|5-25|
 Great Theoretical Ideas in Computer Science

Lecture 22:
Intro to Randomness and Probability Theory 2

April 6th, 2017

SUMMARY SO FAR

Real World \longrightarrow Code

Events

Conditional probability:

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]
$$

Probability Tree II
Mathematical Model

- set of outcomes Ω
- a prob. distribution

Chain rule:
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]$
Law of total probability:

$$
\operatorname{Pr}[B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]+\operatorname{Pr}\left[A^{c}\right] \cdot \operatorname{Pr}\left[B \mid A^{c}\right]
$$

Independent events:
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$

Union bound:

$$
\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

Random Variables

What is a Random Variable?

Transformation of Ω to \mathbb{R} i.e. a function $X: \Omega \rightarrow \mathbb{R}$

typical description: $\quad X=$ number of Tails

What is a Random Variable?

Transformation of Ω to \mathbb{R} i.e. a function $X: \Omega \rightarrow \mathbb{R}$

new prob. space:

- new sample space (values X can take)
- new prob. distr.
typical description: $\quad X=$ number of Tails

What is a Random Variable?

Transformation of Ω to \mathbb{R} i.e. a function $S: \Omega \rightarrow \mathbb{R}$

$\Omega=$
$\{(I, I),(I, 2),(I, 3),(I, 4),(1,5),(1,6)$, $(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$, $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$, $(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$, $(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$, $(6, I),(6,2),(6,3),(6,4),(6,5),(6,6)\}$

Distribution:

for each $\ell \in \Omega$:

$$
\operatorname{Pr}[\ell]=1 / 36
$$

('uniform distribution')

Why?

- Often we are interested in numerical outcomes (e.g. number of Tails we see if we toss n coins) but initially outcomes are best expressed non-numerically. (e.g. an outcome is a sequence of n coin tosses)
-We like talking about "expected values" (averages).

What is a Random Variable?

Transformation of Ω to \mathbb{R} i.e. a function $X: \Omega \rightarrow \mathbb{R}$

Ω

 $\boldsymbol{X} \quad$ range $(\boldsymbol{X}) \subseteq \mathbb{R}$

What is the "average number" of Tails?

$$
0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
$$

What is a Random Variable?

2nd Definition:

A random variable is a variable in some randomized code (more accurately, the variable's value at the end of the execution) of type 'real number'.

Example:

$$
\begin{aligned}
& \mathrm{S}<- \text { RandInt(6) + RandInt(6) } \\
& \text { if } \mathrm{S}=12: \\
& \text { else: } \quad \mathrm{I}<-1 \\
& \mathrm{I}<-0
\end{aligned}
$$

Random variables: S and I

What is a Random Variable?

$\mathrm{S}<-\operatorname{RandInt}(6)+\operatorname{RandInt}(6)$	
if $\mathrm{S}=12:$	$\mathrm{I}<-1$
else:	$\mathrm{I}<-0$

RandInt(6)

Explicitly Defining the Distribution of a R.V.

$\Omega=\{(1, I),(1,2),(1,3),(1,4),(I, 5),(1,6)$, $(2, I),(2,2),(2,3),(2,4),(2,5),(2,6)$, $(3, I),(3,2),(3,3),(3,4),(3,5),(3,6)$, $(4, I),(4,2),(4,3),(4,4),(4,5),(4,6)$, $(5, I),(5,2),(5,3),(5,4),(5,5),(5,6)$, $(6, I),(6,2),(6,3),(6,4),(6,5),(6,6)\}$

Distribution:

$$
\operatorname{Pr}: \Omega \rightarrow[0,1]
$$

for each $\ell \in \Omega$:

$$
\operatorname{Pr}[\ell]=1 / 36
$$

'uniform distribution'
$S=$ sum of two dice
$\Omega^{\prime}=\operatorname{range}(\boldsymbol{S})=$

$$
\{2,3,4,5,6,7,8,9,|0, I|, \mid 2\}
$$

Distribution:

$\operatorname{Pr}_{\boldsymbol{S}}: \operatorname{range}(\boldsymbol{S}) \rightarrow[0,1]$
for each $s \in \operatorname{range}(\boldsymbol{S}): \operatorname{Pr}_{\boldsymbol{S}}[s]=$
Notation: $\operatorname{Pr}[\boldsymbol{S}=s]=\operatorname{Pr}_{\boldsymbol{S}}[s]$

Explicitly Defining the Distribution of a R.V.

So $\boldsymbol{S}=x$ is a shorthand for the event $\{\ell \in \Omega: \boldsymbol{S}(\ell)=x\}$

$$
\operatorname{Pr}[\boldsymbol{S}=x]=\operatorname{Pr}[\ell \in \Omega: \boldsymbol{S}(\ell)=x]
$$

Example:

$$
\operatorname{Pr}[\boldsymbol{S}=3]=\operatorname{Pr}[\ell \in \Omega: \boldsymbol{S}(\ell)=3]=\operatorname{Pr}[\{(1,2),(2,1)\}]=1 / 18
$$

Explicitly Defining the Distribution of a R.V.

