
15-251: Great Theoretical Ideas in Computer Science

(Interactive) Proofs

Lecture 24

Proofs from 900 BCE until 1800s

Proof:

Looks legit.

Pythagoras’s Theorem:

Then there was Russell

Principia Mathematica
Volume 2

Russell and others
worked on formalizing
proofs.

This meant proofs could be verified mechanically.

Proofs and Computers

All this played a key role in the birth of computer
science.

Computers themselves can verify proofs.
(automated theorem provers)

Are these really proofs?

Computers can help us find proofs
(e.g. 4-Color Theorem)

TODAY: Proofs and Computer Science

A modern understanding of proofs in computer
science includes proofs that are:

- randomized

- interactive

- zero-knowledge (proofs which don’t explain anything)

- spot-checkable

This modern understanding of proofs has
revolutionized much of theoretical computer science.

Review of NP

 “ iff there is a polynomial length proof
that is verifiable by a poly-time algorithm.”

Definition:

A language is in if

- there is a polynomial time TM V
- a polynomial

such that for all :

If , there is some proof that leads V to accept.

If , every “proof” leads V to reject.

NP: A game between a Prover and a Verifier

Verifier Prover

Given some string .

Prover wants to convince Verifier .

Prover cooks up a proof string and sends it to Verifier.

Verifier, in polynomial time, should be able to tell
if the proof is legit.

poly-time
skeptical

omniscient
untrustworthy

NP: A game between a Prover and a Verifier

Verifier Prover

poly-time
skeptical

omniscient
untrustworthy

“Completeness”

“Soundness”

If , there must be some proof that convinces
the Verifier.

If , no matter what “proof” Prover gives,
Verifier should detect the lie.

Limitations of NP

We know many languages are in NP.

SAT, 3SAT, CLIQUE, MAX-CUT, VERTEX-COVER,
SUDOKU, THEOREM-PROVING, 3COL, …

What about 3COL or 3SAT?

Given an unsatisfiable formula, is there a way for the
Prover to convince the Verifier that it is unsatisfiable?

i.e.

How can we generalize proofs?

The NP setting seems too weak for this purpose.

- Make the verifier probabilistic.

- Make the protocol interactive.

One can show interaction does not change the model.
I.e., whatever you can do with interaction, you can do with
the original setting.

We do not think randomization by itself adds
significant power.

But, magic happens when you combine the two.

But, in real life, people use more general ways of
convincing each other of the validity of statements.

Interaction + Randomization

Your friend tells you he can taste the difference between
Coke and Pepsi.

How can he convince you of this?

Coke vs Pepsi Challenge

Coke vs Pepsi

Choose Coke or Pepsi
at random.

Send it to your friend. Your friend tastes it.

Coke Gives an answer.

Repeat

a challenge

a response
to the challenge

Graph Isomorphism Problem

=

≠

Given two graphs , are they isomorphic?
i.e., is there a permutation of the vertices such
that

1 2

3 4

1 2

3 4
1

2 3

4

5

1 2

3

4 5

Graph Isomorphism Problem

Is Graph Non-isomorphism in NP?

Is Graph Isomorphism in NP?

Sure! A good proof is the permutation of the
vertices.

No one knows!

But there is a simple randomized interactive proof.

Interactive Proof for Graph Non-isomorphism

Choose a permutation
of vertices at random.

a challenge

a response
to the challenge

Pick at random

Accept if

The complexity class IP

We say that a language is in if:

- there is a probabilistic poly-time Verifier

- there is a computationally unbounded Prover

challenges
and

responses

“Completeness”

“Soundness”

(poly rounds)

If , Verifier accepts.

If , Verifier rejects with prob. at least 1/2.

The complexity class IP

But being fooled with
probability ½ is still

pretty bad! What can
we do about it?

Repeat: After 100 challenges the probability to be
fooled is < 1/1000000000000000000000000000000

Poll 1: What is the power of IP

Poll 1: What is the relation between NP and IP?

1. NP ⊂ IP

2. IP ⊂ NP

3. IP = NP

4. They are incomparable

Poll 1: What is the power of IP

Poll 1: What is the relation between NP and IP?

1. NP ⊂ IP

2. IP ⊂ NP

3. IP = NP

4. They are incomparable

What about ? Is it in IP?

The power of IP

Yes!

In fact, the complement of any language in NP is in IP.

Many more languages beyond this are in IP, too.

We showed that Graph Non-Isomorphism is in IP.

How powerful is IP?

So how powerful are interactive proofs?

How big is IP?

Theorem:

Adi Shamir

1990

(another application of polynomials)

Chess

An interesting corollary:

Suppose in chess, white can always win in ≤ 300
moves.

How can the wizard prove this to you?

Zero Knowledge Proofs

Zero-Knowledge Proofs

I found a truly marvelous proof of Riemann
Hypothesis.

I want to convince you that I have a valid proof.

But I don’t want you to learn anything about the
proof.

Is this possible?

For what problems is there a zero-knowledge IP?

Back to Graph Non-isomorphism

Accept if

Choose a permutation
of vertices at random.

Pick at random

There is more
to this protocol
than meets the
eye.

Back to Graph Non-isomorphism

Accept if

Choose a permutation
of vertices at random.

Pick at random

There is more
to this protocol
than meets the
eye.

Does the verifier gain any insight about why the
graphs are not isomorphic?

Zero-Knowledge Proofs

The Verifier is convinced,
 but he learns nothing about why the graphs are
 not isomorphic!

The Verifier could have produced the
communication transcript by himself, with no help
from the Prover.

A proof with 0 explanatory content!

Zero-Knowledge Proofs for NP

Does every problem in NP have a zero-knowledge IP?

