|5-25 |

Great Theoretical Ideas in Computer Science

Lecture 21:
 Introduction to Randomness and Probability Theory Review

April 4th, 2017

Randomness and the Universe

Randomness and the Universe

Does the universe have "true" randomness?

Newtonian physics:
Universe evolves deterministically.

Quantum physics:
Wrong!

Randomness and the Universe

Does the universe have "true" randomness?

God does not play dice with the world.

- Albert Einstein

Einstein, don't tell God what to do.

- Niels Bohr

Randomness is an essential tool in modeling and analyzing nature.

It also plays a key role in computer science.

Randomness and Computer Science

Statistics via Sampling

Population: 300m
Random sample size: 2000

Theorem: With more than 99\% probability, $\%$ in sample $=\%$ in population $\pm 2 \%$.

Randomized Algorithms

Dimer Problem:

Given a region, in how many different ways can you tile it with $2 x$ l rectangles (dominoes)?
e.g.

$\longrightarrow \quad 1024$ tilings
$\mathrm{m} \times \mathrm{n}$ rectangle $\longrightarrow \prod_{j=1}^{\left\lceil\frac{m}{2}\left|\prod_{k=1}^{n}\right|\right.}\left(4 \cos ^{2} \frac{\pi j}{m+1}+4 \cos ^{2} \frac{\pi k}{n+1}\right)$ tilings
Captures thermodynamic properties of matter.

- Fast randomized algs can approximately count.
- No fast deterministic alg known.

Distributed Computing

Break symmetry with randomness.
Many more examples in the field of distributed computing.

Nash Equilibria in Games

The Chicken Game

Swerve Straight
Swerve

\mid	I	0	2
2	0	-3	-3

Theorem [Nash]: Every game has a Nash Equilibrium provided players can pick a randomized strategy.

Exercise: What is a NE for the game above?

Cryptography

Adversary Eavesdropper

"I will cut your throat"

"I will cut your throat"

Cryptography

Shannon: A secret is as good as the amount of entropy/uncertainty/randomness in it.

Error-Correcting Codes

Alice

Bob

Each symbol can be corrupted with a certain probability. How can Alice still get the message across?

Communication Complexity

Want to check if the contents of two databases are exactly the same.

How many bits need to be communicated?

Interactive Proofs

Verifier

poly-time skeptical

Prover

Can I convince you that I have proved $P \neq N P$ without revealing any information about the proof?

Quantum Computing

Some Probability Puzzles (Test Your Intuition) and Origins of Probability Theory

Origins of Probability Theory

France, 1654

Let's bet:

I will roll a dice four times.
I win if I get a I.
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability Theory

France, 1654

Hmm.
No one wants to take this bet anymore. :-(
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability Theory

France, 1654

New bet:
I will roll two dice, 24 times.
I win if I get double-I's.
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability Theory

France, 1654

Hmm.
I keep losing money! :-(
"Chevalier de Méré"
Antoine Gombaud

Origins of Probability Theory

France, 1654

Alice and Bob are flipping a coin.
Alice gets a point for heads.
Bob gets a point for tails.
First one to 4 points wins 100 Fr .
Alice is ahead 3-2 when gendarmes arrive to break up the game.

How should they divide the stakes?

Origins of Probability Theory

Pascal

Fermat

Probability Theory is born!

Probability Theory:
The CS Approach

The Big Picture

The Non-CS Approach

Real World

(random) experiment/process

Mathematical Model
probability space

The Big Picture

Real World

Flip a coin.

Mathematical Model

Ω

$\Omega=$ "sample space"
= set of all possible outcomes
$\operatorname{Pr}: \Omega \rightarrow[0,1]$ prob. distribution
$\sum_{\ell \in \Omega} \operatorname{Pr}[\ell]=1$

The Big Picture

Real World

Flip a coin.

Mathematical Model

unit pie, area $=1$
$\operatorname{Pr}[$ outcome $]=$ area of outcome

$$
=\frac{\text { area of outcome }}{\text { area of pie }}
$$

The Big Picture

Real World

Flip two coins.

Mathematical Model
Ω

The Big Picture

Real World

Flip a coin.
If it is Heads, throw
a 3-sided die.
If it is Tails, throw a
4 -sided die.

Mathematical Model
Ω

The Big Picture

The CS Approach

The Big Picture

Real World
 Code
 Probability Tree

Flip a coin.
If it is Heads, throw
a 3 -sided die.
If it is Tails, throw a
4-sided die.
flip < - Bernoulli(1/2)
if flip = 1 : \# i.e. Heads die <- RandInt(3)
else:

Probability Tree

flip <- Bernoulli(1/2)
if flip $=\mathrm{H}$:
die $<-$ RandInt(3)
else:
die $<-$ RandInt(4)
Bernoulli(1/2)

RandInt(3)

Outcomes: $\quad(\mathrm{H}, \mathrm{I}) \quad(\mathrm{H}, 2) \quad(\mathrm{H}, 3)$

Prob:

1/6
1/6
1/8
1/8
1/8
1/8

Events

RealWorld \longrightarrow Code \longrightarrow Probability Tree

Flip a coin.
If it is Heads, throw
a 3 -sided die.
If it is Tails, throw a
4-sided die.

```
flip <- Bernoulli(1/2)
if flip = H:
    die <- RandInt(3)
else:
    die <- RandInt(4)
```

What is the probability
die roll is ≥ 3 ?