Similarly $\quad \boldsymbol{S} \geq x$ is a shorthand for the event $\{\ell \in \Omega: \boldsymbol{S}(\ell) \geq x\}$

$$
\operatorname{Pr}[\boldsymbol{S} \geq x]=\operatorname{Pr}[\ell \in \Omega: \boldsymbol{S}(\ell) \geq x]
$$

etc...

Random Variables: How they are introduced

I. Retroactively

"Roll two dice. Let D be the random variable given by subtracting the first roll from the second."

$$
\begin{aligned}
& \boldsymbol{D}((1,1))=0 \\
& \boldsymbol{D}((2,1))=-1
\end{aligned}
$$

Random Variables: How they are introduced

2. In terms of other random variables
"Let $Y=S^{2}+D "$

$$
\boldsymbol{Y}((5,3))=62
$$

Random Variables: How they are introduced

3. Without bothering to give an "experiment"
"Let X be a Bernoulli(I/3) random variable."
"Let T be a random variable that is distributed uniformly over the set $\{0,2,4,6,8\}$."

Describe the probability mass function (PMF). i.e., the values $\operatorname{Pr}[\boldsymbol{X}=x]$ for all $x \in \operatorname{range}(\boldsymbol{X})$.
(Don't need to think about the "original" Ω.)

Independent Random Variables

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent if for all $x \in \operatorname{range}(\boldsymbol{X}), \quad y \in \operatorname{range}(\boldsymbol{Y})$ the events $\boldsymbol{X}=x$ and $\boldsymbol{Y}=y$ are independent.

$$
\text { i.e. } \quad \operatorname{Pr}[\boldsymbol{X}=x \text { and } \boldsymbol{Y}=y]=\operatorname{Pr}[\boldsymbol{X}=x] \cdot \operatorname{Pr}[\boldsymbol{Y}=y]
$$

(similarly for more than 2 random variables)

Expectation of a Random Variable

Expected Value $=$ Mean $=($ Weighted $)$ Average

Example:
Weight
Value
30\% Final
20\% Midterm
85
50\% Homework
75
82

Weighted Average $=0.3 \cdot 85+0.2 \cdot 75+0.5 \cdot 82=81.5$

Weighted Average $=\sum_{\text {elements } e} \operatorname{value}(e) \cdot \operatorname{weight}(e)$

Expectation of a Random Variable

Expected value of a random variable X :

$$
\mathbf{E}[\boldsymbol{X}] \stackrel{\text { def }}{=} \sum_{x \in \operatorname{range}(\boldsymbol{X})} x \cdot \operatorname{Pr}[\boldsymbol{X}=x]
$$

Expectation of a Random Variable

Example

Let X be the outcome of the roll of a 6 -sided die.
$\mathbf{E}[\boldsymbol{X}]$

$$
\begin{aligned}
& =1 \cdot \operatorname{Pr}[\boldsymbol{X}=1]+2 \cdot \operatorname{Pr}[\boldsymbol{X}=2]+\cdots+6 \cdot \operatorname{Pr}[\boldsymbol{X}=6] \\
& =1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+\cdots+6 \cdot \frac{1}{6} \\
& =3.5
\end{aligned}
$$

What is $\operatorname{Pr}[\boldsymbol{X}=3.5]$?
(Don't always expect the expected!)

Expectation of a Random Variable

Example

Let $X=\operatorname{Randlnt}(6), \quad Y=\operatorname{Randlnt}(6), \quad Z=\operatorname{Randlnt}(6)$
Let $\boldsymbol{S}=\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}$
$\mathbf{E}[\boldsymbol{S}]$
$=3 \cdot \operatorname{Pr}[\boldsymbol{S}=3]+4 \cdot \operatorname{Pr}[\boldsymbol{S}=4]+\cdots+18 \cdot \operatorname{Pr}[\boldsymbol{S}=18]$
lot's of arithmetic :-(
$=10.5$

Most Useful Equality in Probability Theory:

Linearity of Expectation

Linearity of Expectation

$\mathbf{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X}]+\mathbf{E}[\boldsymbol{Y}]$

(\boldsymbol{X} and \boldsymbol{Y} need not be independent!)
$(\mathbf{E}[\boldsymbol{X} \cdot \boldsymbol{Y}]=\mathbf{E}[\boldsymbol{X}] \cdot \mathbf{E}[\boldsymbol{Y}]$ not always true! $)$

