I5-25 I Great Theoretical Ideas in Computer Science Lecture 22: Intro to Randomness and Probability Theory 2

April 6th, 2017

SUMMARY SO FAR

 $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$

 $\Pr[A \cup B] \le \Pr[A] + \Pr[B]$

Random Variables

<u>typical description:</u> X = number of Tails

<u>typical description:</u> X = number of Tails

Transformation of $\,\Omega\,$ to $\,\mathbb{R}\,$

i.e. a function $S:\Omega \to \mathbb{R}$

 $\Omega =$

 $\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (5,1), (5,2), (6,3), (6,4), (6,5), (6,6)\}$

Distribution:

for each $\ell \in \Omega$: $\Pr[\ell] = 1/36$ ('uniform distribution') S = sum of two dice $\Omega' = \text{range}(S) =$ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Distribution:

Often we are interested in numerical outcomes

(e.g. number of Tails we see if we toss n coins)

but initially outcomes are best expressed non-numerically.

(e.g. an outcome is a sequence of n coin tosses)

- We like talking about "expected values" (averages).

2nd Definition:

A random variable is a variable in some randomized code (more accurately, the variable's value at the end of the execution) of type 'real number'.

Example:

$$S < - RandInt(6) + RandInt(6)$$

if $S = 12$: $I < -1$
else: $I < -0$

Random variables: S and I

Explicitly Defining the Distribution of a R.V.

 $\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$

Distribution:

 $\Pr:\Omega\to[0,1]$

for each $\ell \in \Omega$:

 $\Pr[\ell] = 1/36$

'uniform distribution'

$$S = \text{sum of two dice}$$

 $\Omega' = \text{range}(S) =$
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Distribution:

Explicitly Defining the Distribution of a R.V.

So S = x is a shorthand for the event $\{\ell \in \Omega : S(\ell) = x\}$

$$\Pr[\boldsymbol{S} = x] = \Pr[\ell \in \Omega : \boldsymbol{S}(\ell) = x]$$

Example:

 $\Pr[\mathbf{S} = 3] = \Pr[\ell \in \Omega : \mathbf{S}(\ell) = 3] = \Pr[\{(1, 2), (2, 1)\}] = 1/18$

Explicitly Defining the Distribution of a R.V.

Similarly $S \ge x$ is a shorthand for the event $\{\ell \in \Omega : S(\ell) \ge x\}$

$$\Pr[\boldsymbol{S} \ge x] = \Pr[\ell \in \Omega : \boldsymbol{S}(\ell) \ge x]$$

etc...

Random Variables: How they are introduced

I. Retroactively

"Roll two dice. Let *D* be the random variable given by subtracting the first roll from the second."

$$D((1,1)) = 0$$

 $D((2,1)) = -1$

. . .

Random Variables: How they are introduced

2. In terms of other random variables

"Let
$$Y = S^2 + D$$
"

$$\boldsymbol{Y}((5,3)) = 62$$

Random Variables: How they are introduced

3. Without bothering to give an "experiment"

"Let X be a Bernoulli(1/3) random variable."

"Let *T* be a random variable that is distributed uniformly over the set {0, 2, 4, 6, 8}."

Describe the probability mass function (PMF). i.e., the values Pr[X = x] for all $x \in range(X)$.

(Don't need to think about the "original" Ω .)

Independent Random Variables

Random variables X and Y are independent if for all $x \in range(X)$, $y \in range(Y)$ the events X = x and Y = y are independent.

i.e.
$$\Pr[\mathbf{X} = x \text{ and } \mathbf{Y} = y] = \Pr[\mathbf{X} = x] \cdot \Pr[\mathbf{Y} = y]$$

(similarly for more than 2 random variables)

Expected Value = Mean = (Weighted) Average

Example:	<u>Weight</u>	<u>Value</u>
	30% Final	85
	20% Midterm	75
	50% Homework	82

Weighted Average = $0.3 \cdot 85 + 0.2 \cdot 75 + 0.5 \cdot 82 = 81.5$

Weighted Average =
$$\sum_{\text{elements } e} \text{value}(e) \cdot \text{weight}(e)$$

Example

Let X be the outcome of the roll of a 6-sided die. $\mathbf{E}[X]$

$$= 1 \cdot \Pr[\mathbf{X} = 1] + 2 \cdot \Pr[\mathbf{X} = 2] + \dots + 6 \cdot \Pr[\mathbf{X} = 6]$$
$$= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6}$$
$$= 3.5$$

What is $\Pr[X = 3.5]?$

(Don't always expect the expected!)