Events

Bernoulli(1/2)

Outcomes: $(\mathrm{H}, \mathrm{I}) \quad(\mathrm{H}, 2)$ Prob: $1 / 6 \quad 1 / 6$

Extend Pr to:
$\operatorname{Pr}: \mathcal{P}(\Omega) \rightarrow[0,1]$

$E=$ die roll is 3 or higher
$\operatorname{Pr}[E]=1 / 6+1 / 8+1 / 8=5 / 12$

Conditional Probability

Real World

Flip a coin.
If it is Heads, throw
a 3-sided die.
If it is Tails, throw a
4-sided die.

Code
Probability Tree
flip < - Bernoulli(1/2)
if flip $=\mathrm{H}$:
die <- RandInt(3)
else:
die $<-$ RandInt(4)

What is the probability of flipping Heads
given the die roll is ≥ 3 ?
conditioning on
partial information

Conditional Probability

Revising probabilities based on 'partial information'.

$$
\text { 'partial information' = event } E
$$

Conditioning on $E=$ Assuming/promising E has happened

Conditional Probability

Conditional Probability

$$
E=\text { die roll is } 3 \text { or higher }
$$

$$
A=\text { Tails was flipped } \quad \operatorname{Pr}[A \mid E]=3 / 5
$$

Conditioning

$\operatorname{Pr}: \Omega \rightarrow[0,1]$

E

$\operatorname{Pr}_{E}: E \rightarrow[0,1]$

Conditioning

$\operatorname{Pr}: \Omega \rightarrow[0,1]$

$$
\begin{aligned}
\operatorname{Pr}[\ell \mid E] & \stackrel{\text { def }}{=} \operatorname{Pr}_{E}[\ell] \\
& = \begin{cases}0 & \text { if } \ell \notin E \\
\operatorname{Pr}[\ell] / \operatorname{Pr}[E] & \text { if } \ell \in E\end{cases}
\end{aligned}
$$

Conditioning

$\operatorname{Pr}: \Omega \rightarrow[0,1]$

$$
\operatorname{Pr}_{E}: E \rightarrow[0,1]
$$

$$
\operatorname{Pr}[A \mid E]=\frac{\operatorname{Pr}[A \cap E]}{\operatorname{Pr}[E]}
$$

(cannot condition on an event with prob. 0)

Conditional Probability —> Chain Rule

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
$$

"For A and B to occur:

- first A must occur (probability $\operatorname{Pr}[A]$)
- then B must occur given that A occured (probability $\operatorname{Pr}[B \mid A]$)."

Generalizes to more than two events. e.g.

$$
\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[C \mid A \cap B]
$$

Conditional Probability —> LTP

LTP = Law of Total Probability

$$
\begin{aligned}
\operatorname{Pr}[E] & =\operatorname{Pr}[E \cap A]+\operatorname{Pr}\left[E \cap A^{c}\right] \\
& =\operatorname{Pr}[A] \cdot \operatorname{Pr}[E \mid A]+\operatorname{Pr}\left[A^{c}\right] \cdot \operatorname{Pr}\left[E \mid A^{c}\right]
\end{aligned}
$$

Conditional Probability —> LTP

LTP = Law of Total Probability

If $A_{1}, A_{2}, \ldots, A_{n}$ partition Ω, then

$$
\begin{aligned}
\operatorname{Pr}[E]= & \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[E \mid A_{1}\right]+ \\
& \operatorname{Pr}\left[A_{2}\right] \cdot \operatorname{Pr}\left[E \mid A_{2}\right]+ \\
& \ldots \\
& \operatorname{Pr}\left[A_{n}\right] \cdot \operatorname{Pr}\left[E \mid A_{n}\right] .
\end{aligned}
$$

Conditional Probability —> Independence

Two events A and B are independent if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

This is equivalent to:

$$
\operatorname{Pr}[B \mid A]=\operatorname{Pr}[B] .
$$

This is equivalent to:

Problem with Independence Definition

Want to calculate $\operatorname{Pr}[A \cap B]$.
If they are independent, we can use $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$. (but we need to show this equality to show independence)

Argue independence by informally arguing: if B happens, this cannot affect the probability of A happening.

Then use $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$.

Problem with Independence Definition

Real World

Mathematical Model

some notion of independence of A and B
(the secret definition of independence)
problem: real-world description not always very rigorous.

Fixing the Problem

Real World \longrightarrow Code \longrightarrow Mathematical Model

define independence here
(code is rigorous)

Fixing the Problem

Randomized code:

Suppose A is an event that depends only on part I.

Suppose B is an event that depends only on part 2.

Suppose you prove two parts cannot affect each other. (i.e., could run them in opposite order.)

Then A and B are independent.
You may conclude $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.

Independence of More Events

Events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if
for every $S \subseteq\{1,2, \ldots, n\}$:

$$
\operatorname{Pr}\left[\bigcap_{i \in S} A_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[A_{i}\right] .
$$

We can define it also in the "Code World" (with n blocks of code that don't affect each other).

Consequence: anything like

$$
\operatorname{Pr}\left[A_{1} \mid\left(A_{2} \cup A_{3}\right) \cap\left(A_{4}^{c} \cup A_{5}\right)\right]=\operatorname{Pr}\left[A_{1}\right]
$$

SUMMARY SO FAR

Real World \longrightarrow Code

Events

Conditional probability:

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]
$$

Probability Tree II
Mathematical Model

- set of outcomes Ω
- a prob. associated with each outcome.

Chain rule:

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
$$

Law of total probability:

$$
\operatorname{Pr}[B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]+\operatorname{Pr}\left[A^{c}\right] \cdot \operatorname{Pr}\left[B \mid A^{c}\right]
$$

Independent events:

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]
$$

Union bound:

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

Next Time:

Random Variables and

Introduction to Randomized Algorithms

