15-251: Great Theoretical Ideas in Computer Science

 Spring 2017, Lecture 20
Approximation Algorithms

given a Boolean formula F, is it satisfiable?

3SAT same, but F is a 3-CNF

Vertex-Cover
given G and k, are there k vertices which touch all edges?

Clique are there k vertices all connected?

Max-Cut
is there a vertex 2-coloring with at least k "cut" edges?

Hamiltonian- is there a cycle touching each
Cycle vertex exactly once?

SAT ... is NP-complete

3SAT ... is NP-complete

Vertex-Cover ... is NP-complete

Clique
... is NP-complete

Max-Cut ... is NP-complete

Hamiltonian... is NP-complete Cycle

Decision vs. Optimization/Search

NP defined to be a class of decision problems.
Usually there is a natural 'optimization' version.

3SAT
Vertex-Cover

Clique

Max-Cut

HamiltonianCycle

Given a 3-CNF formula, is it satisfiable?
Given G and k , are there k vertices which touch all edges?

Given G and k, are there k vertices which are all mutually connected?

Is there a vertex 2-coloring with at least k "cut" edges?

Is there a cycle touching each vertex exactly once?

Decision vs. Optimization/Search

 NP defined to be a class of decision problems.Usually there is a natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Max-Cut

Given G , find the size of the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G, find the size of the largest clique (set of mutually connected vertices).

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-
Cycle

Decision vs. Optimization/Search

 NP defined to be a class of decision problems.
Usually there is a natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Max-Cut

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Given G , find the size of the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G, find the size of the largest clique (set of mutually connected vertices).

Given G, find the largest number of edges 'cut' by some vertex 2-coloring.

Hamiltonian-
Cycle

Decision vs. Optimization/Search

 NP defined to be a class of decision problems.Usually there is a natural 'optimization' version.

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find the largest number of clauses satisfiable by a truth assignment.

Given G , find the size of the smallest $\mathrm{S} \subseteq \mathrm{V}$ touching all edges.

Given G, find the size of the largest clique (set of mutually connected vertices).

Given G , find the largest number of edges 'cut' by some vertex 2-coloring.

Given G with edge costs, find the cost of the cheapest cycle touching each vertex once.

Decision vs. Optimization/Search

NP defined to be a class of decision problems.
Usually there is a natural 'optimization' version and a natural 'search' version.

3SAT

Vertex-Cover

Clique

Max-Cut

TSP

Given a 3-CNF formula, find a truth assignment with the largest number of satisfied clauses.

Given G, find the smallest S \subseteq V touching all edges.

Given G, find the largest clique (set of mutually connected vertices).

Given G, find the vertex 2-coloring which 'cuts' the largest number of edges.

Given G with edge costs, find the cheapest cycle touching each vertex once.

Decision vs. Optimization/Search

NP defined to be a class of decision problems.
Usually there is a natural 'optimization' version and a natural 'search' version.

Technically, the 'optimization' or 'search' versions cannot be in NP, since they're not languages.

We often still say they are NP-hard.
This means: if you could solve them in poly-time, then you could solve any NP problem in poly-time.

Decision vs. Optimization/Search

More interestingly the opposite is usually true too:
Given an efficient solution to the decision problem we can solve the 'optimization' and 'search' versions efficiently, too.

Find the number (e.g., of satisfiable clauses) via binary search.

Find a solution (e.g., satisfying assignment) by
setting variables one by one an, testing each time if there is still a good assignment.

SAT ... is NP-complete

3SAT ... is NP-complete

Vertex-Cover ... is NP-complete

Clique
... is NP-complete

Max-Cut ... is NP-complete

Hamiltonian... is NP-complete Cycle

INUENTS BEAUTIFUL THEORV OF ALGORITHIIIO GOMPLEXITY

EVERYTHING IS NP-GOMPLETE

There is only one idea in this lecture:

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G?
($\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

G has a vertex-cover of size 3 .

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G?
($\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

G has no vertex-cover of size 2 .
(Because you need ≥ 1 vertex per yellow edge.)

Vertex-Cover

Given graph $G=(V, E)$ and number k, is there a size-k "vertex-cover" for G?
($\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

The Vertex-Cover problem is NP-complete. :
\Rightarrow assuming "P $\neq N P$ ", there is no algorithm running in polynomial time which, for all graphs G,
finds the minimum-size vertex-cover.

