. 

   So for Gavril’s final vertex-cover S,  
 

|S| = 2T ≤ 2|S*|. 
 

when ej is picked, it’s unmarked, 

2T. 



Today:     A case study of 

approximation algorithms 

1. A 2-approximation algorithm for Vertex-Cover. 

 

2. A pretty good approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



Today:     A case study of 

approximation algorithms 

1. A 2-approximation algorithm for Vertex-Cover. 

 

2. A pretty good approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



“k-Coverage” problem 



“Pokémon-Coverage” problem 

Let’s say you have 

some Pokémon, 

and some trainers, 

each having a 

subset of Pokémon. 

Given k, choose a 

team of k trainers 

to maximize the # 

of distinct Pokémon. 



“Pokémon-Coverage” problem 

This problem is NP-hard.   

Approximation algorithm? 

We could try to be greedy again… 

GreedyCoverage() 

    for i = 1…k 

    add to the team the trainer bringing in the 

       most new Pokémon, given the team so far 

 



Example with k=3: 

Optimum: 

GreedyCoverage: 

27 

21 

So Greedy is at best 

a 77.7%-approximation. 

30 Pokémon 

  6 trainers 



Greed is Pretty Good (for k-Coverage) 

Theorem:   

      GreedyCoverage is a 63%-approximation  

                  for k-Coverage.  

More precisely,  1−1/e 

where e ≈ 2.718281828… 



Proof:   (Don’t read if you don’t want to.) 
 

Let P* be the Pokémon covered by the best k trainers. 

Define ri = |P*| − # Pokémon covered after i steps of Greedy. 

We’ll prove by induction that ri ≤ (1−1/k)i · |P*|. 

The base case i=0 is clear, as r0 = |P*|. 

For the inductive step, suppose Greedy enters its ith step. 

At this point, the number of uncovered Pokémon in P* must be ≥ ri−1. 

We know there are some k trainers covering all these Pokémon. 

Thus one of these trainers must cover at least ri−1/k of them. 

Therefore the trainer chosen in Greedy’s ith step will cover ≥ ri−1/k Pokémon. 

Thus ri ≤ ri−1 − ri−1/k = (1−1/k)·ri−1 ≤ (1−1/k)·(1−1/k)i·|P*| by induction. 

Thus we have completed the inductive proof that ri ≤ (1−1/k)i · |P*|. 

Therefore the Greedy algorithm terminates with rk ≤ (1−1/k)k · |P*|. 

Since 1−1/k ≤ e−1/k (Taylor expansion), we get rk ≤ e−1 · |P*|. 

Thus Greedy covers at least |P*| − e−1 · |P*| = (1−1/e) · |P*| Pokémon. 

This completes the proof that Greedy is a (1−1/e)-approximation algorithm. 



Today:     A case study of 

approximation algorithms 

1. A 2-approximation algorithm for Vertex-Cover. 

 

2. A 63% (1−1/e) approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



Today:     A case study of 

approximation algorithms 

1. A 2-approximation algorithm for Vertex-Cover. 

 

2. A 63% (1−1/e) approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. Some very good approximation algorithms 

  for TSP. 

 



TSP 

(Traveling Salesperson Problem) 

Many variants. Most common is “Metric-TSP”: 

Input:     A graph G=(V,E) with edge costs. 
 

Output:  A “tour”: i.e., a walk that visits each  

       vertex at least once, and starts and 

       ends at the same vertex. 
 

Goal:      Minimize total cost of tour. 

 



s 

v 

k z 

t 

h 

b 

19 5 

10 

2 3 

18 16 
30 12 

4 26 

14 

TSP example 

Cheapest tour: 

3 

+    5 

+    5 

+  16 

+  26 

+    4 

+  12 

+    2 

+    2 

=  71 



TSP is probably the most 

famous NP-complete problem. 

