
15-251: Great Theoretical Ideas in Computer Science

Approximation Algorithms

Spring 2017, Lecture 20

SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

given a Boolean formula F,
is it satisfiable?

same, but F is a 3-CNF

given G and k, are there k
vertices which touch all edges?

are there k vertices all connected?

is there a vertex 2-coloring with
at least k “cut” edges?

is there a cycle touching each
vertex exactly once?

SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

Decision vs. Optimization/Search

NP defined to be a class of decision problems.

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, is it satisfiable?

Given G and k, are there k
vertices which touch all edges?

Given G and k, are there k vertices
which are all mutually connected?

Is there a vertex 2-coloring with
at least k “cut” edges?

Is there a cycle touching each
vertex exactly once?

Usually there is a natural ‘optimization’ version.

Decision vs. Optimization/Search

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given G, find the size of the smallest S ⊆ V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

Decision vs. Optimization/Search

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the size of the smallest S ⊆ V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

Decision vs. Optimization/Search

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find the largest number
of clauses satisfiable by a truth assignment.

Given G, find the size of the smallest S ⊆ V
touching all edges.

Given G, find the size of the largest clique
(set of mutually connected vertices).

Given G, find the largest number of
edges ‘cut’ by some vertex 2-coloring.

Given G with edge costs, find the cost of the
cheapest cycle touching each vertex once.

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version.

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find a truth assignment
with the largest number of satisfied clauses.

Given G, find the smallest S ⊆ V
touching all edges.

Given G, find the largest clique
(set of mutually connected vertices).

Given G, find the vertex 2-coloring which ‘cuts’
the largest number of edges.

Given G with edge costs, find the cheapest
cycle touching each vertex once.

Decision vs. Optimization/Search

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version

and a natural ‘search’ version.

Decision vs. Optimization/Search

Technically, the ‘optimization’ or ‘search’ versions

cannot be in NP, since they’re not languages.

We often still say they are NP-hard.

This means: if you could solve them in poly-time,

 then you could solve any NP problem in poly-time.

Why???

NP defined to be a class of decision problems.

Usually there is a natural ‘optimization’ version

and a natural ‘search’ version.

Decision vs. Optimization/Search

More interestingly the opposite is usually true too:

Given an efficient solution to the decision problem

we can solve the ‘optimization’ and ‘search’

versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via

binary search.

Find a solution (e.g., satisfying assignment) by

setting variables one by one an, testing each

time if there is still a good assignment.

SAT

3SAT

Vertex-Cover

Clique

Max-Cut

Hamiltonian-
Cycle

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

… is NP-complete

There is only one idea in this lecture:

Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G?

(S ⊆ V is a “vertex-cover” if it touches all edges.)

G has a vertex-cover of size 3.

Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G?

(S ⊆ V is a “vertex-cover” if it touches all edges.)

G has no vertex-cover of size 2.

(Because you need ≥ 1 vertex per yellow edge.)

Vertex-Cover

Given graph G = (V,E) and number k,

is there a size-k “vertex-cover” for G?

(S ⊆ V is a “vertex-cover” if it touches all edges.)

The Vertex-Cover problem is NP-complete. 

 assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Never Give Up

 assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Subexponential-time algorithms:

 Brute-force tries all 2n subsets of n vertices.

 Maybe there’s an O(1.5n)-time algorithm.

 Or O(1.1n) time, or O(2n

.1
) time, or…

 Could be quite okay if n = 100, say.

As of 2010: there is an O(1.28n)-time algorithm.

Never Give Up

 assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Special cases:

 Solvable in poly-time for…

 tree graphs,

 bipartite graphs,

 “series-parallel” graphs…

 Perhaps for “graphs encountered in practice”?

Never Give Up

 assuming “P ≠ NP”, there is no algorithm

running in polynomial time

which, for all graphs G,

finds the minimum-size vertex-cover.

Approximation algorithms:

 Try to find pretty small vertex-covers.

 Still want polynomial time, and for all graphs.

Gavril’s Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that,

given any graph G = (V,E),

outputs a vertex-cover S ⊆ V such that

|S| ≤ 2|S*|

where S* is the smallest vertex-cover.

“A factor 2-approximation for Vertex-Cover.”

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, …

All of these problems are equally NP-hard.

(There’s no poly-time algorithm to find

the optimal solution unless P = NP.)

But from the point of view of finding

approximately optimal solutions,

there is an intricate, fascinating, and wide

range of possibilities…

Today: A case study of

approximation algorithms

1. A somewhat good approximation algorithm

 for Vertex-Cover.

2. A pretty good approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

Today: A case study of

approximation algorithms

1. A somewhat good approximation algorithm

 for Vertex-Cover.

2. A pretty good approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

Vertex-Cover

Given graph G = (V,E) try to find the

smallest “vertex-cover” for G.