Example

Let X = RandInt(6), Y = RandInt(6), Z = RandInt(6)

Let
$$S = X + Y + Z$$

 $\mathbf{E}[m{S}]$

 $= 3 \cdot \Pr[\boldsymbol{S} = 3] + 4 \cdot \Pr[\boldsymbol{S} = 4] + \dots + 18 \cdot \Pr[\boldsymbol{S} = 18]$

lot's of arithmetic :-(

= 10.5

<u>Most Useful Equality in Probability Theory:</u> Linearity of Expectation

Linearity of Expectation

$\mathbf{E}[\boldsymbol{X}+\boldsymbol{Y}] = \mathbf{E}[\boldsymbol{X}] + \mathbf{E}[\boldsymbol{Y}]$

(X and Y need not be independent!)

 $(\mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y]$ not always true!)

Linearity of Expectation

Example

Let X = RandInt(6), Y = RandInt(6), Z = RandInt(6)

Let S = X + Y + Z

$$E[S] = E[X + Y + Z]$$

= E[X] + E[Y + Z]
= E[X] + E[Y] + E[Z]
= 3.5 + 3.5 + 3.5
= 10.5

<u>Most Useful Type of Random Variable:</u> Indicator Random Variable

Indicator Random Variable

Event —> Random Variable

Let A be an event. The indicator r.v. for A is: $\boldsymbol{I}_A(\ell) = \begin{cases} 1 & \text{if } \ell \in A \\ 0 & \text{if } \ell \notin A \end{cases}$ I_A is 1 if A happens I_A is 0 if A does not happen

 $\Pr[\boldsymbol{I}_A = 1] = \Pr[A]$ $\Pr[\boldsymbol{I}_A = 0] = 1 - \Pr[A]$ $\mathbf{E}[I_A] =$ $0 \cdot \Pr[\boldsymbol{I}_A = 0] + 1 \cdot \Pr[\boldsymbol{I}_A = 1]$ $= \Pr[\boldsymbol{I}_A = 1]$ $= \Pr[A]$

Most Useful Equality in Probability Theory:

Linearity of Expectation

<u>Most Useful Type of Random Variable:</u> Indicator Random Variable

magic happens when you put them together.

High Level Idea

Want to compute E[X]:

Write $X = I_1 + I_2 + \cdots + I_n$. (sum of indicator r.v.'s)

Then $\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{I}_1 + \mathbf{I}_2 + \dots + \mathbf{I}_n]$ $= \mathbf{E}[\mathbf{I}_1] + \mathbf{E}[\mathbf{I}_2] + \dots + \mathbf{E}[\mathbf{I}_n]$ (usually) $= n \cdot \mathbf{E}[\mathbf{I}_1]$ $= n \cdot \Pr[\mathbf{I}_1 = 1]$ Avesome!

(probability that the corresponding event happens)

Example

There are 150 students in 15-251 this semester.

After Midterm 2, we randomly permute the midterms before handing them back.

X = number of students who get their own midterm back.

What is $\mathbf{E}[X]$?

Most Common 3 Random Variables

Bernoulli Random Variable

Introducing via Probability Mass Function (PMF)

 $\boldsymbol{X} \sim \operatorname{Bernoulli}(p)$ means:

" $oldsymbol{X}$ is a Bernoulli random variable with success probability p."

$$Pr[\mathbf{X} = 1] = p$$
$$Pr[\mathbf{X} = 0] = 1 - p$$
$$So \quad range(\mathbf{X}) = \{0, 1\}$$

Check:

 $\mathbf{E}[\boldsymbol{X}] = p$

Binomial Random Variable

Introducing via other random variables

 $X \sim \text{Binomial}(n, p)$ means:

 $\boldsymbol{X} = \boldsymbol{X}_1 + \boldsymbol{X}_2 + \dots + \boldsymbol{X}_n$

where $X_i \sim \text{Bernoulli}(p)$ for all $i \in \{1, 2, ..., n\}$,

and the X_i 's are independent.