Linearity of Expectation

Example

Let $\boldsymbol{X}=\operatorname{Randlnt}(6), \quad \boldsymbol{Y}=\operatorname{Randlnt}(6), \quad \boldsymbol{Z}=\operatorname{Rand} \operatorname{lnt}(6)$
Let $\quad \boldsymbol{S}=\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}$

$$
\begin{aligned}
\mathbf{E}[\boldsymbol{S}] & =\mathbf{E}[\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{Z}] \\
& =\mathbf{E}[\boldsymbol{X}]+\mathbf{E}[\boldsymbol{Y}+\boldsymbol{Z}] \\
& =\mathbf{E}[\boldsymbol{X}]+\mathbf{E}[\boldsymbol{Y}]+\mathbf{E}[\boldsymbol{Z}] \\
& =3.5+3.5+3.5 \\
& =10.5
\end{aligned}
$$

Most Useful Type of Random Variable:

Indicator Random Variable

Indicator Random Variable

Event \rightarrow Random Variable

Let A be an event.
The indicator r.v. for A is:
$\boldsymbol{I}_{A}(\ell)= \begin{cases}1 & \text { if } \ell \in A \\ 0 & \text { if } \ell \notin A\end{cases}$
\boldsymbol{I}_{A} is 1 if A happens
\boldsymbol{I}_{A} is 0 if A does not happen

$$
\begin{aligned}
& \operatorname{Pr}\left[\boldsymbol{I}_{A}=1\right]=\operatorname{Pr}[A] \\
& \operatorname{Pr}\left[\boldsymbol{I}_{A}=0\right]=1-\operatorname{Pr}[A] \\
& \mathbf{E}\left[\boldsymbol{I}_{A}\right]= \\
& 0 \cdot \operatorname{Pr}\left[\boldsymbol{I}_{A}=0\right]+1 \cdot \operatorname{Pr}\left[\boldsymbol{I}_{A}=1\right] \\
& \quad=\operatorname{Pr}\left[\boldsymbol{I}_{A}=1\right] \\
& \quad=\operatorname{Pr}[A]
\end{aligned}
$$

Most Useful Equality in Probability Theory:

Linearity of Expectation

Most Useful Type of Random Variable:
 Indicator Random Variable

High Level Idea

Want to compute $\mathbf{E}[\boldsymbol{X}]$:

Write $\quad \boldsymbol{X}=\boldsymbol{I}_{1}+\boldsymbol{I}_{2}+\cdots+\boldsymbol{I}_{n} . \quad$ (sum of indicator r.v.s.s)

Then $\mathbf{E}[\boldsymbol{X}]=\mathbf{E}\left[\boldsymbol{I}_{1}+\boldsymbol{I}_{2}+\cdots+\boldsymbol{I}_{n}\right]$

$$
=\mathbf{E}\left[\boldsymbol{I}_{1}\right]+\mathbf{E}\left[\boldsymbol{I}_{2}\right]+\cdots+\mathbf{E}\left[\boldsymbol{I}_{n}\right]
$$

$$
\begin{aligned}
& \text { (usually) }=n \cdot \mathbf{E}\left[\boldsymbol{I}_{1}\right] \\
&=n \cdot \operatorname{Pr}\left[\boldsymbol{I}_{1}=1\right] \\
& \\
& \downarrow
\end{aligned}
$$

Awesome!
(probability that the corresponding event happens)

Example

There are $\mathbf{I} 50$ students in $\mathbf{I} 5-25 \mathrm{I}$ this semester.

After Midterm 2, we randomly permute the midterms before handing them back.
$\boldsymbol{X}=$ number of students who get their own midterm back.

What is $\mathrm{E}[\boldsymbol{X}]$?

Most Common 3 Random Variables

Bernoulli Random Variable

Introducing via Probability Mass Function (PMF)

$\boldsymbol{X} \sim \operatorname{Bernoulli}(p)$ means:
" \boldsymbol{X} is a Bernoulli random variable with success probability p."

$$
\begin{aligned}
& \operatorname{Pr}[\boldsymbol{X}=1]=p \\
& \operatorname{Pr}[\boldsymbol{X}=0]=1-p
\end{aligned}
$$

$$
\text { So } \quad \operatorname{range}(\boldsymbol{X})=\{0,1\}
$$

Check:

$$
\mathbf{E}[\boldsymbol{X}]=p
$$

Binomial Random Variable

Introducing via other random variables

$\boldsymbol{X} \sim \operatorname{Binomial}(n, p)$ means:
$\boldsymbol{X}=\boldsymbol{X}_{1}+\boldsymbol{X}_{2}+\cdots+\boldsymbol{X}_{n}$
where $\quad \boldsymbol{X}_{i} \sim \operatorname{Bernoulli}(p)$ for all $i \in\{1,2, \ldots, n\}$, and the \boldsymbol{X}_{i} 's are independent.