(S ⊆ V is a “vertex-cover” if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

 S ← ∅

 while not all edges marked as “covered”

 find v∈V touching most unmarked edges

 S ← S ∪ {v}

 mark all edges v touches

GreedyVC example

2 3 4

2 3 1 1

✓

✓ ✓ ✓

GreedyVC example

2 2 0

1 2 1 0

✓

✓ ✓ ✓

✓

✓

(Break ties arbitrarily.)

GreedyVC example

0 1 0

1 2 0 0

✓

✓ ✓ ✓

✓

✓

✓

✓

GreedyVC example

0 0 0

0 0 0 0

✓

✓ ✓ ✓

✓

✓

✓

✓

Done. Vertex-cover size 3 (optimal) .

GreedyVC analysis

Correctness:

Running time:

Solution quality:

✓ Always outputs a valid vertex-cover.

✓ Polynomial time.

This is the interesting question.

There must be some graph G where it

 doesn’t find the smallest vertex-cover.

 Because otherwise… P = NP!

A bad graph for GreedyVC

Smallest? 3

A bad graph for GreedyVC

GreedyVC? 4

Smallest? 3 So GreedyVC is not

a 1.33-approximation.

(Because 1.33 < 4/3.)

A worse graph for GreedyVC

GreedyVC? 21

Smallest? 12 So GreedyVC is not

a 1.74-approximation.

(Because 1.74 < 21/12.)

???

Even worse graph for GreedyVC

We know GreedyVC is not a 1.74-approximation.

Well… it’s a good homework problem.

Fact: GreedyVC is not a 2.08-approximation.

Fact: GreedyVC is not a 3.14-approximation.

Fact: GreedyVC is not a 42-approximation.

Fact: GreedyVC is not a 999-approximation.

Theorem: ∀ C, GreedyVC is not a C-approximation.

Greed is Bad (for Vertex-Cover)

In other words:

 For any constant C,

 there is a graph G such that

|GreedyVC(G)| > C · |Min-Vertex-Cover(G)|.

GavrilVC(G)

 S ← ∅

 while not all edges marked as “covered”

 let {v,w} be any unmarked edge

 S ← S ∪ {v,w}

 mark all edges v,w touch

Gavril to the rescue

! ?

GavrilVC example

✓

✓

GavrilVC example

✓

✓

✓

✓

✓

✓

GavrilVC example

✓

✓

✓

✓

✓

✓

✓ ✓

GavrilVC: 6

Smallest: 3
So GavrilVC is at best

a 2-approximation.

Theorem:

 GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

 Say GavrilVC(G) does T iterations. So its |S| =

 Say it picked edges e1, e2, …, eT ∈ E.

 Key claim: {e1, e2, …, eT} is a matching.

 Because…

 so its endpoints are not among e1, …, ej−1.

 So any vertex-cover must have ≥ 1 vertex from each ej.

when ej is picked, it’s unmarked,

2T.

Theorem:

 GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

 Say GavrilVC(G) does T iterations. So its |S| =

 Say it picked edges e1, e2, …, eT ∈ E.

 Key claim: {e1, e2, …, eT} is a matching.

 Because…

 so its endpoints are not among e1, …, ej−1.

 So any vertex-cover must have ≥ 1 vertex from each ej.

 Including the minimum vertex-cover S*, whatever it is.

 Thus |S*| ≥ T.

 So for Gavril’s final vertex-cover S,

|S| = 2T ≤ 2|S*|.

when ej is picked, it’s unmarked,

2T.

Today: A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

Today: A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A pretty good approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

“k-Coverage” problem

“Pokémon-Coverage” problem

Let’s say you have

some Pokémon,

and some trainers,

each having a

subset of Pokémon.

Given k, choose a

team of k trainers

to maximize the #

of distinct Pokémon.

“Pokémon-Coverage” problem

This problem is NP-hard. 

Approximation algorithm?

We could try to be greedy again…

GreedyCoverage()

 for i = 1…k

 add to the team the trainer bringing in the

 most new Pokémon, given the team so far

Example with k=3:

Optimum:

GreedyCoverage:

27

21

So Greedy is at best

a 77.7%-approximation.

30 Pokémon

 6 trainers

Greed is Pretty Good (for k-Coverage)

Theorem:

 GreedyCoverage is a 63%-approximation

 for k-Coverage.

More precisely, 1−1/e

where e ≈ 2.718281828…

Proof: (Don’t read if you don’t want to.)

Let P* be the Pokémon covered by the best k trainers.

Define ri = |P*| − # Pokémon covered after i steps of Greedy.

We’ll prove by induction that ri ≤ (1−1/k)i · |P*|.

The base case i=0 is clear, as r0 = |P*|.

For the inductive step, suppose Greedy enters its ith step.

