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S <— RandInt(6) + RandInt(6)
if S = 12:   I <— 1
else:           I <— 0

RandInt(6)
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S = 2
I = 0

S = 5
I = 0

S = 7
I = 0
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S = 7
I = 0
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I = 1



Formal Definition:  Deterministic algorithm

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that deterministic algorithm      
computes      in time           if:

A
T (n)f

8x 2 ⌃⇤
,

A(x) = f(x)



Each input     induces
a deterministic path.

x

Length of the path is 

 T (|x|).

Deterministic:
x

0

Picture:



Formal Definition:  Monte Carlo algorithm

8x 2 ⌃⇤
,

Pr[A(x) 6= f(x)]  ✏

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Monte Carlo algorithm for 
with     error probability if:

A
T (n) f
✏

8x 2 ⌃⇤
, # steps A(x) takes is  T (|x|).

(no matter what the random choices are
 i.e. no matter what leaf we end up in.)



Each input     induces
a probability tree.

x

Probability of
incorrect leaves        . ✏

Longest path to a leaf 

 T (|x|).

Monte Carlo:

Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

01

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

Picture:



Formal Definition:  Las Vegas algorithm

Let                       be a computational problem. f : ⌃⇤ ! ⌃⇤

We say that randomized algorithm      
is a          -time Las Vegas algorithm for     if:

A
T (n) f

8x 2 ⌃⇤
, E[# steps A(x) takes]  T (|x|)

(this implies run-time is               w.h.p.) O(T (n))

8x 2 ⌃⇤
,

Pr[A(x) = f(x)] = 1



Bernoulli(0.5)

Bernoulli(0.5) Bernoulli(0.5)

1/2 1/2

1/2 1/2

x

0

1/2 1/2

0

No incorrect leaves.

Each input     induces
a probability tree.

x

Expected length of a path 
to a leaf 
 T (|x|).

Las Vegas:

0

0

Picture:



EXAMPLES



3 IMPORTANT PROBLEMS

Integer Factorization

Input:  integer N

Ouput:  a prime factor of N

isPrime

Input:  integer N

Ouput:  True if N is prime.

Generating a random n-bit prime

Input:  integer n

Ouput:  a random n-bit prime



We should be able to do efficiently the following:

- check if a given number is prime.

- generate a random prime.

We should not be able to do efficiently the following:

- given N,  find P and Q.

Most crypto systems start like:

- pick two random n-bit primes P and Q.

- let  N = PQ.   (N is some kind of a “key”)

- (more steps…)

(the system is broken if we can do this!!!)



isPrime

def isPrime(N):
    if (n < 2):  return False
    for factor in range(2, N):
        if (N % factor == 0):  return False
    return True

Problems:

- exponential running time.



isPrime

def isPrime(N):
    if (n < 2):  return False
    maxFactor = round(N**0.5)
    for factor in range(2, maxFactor+1):
        if (N % factor == 0):  return False
    return True

Problems:

- exponential running time.

- tries to factor the input.



isPrime
Amazing result from 2002:

There is a poly-time algorithm for isPrime.

Agrawal,  Kayal,      Saxena

undergraduate students at the time

However, best known implementation is ~           time. O(n6)

Not feasible when                 .n = 2048



isPrime

So that’s not what we use in practice.

The running time is ~           .O(n2)

It is a Monte Carlo algorithm with tiny error probability
1/2300(say             ).

Everyone uses the Miller-Rabin algorithm (1975).

CMU
Professor



Generating a random prime

repeat: 
    let N be a random n-bit number 
    if isPrime(N): return N

Prime Number Theorem (informal):

About 1/n fraction of n-bit numbers are prime.

=)expected run-time of the above algorithm ~ O(n3).

No poly-time deterministic algorithm is known
to generate an  n-bit  prime!!!



Massively collaborative online mathematical projects

Polymath projects:

…

Timothy Gowers



…





Monte Carlo Algorithm for Min Cut

CASE STUDY

Gambles with correctness. 
Doesn’t gamble with run-time.