Never Give Up

Subexponential-time algorithms:
Brute-force tries all 2^{n} subsets of n vertices.
Maybe there's an $\mathrm{O}\left(1.5^{\mathrm{n}}\right)$-time algorithm.
Or O(1.1 $\left.{ }^{\mathrm{n}}\right)$ time, or $\mathrm{O}\left(2^{\mathrm{n} \cdot 1}\right)$ time, or...
Could be quite okay if $n=100$, say.
As of 2010: there is an $\mathrm{O}\left(1.28^{\mathrm{n}}\right)$-time algorithm.
\Rightarrow assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.

Never Give Up

Special cases:
Solvable in poly-time for...
tree graphs,
bipartite graphs,
"series-parallel" graphs...
Perhaps for "graphs encountered in practice"?
\rightarrow assuming " $\mathrm{P} \neq \mathrm{NP}$ ", there is no algorithm running in polynomial time
which, for all graphs G,
finds the minimum-size vertex-cover.

Never Give Up

Approximation algorithms:

Try to find pretty sma// vertex-covers.
Still want polynomial time, and for all graphs.
\Rightarrow assuming "P $\neq N P$ ", there is no algorithm
running in polynomial time
which, for all graphs G,
finds the minimum size vertex-cover.

Gavril's Approximation Algorithm

Easy Theorem (from 1976):

There is a polynomial-time algorithm that, given any graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, outputs a vertex-cover $\mathrm{S} \subseteq \mathrm{V}$ such that

$$
|S| \leq 2\left|S^{*}\right|
$$

where S^{*} is the smallest vertex-cover.
"A factor 2-approximation for Vertex-Cover."

Not all NP-hard problems created equal!

3SAT, Vertex-Cover, Clique, Max-Cut, TSP, ...
All of these problems are equally NP-hard.
(There's no poly-time algorithm to find the optimal solution unless $P=N P$.)

But from the point of view of finding approximately optimal solutions, there is an intricate, fascinating, and wide range of possibilities...

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A somewhat good approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Vertex-Cover

Given graph $G=(V, E)$ try to find the smallest "vertex-cover" for G.

$(\mathrm{S} \subseteq \mathrm{V}$ is a "vertex-cover" if it touches all edges.)

A possible Vertex-Cover algorithm

Simplest heuristic you might think of:

GreedyVC(G)

$S \leftarrow \varnothing$

while not all edges marked as "covered"
find $v \in V$ touching most unmarked edges
$\mathrm{S} \leftarrow \mathrm{S} u\{v\}$
mark all edges v touches

GreedyVC example

GreedyVC example

(Break ties arbitrarily.)

GreedyVC example

GreedyVC example

Done. Vertex-cover size 3 (optimal) ©.

GreedyVC analysis

Correctness:
\checkmark Always outputs a valid vertex-cover.
Running time:
\checkmark Polynomial time.
Solution quality:
This is the interesting question.
There must be some graph G where it doesn't find the smallest vertex-cover. Because otherwise... P = NP!

A bad graph for GreedyVC

Smallest? 3

A bad graph for GreedyVC

Smallest?
GreedyVC?

3
4

So GreedyVC is not
a 1.33-approximation.
(Because $1.33<4 / 3$.)

A worse graph for GreedyVC

Smallest?
GreedyVC?

21 a 1.74-approximation.
(Because 1.74 < 21/12.)

Even worse graph for GreedyVC

Well... it's a good homework problem.
We know GreedyVC is not a 1.74-approximation.
Fact: GreedyVC is not a 2.08-approximation.
Fact: GreedyVC is not a 3.14-approximation.
Fact: GreedyVC is not a 42-approximation.
Fact: GreedyVC is not a 999-approximation.

Greed is Bad (for Vertex-Cover)

Theorem: $\forall C$, GreedyVC is not a C-approximation.
In other words:
For any constant C, there is a graph G such that
|GreedyVC(G)| > C • |Min-Vertex-Cover(G)|.