At this point, the number of uncovered Pokémon in P* must be ≥ ri−1.

We know there are some k trainers covering all these Pokémon.

Thus one of these trainers must cover at least ri−1/k of them.

Therefore the trainer chosen in Greedy’s ith step will cover ≥ ri−1/k Pokémon.

Thus ri ≤ ri−1 − ri−1/k = (1−1/k)·ri−1 ≤ (1−1/k)·(1−1/k)i·|P*| by induction.

Thus we have completed the inductive proof that ri ≤ (1−1/k)i · |P*|.

Therefore the Greedy algorithm terminates with rk ≤ (1−1/k)k · |P*|.

Since 1−1/k ≤ e−1/k (Taylor expansion), we get rk ≤ e−1 · |P*|.

Thus Greedy covers at least |P*| − e−1 · |P*| = (1−1/e) · |P*| Pokémon.

This completes the proof that Greedy is a (1−1/e)-approximation algorithm.

Today: A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

Today: A case study of

approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

 for the “k-Coverage Problem”.

3. Some very good approximation algorithms

 for TSP.

TSP

(Traveling Salesperson Problem)

Many variants. Most common is “Metric-TSP”:

Input: A graph G=(V,E) with edge costs.

Output: A “tour”: i.e., a walk that visits each

 vertex at least once, and starts and

 ends at the same vertex.

Goal: Minimize total cost of tour.

s

v

k z

t

h

b

19 5

10

2 3

18 16
30 12

4 26

14

TSP example

Cheapest tour:

3

+ 5

+ 5

+ 16

+ 26

+ 4

+ 12

+ 2

+ 2

= 71

TSP is probably the most

famous NP-complete problem.

It has inspired many things…

Textbooks

“Popular” books

Museum exhibits

Movies

’60s sitcom-themed household-goods

conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:

• Schoolbus routing

• Moving farm equipment

• Package delivery

• Space interferometer scheduling

• Circuit board drilling

• Genome sequencing

• …

Basic Approximation Algorithm:

The MST Heuristic

 Given G with edge costs…

1. Compute an MST T for G, rooted at any s∈V.

2. Visit the vertices via DFS from s.

s

v

k z

t

h

b

19 5

10

2 3

18 16
30 12

4 26

14

MST Heuristic example

Step 1: MST

Step 2: DFS

Valid tour? ✓

Poly-time? ✓

Cost?

2 × MST Cost

(84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation.

Key Claim: Optimal TSP cost ≥ MST Cost always.

This implies the Theorem, since

 MST Heuristic Cost = 2 × MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.

They form a connected graph on all |V| vertices.

Take any spanning tree from within these edges.

Its cost is at least the MST Cost.

Therefore the original TSP tour’s cost is ≥ MST Cost.

Can we do better?

Nicos Christofides, Tepper faculty, 1976:

 There is a polynomial-time,

 factor 1.5-approximation

 algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:

• MST Heuristic

• Eulerian Tours

• Cheapest Perfect Matching algorithm

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor 1.3

 approximation algorithm.

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor

 approximation algorithm.

1.1

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor

 approximation algorithm.

1.01

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor

 approximation algorithm.

1.001

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor

 approximation algorithm.

1.0001

Even better in a special case

In the important special case “Euclidean-TSP”,

 vertices are points in ℝ2,

 costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):

 For Euclidean-TSP, there is a

 polynomial-time factor

 approximation algorithm

1+ϵ

, for any ϵ > 0.

(Running time is like O(n (log n)1/ϵ).)

Euclidean-TSP:

NP-hard, but not that hard

n > 10,000

is feasible

1. A 2-approximation algorithm for Vertex-Cover.

2. A 63% (1−1/e) approximation algorithm

 for the “k-Coverage Problem”.

3. A (1+ϵ)-approximation alg. for Euclidean-TSP.

Can we do better?

Can we do better?

We cannot do better. (Unless P=NP.)

1.

2. A 63% (1−1/e) approximation algorithm

 for the “k-Coverage Problem”.

Theorem: For any β > 1−1/e, it is NP-hard

 to factor β-approximate k-Coverage.

Proved in 1998 by Feige,

 building on many prior works.

Proof length of reduction: ≈ 100 pages.

Can we do better?

We have no idea if we can do better.

1. A 2-approximation algorithm for Vertex-Cover.

Theorem (Dinur & Safra, 2002, Annals of Math.):

 For any β > ,

 it is NP-hard to β-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

1 1.36 2

Poly-time (Gavril) NP-hard (Dinur–Safra)

???

Between 1.36 and 2: totally unknown.

Raging controversy.

Definitions:

 Approximation algorithm.

 The idea of “greedy”
 algorithms.

Algorithms and analysis:

 Gavril algorithm for

 Vertex-Cover.

 MST Heuristic for TSP.

Study Guide