Cut Problems

S V � S

red blue

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
color the vertices red and blue so that the number of
edges with two colors (e = {u,v}) is maximized.

G = (V,E)



Cut Problems

Max Cut Problem (Ryan O’Donnell’s favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is maximized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S

Max Cut Problem is NP-complete!



Cut Problems

Min Cut Problem (my favorite problem):
Given a connected graph                    , 
find a non-empty subset            such that
number of edges from       to             is minimized.

G = (V,E)
S ⇢ V
S V � S

S V � S

size of the cut  =  # edges from       to            .S V � S

(how many possible “cuts” are there?)



Randomized Algorithm for Min Cut

(contraction algorithm)



Contraction algorithm for min cut

a

c

b

e

d

Select an edge randomly:

Green edge selected.

Contract that edge.

Size of min-cut: 2

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Select an edge randomly:

Green edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Purple edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge. (delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d



a

c

b
e

d

Contraction algorithm for min cut

Blue edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a, b, c, d} V\S = {e} size:  2

(delete self loops)

Size of min-cut: 2Select an edge randomly:

Example run 1
a

c

b

e

d

S

V \S



Select an edge randomly:

a

c

b

e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Green edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Yellow edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge. (delete self loops)

Example run 2
a

c

b

e

d



Select an edge randomly:

a

c

b
e

d

Contraction algorithm for min cut

Red edge selected.

Contract that edge.

When two vertices remain, you have your cut:

S = {a} V\S = {b,c,d,e} size: 3

(delete self loops)

Example run 2
a

c

b

e

d

V \SS



Contraction algorithm for min cut

G = G0 �! G1 �! G2 �! · · · �! Gn�2

verticesn vertices2

contract contract contract contract

n� 2 iterations



Contraction algorithm for min cut

a

c

b
e

d

Gi a

c

b

e

d

G

For any   :  A cut in       of size     corresponds exactly to  Gi k

a cut in       of size    .kG

i

Observation:



Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Proof of Theorem



Pre-proof Poll

Let     be the size of a minimum cut.k

Which of the following are true (can select more than one):

For every       ,Gi k  min
v

degGi
(v)

For               ,G = G0 k  min
v

degG(v)

For               ,G = G0 k � min
v

degG(v)

For every       ,Gi k � min
v

degGi
(v)

(8v, k  degG(v))

(8v, k  degGi
(v))



Answer

For every       ,Gi k  min
v

degGi
(v)

i.e., for every        and every              ,Gi v 2 Gi k  degGi
(v)

Why?

Same cut exists in original graph.

This cut has size                    .deg(a) = 3

Short Answer:  A single vertex     forms a cut of size             .v deg(v)

k  3.So

a

c

b
e

d
Gi

Example:



Proof of theorem

|F| = k
|V| = n
|E| = m

Pr[algorithm outputs F ] � 1/n2Will show

(Note                                                              )Pr[success] � Pr[algorithm outputs F ]

Fix some minimum cut. S V � S

F



Proof of theorem

Fix some minimum cut. S V � S

F

When does the algorithm output F ?

What if the algorithm picks an edge in     to contract?F
Then it cannot output F.

What if it never picks an edge in     to contract?F
Then it will output F.

|F| = k
|V| = n
|E| = m



Proof of theorem

Pr[algorithm outputs F ] =

Pr[algorithm never contracts an edge in F ]

Pr[E1 \ E2 \ · · · \ En�2]

=

Fix some minimum cut. S V � S

F

|F| = k
|V| = n
|E| = m

      = “an edge in  F  is contracted in iteration   .”Ei i

Pr[success] �



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1 \ E2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

· · ·

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.