Gavril to the rescue

GavrilVC(G)

$S \leftarrow \varnothing$

while not all edges marked as "covered"
let $\{\mathrm{v}, \mathrm{w}\}$ be any unmarked edge
$\mathrm{S} \leftarrow \mathrm{S} \cup\{\mathrm{v}, \mathrm{w}\}$?
mark all edges v, w touch

GavriIVC example

GavrilVC example

GavriIVC example

Smallest:
3
So GavrilVC is at best
GavrilVC:
6 a 2-approximation.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its $|\mathrm{S}|=\underline{2 T}$. Say it picked edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}} \in \mathrm{E}$. Key claim: $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}}\right\}$ is a matching. Because... when e_{j} is picked, it's unmarked, so its endpoints are not among $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{j}-1}$. So any vertex-cover must have ≥ 1 vertex from each e_{j}.

Theorem:

GavrilVC is a 2-approximation for Vertex-Cover.

Proof:

Say GavrilVC(G) does T iterations. So its $|\mathrm{S}|=\underline{2 T}$. Say it picked edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}} \in \mathrm{E}$. Key claim: $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{T}}\right\}$ is a matching. Because... when e_{j} is picked, it's unmarked, so its endpoints are not among $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{j}-1}$. So any vertex-cover must have ≥ 1 vertex from each e_{j}. Including the minimum vertex-cover S^{*}, whatever it is. Thus $\left|S^{*}\right| \geq$ T.
So for Gavril's final vertex-cover S,

$$
|S|=2 T \leq 2\left|S^{*}\right| .
$$

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A pretty good approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.
"k-Coverage" problem

"Pokémon-Coverage" problem

Let's say you have some Pokémon, and some trainers, each having a subset of Pokémon.

Given k, choose a team of k trainers to maximize the \# of distinct Pokémon.

"Pokémon-Coverage" problem

This problem is NP-hard.
Approximation algorithm?
We could try to be greedy again...

GreedyCoverage()
for $\mathrm{i}=1$... k
add to the team the trainer bringing in the most new Pokémon, given the team so far

Example with $\mathrm{k}=3$:

Optimum: 27
GreedyCoverage: 21 a 77.7\%-approximation.

Greed is Pretty Good (for k-Coverage)

Theorem:
GreedyCoverage is a 63\%-approximation
§ for k-Coverage.

More precisely, 1-1/e
where $\mathrm{e} \approx 2.718281828 .$.

Proof: (Don't read if you don't want to.)

Let P^{*} be the Pokémon covered by the best k trainers.
Define $r_{i}=|P *|-\#$ Pokémon covered after i steps of Greedy.
We'll prove by induction that $r_{i} \leq(1-1 / k)^{i} \cdot|\mathrm{P} *|$.
The base case $\mathrm{i}=0$ is clear, as $\mathrm{r}_{0}=\left|\mathrm{P}^{*}\right|$.
For the inductive step, suppose Greedy enters its ith step.
At this point, the number of uncovered Pokémon in P^{*} must be $\geq r_{i-1}$.
We know there are some k trainers covering all these Pokémon.
Thus one of these trainers must cover at least r_{i-1} / k of them.
Therefore the trainer chosen in Greedy's ith step will cover $\geq r_{i-1} / k$ Pokémon. Thus $r_{i} \leq r_{i-1}-r_{i-1} / k=(1-1 / k) \cdot r_{i-1} \leq(1-1 / k) \cdot(1-1 / k)^{i} \cdot|P *|$ by induction. Thus we have completed the inductive proof that $r_{i} \leq(1-1 / k)^{i} \cdot|P *|$. Therefore the Greedy algorithm terminates with $r_{k} \leq(1-1 / k)^{k} \cdot\left|P^{*}\right|$. Since $1-1 / k \leq e^{-1 / k}$ (Taylor expansion), we get $r_{k} \leq e^{-1} \cdot\left|P^{*}\right|$. Thus Greedy covers at least |P*| - $\mathrm{e}^{-1} \cdot|\mathrm{P} *|=(1-1 / \mathrm{e}) \cdot|\mathrm{P} *|$ Pokémon. This completes the proof that Greedy is a (1-1/e)-approximation algorithm.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

Today: A case study of approximation algorithms

1. A 2-approximation algorithm for Vertex-Cover.
2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".
3. Some very good approximation algorithms for TSP.