 

It has inspired many things… 



Textbooks 



“Popular” books 



Museum exhibits 



Movies 



’60s sitcom-themed household-goods 

conglomerate ad/contests 



People genuinely want to solve large instances. 

Applications in: 

• Schoolbus routing 

• Moving farm equipment 

• Package delivery 

• Space interferometer scheduling 

• Circuit board drilling 

• Genome sequencing 

• … 



Basic Approximation Algorithm: 

The MST Heuristic 

     Given G with edge costs… 
 

1. Compute an MST T for G, rooted at any s∈V. 

2. Visit the vertices via DFS from s. 



s 

v 

k z 

t 

h 

b 

19 5 

10 

2 3 

18 16 
30 12 

4 26 

14 

MST Heuristic example 

Step 1:  MST 

Step 2:  DFS 

Valid tour?  ✓ 

Poly-time?   ✓ 

Cost?               

2 × MST Cost 

(84 in this case) 



MST Heuristic 

Theorem:    MST Heuristic is factor-2 approximation. 

Key Claim:   Optimal TSP cost ≥ MST Cost  always. 

This implies the Theorem, since 

   MST Heuristic Cost = 2 × MST Cost. 

Proof of Claim: 

Take all edges in optimal TSP solution. 

They form a connected graph on all |V| vertices. 

Take any spanning tree from within these edges. 

Its cost is at least the MST Cost. 

Therefore the original TSP tour’s cost is ≥ MST Cost. 



Can we do better? 

Nicos Christofides, Tepper faculty, 1976: 
 

       There is a polynomial-time,  

       factor 1.5-approximation 

       algorithm for (Metric) TSP.  

Proof is not too hard.  Ingredients: 

• MST Heuristic 

• Eulerian Tours 

• Cheapest Perfect Matching algorithm 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor  1.3 

  approximation algorithm. 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor 

  approximation algorithm. 

1.1 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor 

  approximation algorithm. 

1.01 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor 

  approximation algorithm. 

1.001 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor 

  approximation algorithm. 

1.0001 



Even better in a special case 

In the important special case “Euclidean-TSP”,  

    vertices are points in ℝ2, 

    costs are just the straight-line distances. 

This special case is still NP-hard. 

Theorem (Arora, Mitchell, 1998): 

  For Euclidean-TSP, there is a 

    polynomial-time factor 

  approximation algorithm 

1+ϵ 

, for any ϵ > 0. 

(Running time is like O(n (log n)1/ϵ).) 



Euclidean-TSP: 

NP-hard, but not that hard 

n > 10,000 

is feasible 



1. A 2-approximation algorithm for Vertex-Cover. 

 

2. A 63% (1−1/e) approximation algorithm 

  for the “k-Coverage Problem”. 

 

3. A (1+ϵ)-approximation alg. for Euclidean-TSP. 

Can we do better? 



Can we do better? 

We cannot do better.  (Unless P=NP.) 

1.   

 

2. A 63% (1−1/e) approximation algorithm 

  for the “k-Coverage Problem”. 

 

Theorem:  For any β > 1−1/e, it is NP-hard       

                    to factor β-approximate k-Coverage. 

Proved in 1998 by Feige,  

  building on many prior works. 

Proof length of reduction: ≈ 100 pages. 



Can we do better? 

We have no idea if we can do better. 

1. A 2-approximation algorithm for Vertex-Cover. 

Theorem (Dinur & Safra, 2002, Annals of Math.):   

     For any β >                             , 

     it is NP-hard to β-approximate Vertex-Cover. 



Approximating Vertex-Cover 

Approximation Factor 

1 1.36 2 

Poly-time (Gavril) NP-hard (Dinur–Safra) 

??? 

Between 1.36 and 2: totally unknown. 

Raging controversy. 



Definitions: 
 

   Approximation algorithm. 
 

    The idea of “greedy” 
            algorithms. 
 

Algorithms and analysis: 
 

   Gavril algorithm for  

        Vertex-Cover. 

 

   MST Heuristic for TSP. 

Study Guide 