So range
$$(X) = \{0, 1, 2, ..., n\}$$

Check:

$$\Pr[\mathbf{X}=i] = \binom{n}{i} p^i (1-p)^{n-i}$$

$$\mathbf{E}[\mathbf{X}] = np$$

Geometric Random Variable

Introducing via code

 $X \sim \text{Geometric}(p)$ means:

$$X < -1$$

while Bernoulli(p) = 0:
 $X < -X+1$

"number of p-biased coin flips until we see H for the first time."

Geometric Random Variable

New Topic:

Randomized Algorithms

Randomness and algorithms

How can randomness be used in computation?

Given some algorithm that solves a problem:

- (i) the input can be chosen randomly *average-case analysis*
- (ii) the algorithm can make random choices *randomized algorithm*

Which one will we focus on?

Randomness and algorithms

What is a <u>randomized algorithm</u>?

A randomized algorithm is an algorithm that is allowed to **flip a coin** (i.e., has access to random bits).

<u>In 15-251:</u>

A randomized algorithm is an algorithm that is allowed to call:

- RandInt(n)
- Bernoulli(p)

(we'll assume these take ${\it O}(1)$ time)

Deterministic

def A(x):
 y = 1
 if(y == 0):
 while(x > 0):
 x = x - 1
 return x+y

Randomized

def A(x): y = Bernoulli(0.5) if(y == 0): while(x > 0): x = x - 1 return x+y

For any <u>fixed</u> input (e.g. x = 3):

- the output is *invariant*
- the running time is *invariant*
- the output can vary
- the running time can vary

- A deterministic algorithm A computes $f: \Sigma^* \to \Sigma^*$ in time T(n) means:
- correctness: $\forall x \in \Sigma^*$, A(x) = f(x).
- running time: $\forall x \in \Sigma^*$, # steps A(x) takes is $\leq T(|x|)$.

<u>Note</u>: we require worst-case guarantees for correctness and run-time.

- A randomized algorithm A computes $f: \Sigma^* \to \Sigma^*$ in time T(n) means:
- correctness: $\forall x \in \Sigma^*$,
- running time: $\forall x \in \Sigma^*$, ?

<u>A Try</u>

- A randomized algorithm A computes $f: \Sigma^* \to \Sigma^*$ in time T(n) means:
- correctness: $\forall x \in \Sigma^*$, A(x) = f(x). - running time: $\forall x \in \Sigma^*$, # steps A(x) takes is $\leq T(|x|)$.

these are random

<u>A Try</u>

A randomized algorithm A computes $f: \Sigma^* \to \Sigma^*$ in time T(n) means:

- correctness: $\forall x \in \Sigma^*$, $\Pr[A(x) = f(x)] = 1$.
- running time: $\forall x \in \Sigma^*$,

 $\mathbf{Pr}[\# \text{ steps } A(x) \text{ takes is } \leq T(|x|)] = 1$.

Is this interesting? No.

A randomized algorithm should gamble with either **correctness** or **run-time**.

			$\forall x \in$	$\in \Sigma^*$	
	-	Correctn	ess	Rı	in-time
Deterministic		always al		alway	$r s \leq T(n)$
Randomized	Туре 0	always		always $\leq T(n)$	
	Туре І	w.h.p.		always $\leq T(n)$	
	Туре 2	always		w.h.j	b. $\leq T(n)$
	Туре 3	w.h.p.		w.h.j	b. $\leq T(n)$

Type 0: may as well be deterministic

Type I: "Monte Carlo algorithm"

Type 2: "Las Vegas algorithm"

Type 3: Can be converted to type I. (exercise)

Example

Input: An array B with n/4 I's and 3n/4 O's. Output: An index that contains a I.

Example

Input: An array B with n/4 I's and 3n/4 O's. Output: An index that contains a I.

	Correctness	Run-time
Deterministic	always	always $O(n)$
Monte Carlo	w.h.p.	always $O(1)$
Las Vegas	always	w.h.p. <i>O</i> (1)