TSP

(Traveling Salesperson Problem)

Many variants. Most common is "Metric-TSP":

Input: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge costs.
Output: A "tour": i.e., a walk that visits each vertex at least once, and starts and ends at the same vertex.

Goal: Minimize total cost of tour.

TSP example

Cheapest tour:
3
$+\quad 5$
$+\quad 5$
$+\quad 16$
$+\quad 26$
$+\quad 4$
$+\quad 12$
$+\quad 2$
$+\quad 2$
$=71$

TSP is probably the most famous NP-complete problem. It has inspired many things...

Textbooks

"Popular" books

Museum exhibits

Movies

'60s sitcom-themed household-goods conglomerate ad/contests

People genuinely want to solve large instances.

Applications in:

- Schoolbus routing
- Moving farm equipment
- Package delivery
- Space interferometer scheduling
- Circuit board drilling
- Genome sequencing

Basic Approximation Algorithm:

 The MST HeuristicGiven G with edge costs...

1. Compute an MST T for G , rooted at any $\mathrm{s} \in \mathrm{V}$.
2. Visit the vertices via DFS from s.

MST Heuristic example

Step 1: MST
Step 2: DFS

Valid tour? \checkmark
Poly-time? \downarrow
Cost?
$2 \times$ MST Cost (84 in this case)

MST Heuristic

Theorem: MST Heuristic is factor-2 approximation. Key Claim: Optimal TSP cost \geq MST Cost always.
This implies the Theorem, since MST Heuristic Cost $=2 \times$ MST Cost.

Proof of Claim:

Take all edges in optimal TSP solution.
They form a connected graph on all |V| vertices.
Take any spanning tree from within these edges.
Its cost is at least the MST Cost.
Therefore the original TSP tour's cost is \geq MST Cost.

Can we do better?

Nicos Christofides, Tepper faculty, 1976:

There is a polynomial-time, factor 1.5-approximation algorithm for (Metric) TSP.

Proof is not too hard. Ingredients:

- MST Heuristic
- Eulerian Tours
- Cheapest Perfect Matching algorithm

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.3
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.1
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.01
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998):
For Euclidean-TSP, there is a polynomial-time factor 1.001
 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.

Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor 1.0001 approximation algorithm.

Even better in a special case

In the important special case "Euclidean-TSP", vertices are points in \mathbb{R}^{2}, costs are just the straight-line distances.

This special case is still NP-hard.
Theorem (Arora, Mitchell, 1998): For Euclidean-TSP, there is a polynomial-time factor $1+\varepsilon$
 approximation algorithm, for any $\varepsilon>0$.
(Running time is like $\mathrm{O}\left(\mathrm{n}(\log \mathrm{n})^{1 / \varepsilon}\right)$.)

Euclidean-TSP:
 NP-hard, but not that hard

n > 10,000
 is feasible

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.
2. A $63 \%(1-1 / e)$ approximation algorithm for the "k-Coverage Problem".
3. $A(1+\varepsilon)$-approximation alg. for Euclidean-TSP.

Can we do better?

2. A 63% (1-1/e) approximation algorithm for the "k-Coverage Problem".

We cannot do better. (Unless P=NP.)
Theorem: For any $\beta>1-1 / e$, it is NP-hard to factor β-approximate k-Coverage.

Proved in 1998 by Feige, building on many prior works. Proof length of reduction: ≈ 100 pages.

Can we do better?

1. A 2-approximation algorithm for Vertex-Cover.

We have no idea if we can do better.
Theorem (Dinur \& Safra, 2002, Annals of Math.): For any $\beta>10 \sqrt{5}-21 \approx 1.36$,
it is NP-hard to β-approximate Vertex-Cover.

Approximating Vertex-Cover

Approximation Factor

$$
\stackrel{\text { NP-hard (Dinur-Safra) }}{\substack{\text { N }}} \text { Poly-time (Gavril) }
$$

Between 1.36 and 2: totally unknown. Raging controversy.

Study Guide

Definitions:

Approximation algorithm.
The idea of "greedy" algorithms.

Algorithms and analysis:
Gavril algorithm for
Vertex-Cover.

MST Heuristic for TSP.