So range $(\boldsymbol{X})=\{0,1,2, \ldots, n\}$
Check:

$$
\operatorname{Pr}[\boldsymbol{X}=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

$$
\mathbf{E}[\boldsymbol{X}]=n p
$$

Geometric Random Variable

Introducing via code

$\boldsymbol{X} \sim \operatorname{Geometric}(p)$ means:

$$
\begin{aligned}
& \mathrm{X}<-1 \\
& \text { while Bernoulli(p) }=0 \text { : } \\
& \quad \mathrm{X}<-\mathrm{X}+1
\end{aligned}
$$

"number of p-biased coin flips until we see \mathbf{H} for the first time."

Geometric Random Variable

Bernoulli(p)

Bernoulli(p)

$$
\boldsymbol{X}=1
$$

$$
\begin{gathered}
\operatorname{range}(\boldsymbol{X})=\{1,2,3, \ldots\} \\
\operatorname{Pr}[\boldsymbol{X}=i]=(1-p)^{i-1} p \\
\sum_{i=1}^{\infty} \operatorname{Pr}[\boldsymbol{X}=i]=1 \\
\text { (geometric sum) }
\end{gathered}
$$

$$
\mathbf{E}[\boldsymbol{X}]=1 / p
$$

New Topic:

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:
(i) the input can be chosen randomly
average-case analysis
(ii) the algorithm can make random choices randomized algorithm

Which one will we focus on?

Randomness and algorithms

What is a randomized algorithm?

A randomized algorithm is an algorithm that is allowed to flip a coin (i.e., has access to random bits).

In 15-25|:

A randomized algorithm is an algorithm that is allowed to call:

- Randlnt(n)
- Bernoulli(p)

Deterministic vs Randomized

Deterministic

def $\mathrm{A}(\mathrm{x})$:

$$
\begin{aligned}
& y=1 \\
& \text { if }(y==0) \text { : } \\
& \quad \text { while }(x>0) \text { : } \\
& \quad x=x-1
\end{aligned}
$$

return $x+y$

Randomized

def $A(x)$:

$$
\begin{aligned}
& y=\text { Bernoulli }(0.5) \\
& \text { if }(y==0): \\
& \text { while }(x>0): \\
& x=x-1
\end{aligned}
$$

return $x+y$

For any fixed input (e.g. $x=3$):

- the output is invariant
- the running time is invariant
- the output can vary
- the running time can vary

Deterministic vs Randomized

A deterministic algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, \quad A(x)=f(x)$.
- running time: $\forall x \in \Sigma^{*}, \quad \#$ steps $A(x)$ takes is $\leq T(|x|)$.

Note: we require worst-case guarantees for correctness and run-time.

Deterministic vs Randomized

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, \quad$?
- running time: $\forall x \in \Sigma^{*}, \quad$?

Deterministic vs Randomized

A Try

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, A(x)=f(x)$.
- running time: $\forall x \in \Sigma^{*}, \#$ steps $A(x)$ takes is $\leq T(|x|)$.
these are random

Deterministic vs Randomized

A Try

A randomized algorithm A computes $f: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $T(n)$ means:

- correctness: $\forall x \in \Sigma^{*}, \operatorname{Pr}[A(x)=f(x)]=1$.
- running time: $\forall x \in \Sigma^{*}$,

$$
\operatorname{Pr}[\# \text { steps } A(x) \text { takes is } \leq T(|x|)]=1
$$

Is this interesting? No.
A randomized algorithm should gamble with either correctness or run-time.

$$
\forall x \in \Sigma^{*}
$$

Correctness Run-time

Deterministic		always	always $\leq T(n)$
Randomized	Type 0	always	always $\leq T(n)$
	Type I	w.h.p.	always $\leq T(n)$
	Type 2	always	w.h.p. $\leq T(n)$
	Type 3	w.h.p.	w.h.p. $\leq T(n)$

Type 0: may as well be deterministic
Type I: "Monte Carlo algorithm"
Type 2: "Las Vegas algorithm"
Type 3: Can be converted to type I. (exercise)

Example

Input: An array B with $n / 4$ l's and $3 n / 4$ O's.
Output: An index that contains a I.

Deterministic

Randomized

Type I (Monte Carlo)
repeat 500 times:
$\mathrm{i}=$ RandInt(n)
if $\mathrm{B}[\mathrm{i}]=1$:
return i
return "Failed"
correct: w.h.p.
run-time: always $O(1)$

Type 2 (Las Vegas)

repeat:

$\mathrm{i}=\operatorname{RandInt}(\mathrm{n})$
if $\mathrm{B}[\mathrm{i}]=1$: return i
correct: always
run-time: w.h.p. $O(1)$

Example

Input: An array B with $\mathrm{n} / 4$ I's and 3n/4 O's.
Output: An index that contains a I.

Correctness Run-time

Deterministic	always
Monte Carlo	always $O(n)$
	w.h.p.
Las Vegas	always $O(1)$
	always