want to write in terms of k and n 

chain
rule

Pr[E1] Pr[E1]= 1�
= 1� # edges in F

total # edges

= 1� k

m



Proof of theorem

Recall: 
X

v2V

deg(v) = 2m =) 2m � kn

Observation: 8v 2 V : k  deg(v)
S

V � S

v

� kn =) m � kn

2

Pr[E1] = 1� k

m
=

✓
1� 2

n

◆
� 1� k

kn/2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

·Pr[E2|E1] · Pr[E3|E1 \ E2] · · ·�
✓
1� 2

n

◆

Pr[E2|E1] = 1� Pr[E2|E1]= 1� k

# remaining edges

want to write in terms of k and n 

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Let                         be the graph after iteration 1. G0 = (V 0, E0)

Observation: 8v 2 V 0 : k  degG0(v)

X

v2V 0

degG0(v) = 2|E0|

� k(n� 1)

=) 2|E0| � k(n� 1)

=) |E0| � k(n� 1)

2

Pr[E2|E1] = 1� k

|E0| =

✓
1� 2

n� 1

◆
� 1� k

k(n� 1)/2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

Pr[En�2|E1 \ E2 \ · · · \ En�3]

�
✓
1� 2

n

◆
·
✓
1� 2

n� 1

◆
· Pr[E3|E1 \ E2] · · ·

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Proof of theorem

Pr[E1 \ E2 \ · · · \ En�2]

�
✓
1� 2

n

◆✓
1� 2

n� 1

◆✓
1� 2

n� 2

◆
· · ·

✓
1� 2

n� (n� 4)

◆✓
1� 2

n� (n� 3)

◆

=

✓
n� 2

n

◆✓
n� 3

n� 1

◆✓
n� 4

n� 2

◆✓
n� 5

n� 3

◆
· · ·

✓
2

4

◆✓
1

3

◆

=
2

n(n� 1)
� 1

n2

       =  “an edge in F is contracted in iteration   .”Ei i

Goal: Pr[E1 \ E2 \ · · · \ En�2] � 1/n2.



Contraction algorithm for min cut

Should we be impressed?

- The algorithm runs in polynomial time.

- There are exponentially many cuts. (~     )2n~

- There is a way to boost the probability of success to

1� 1

en
(and still remain in polynomial time)

Let                    be a graph with n vertices. 
The probability that the contraction algorithm will 
output a min-cut is              .                     

Theorem:
G = (V,E)

� 1/n2



Boosting Phase

(and the world’s greatest approximation!)



Boosting phase

Run the algorithm t times using fresh random bits.

G G G G

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

Contraction
Algorithm

…

…

…F1 F2 FtF3

Output the minimum among      ’s.Fi

larger                 better success probabilityt =)

What is the relation between    and success probability?t



Boosting phase

Let        =  “in the i’th repetition, we don’t find a min cut.”Ai

= Pr[A1] Pr[A2] · · ·Pr[At]

= Pr[A1]
t 

✓
1� 1

n2

◆t

Pr[error]

= Pr[A1 \A2 \ · · · \At]
ind.

events

= Pr[don’t find a min cut]

What is the relation between    and success probability?t



Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

World’s most useful inequality: 8x 2 R : 1 + x  e

x



Boosting phase

Pr[error] 
✓
1� 1

n2

◆t

x = �1/n2Let

t = n3
=) Pr[error]  e�n3/n2

= 1/en

 (ex)t = ext = e�t/n2

Pr[success] � 1� 1

en

=)

Pr[error]  (1 + x)

t

World’s most useful inequality: 8x 2 R : 1 + x  e

x



Conclusion for min cut

We have a polynomial-time algorithm that solves 
the min cut problem with probability               .1� 1/en

Theoretically, not equal to 1.
Practically, equal to 1.



We can boost the success probability of 
Monte Carlo algorithms via repeated trials.

Important Note

Boosting is not specific to Min-cut algorithm.



Final remarks

Another (morally) million dollar question:

Randomized algorithms can be faster and more elegant 
than their deterministic counterparts.

There are some interesting problems for which: 
   - there is a poly-time randomized algorithm,
   - we can’t find a poly-time deterministic algorithm.

Randomness adds an interesting dimension to 
computation.