Goldreich Micali Wigderson

1986

Yes! (under plausible cryptographic assumptions)

And the prover need not be a wizard.

He just needs to know the ordinary proof.

Zero-Knowledge Proofs for NP

Does every problem in NP have a zero-knowledge IP?

It suffices to show this for your favorite NP-complete
problem. (every problem in NP reduces to an NP-
complete prob.)

We’ll pick the 3-COLORING Problem.

Yes! (under plausible cryptographic assumptions)

And the prover need not be a wizard.

He just needs to know the ordinary proof.

Zero-Knowledge Proof for 3-Coloring

• We want to design an zero knowledge proof
system for 3-COLORING

• We will rely on a cryptographic construction
known as bit commitment

• Prover can put bits in envelopes and send
them to Verifier

• Verifier can only open
an envelope if Prover
provides the key

Zero-Knowledge Proof for 3-Coloring

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ;

commits to 𝜋 𝛾 𝑣 for all 𝑣 ∈ 𝑉

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly
at random

Reveals 𝑎 = 𝜋 𝛾 𝑢 and 𝑏 = 𝜋(𝛾 𝑣)

Accepts iff 𝑎 ≠ 𝑏

Zero-Knowledge Proof for 3-Coloring

𝑐 𝑑

𝑒

𝑏

𝑎

𝛾(𝐺)

𝑐 𝑑

𝑐 𝑑

Accept

Poll 2: Zero-Knowledge Proof for 3-Coloring

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ;

commits to 𝜋 𝛾 𝑣 for all 𝑣 ∈ 𝑉

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly
at random

Reveals 𝑎 = 𝜋 𝛾 𝑢 and 𝑏 = 𝜋(𝛾 𝑣)

Accepts iff 𝑎 ≠ 𝑏

Poll 2: If 𝐺 has no 3-coloring, what is the worst-
case prob. for Prover to convince Verifier?

1 −
1

3!
 1 −

1

𝐸
 1 −

1

2
 1 −

1

𝑛!

Poll 2: Zero-Knowledge Proof for 3-Coloring

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ;

commits to 𝜋 𝛾 𝑣 for all 𝑣 ∈ 𝑉

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly
at random

Reveals 𝑎 = 𝜋 𝛾 𝑢 and 𝑏 = 𝜋(𝛾 𝑣)

Accepts iff 𝑎 ≠ 𝑏

Poll 2: If 𝐺 has no 3-coloring, what is the worst-
case prob. for Prover to convince Verifier?

1 −
1

3!
 1 −

1

𝐸
 1 −

1

2
 1 −

1

𝑛!

Zero-Knowledge Proof for 3-Coloring

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ;

commits to 𝜋 𝛾 𝑣 for all 𝑣 ∈ 𝑉

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly
at random

Reveals 𝑎 = 𝜋 𝛾 𝑢 and 𝑏 = 𝜋(𝛾 𝑣)

Accepts iff 𝑎 ≠ 𝑏

Completeness:
 Follows from valid 3-coloring
Soundness:
 Repeat 2 𝐸 times to get ½ prob.
Zero knowledge:
 Prover just reveals a pair of distinct
 random colors.

Zero-Knowledge for all?

In fact, every problem in IP = PSPACE has a
zero-knowledge proof!

Ben-Or Goldreich Goldwasser Håstad Kilian Micali Rogaway

1990

"Everything provable is provable in zero-knowledge"

This shows that every problem in NP has a zero
knowledge IP.

Statistical vs Computational Zero-Knowledge

There is a difference between
- zero-knowledge proof for Graph Non-isomorphism
- zero-knowledge proof for Hamiltonian Cycle

Statistical zero-knowledge:

Verifier wouldn’t learn anything even if it was
computationally unbounded.

Computational zero-knowledge:

Verifier wouldn’t learn anything assuming it cannot
unlock the locks in polynomial time.

Statistical vs Computational Zero-Knowledge

SZK = set of all problems with
 statistically zero-knowledge proofs

CZK = set of all problems with
 computationally zero-knowledge proofs

IP = PSPACE = CZK

SZK is believed to be much smaller.

In fact, it is believed that it does not contain
NP-complete problems.

And now…

Modern computer science proofs can be:

- randomized

- interactive

- zero-knowledge

- spot-checkable

Spot-Checkable Proofs

Suppose I have a proof that is a few hundred pages
long.

I give you the proof, and ask you to verify it.

It could be that there is some tiny mistake
somewhere in the proof.

Trying to find it is super annoying!

Spot-Checkable Proofs

If only there was a way to just check a few random
places of the proof, and be convinced that the proof
is correct…

That’s a dream too good to be true.

Or is it?

Let’s go back to Graph Non-isomorphism.

Can we realize this dream for this problem?

Given two graphs , is there a “spot-
checkable” proof that they are non-isomorphic?

Spot-Checkable Proofs

Index i: if , put 0.

if , put 1.

if neither, put 0 or 1 (doesn’t matter).
Verifier:

Choose a permutation of vertices at random.

Pick at random .

Figure out the index corresponding to .

Check: is the bit at index equal to .

Enumerate all possible n-vertex graphs:

0 1 proof: 0 0 1 1 0 1 …

Spot-Checkable Proofs

OK, the proof is exponentially long.

Not so useful in that sense.

Is there a way to do something similar but with
poly-length proof?

Spot-Checkable Proofs

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in NP admits “spot-checkable” proofs
of polynomial length.

The verifier can be convinced with high probability
by looking only at a constant number of bits in the
proof.

old proof new proof

tiny local error error almost everywhere

(poly-length) (poly-length)

“New shortcut found for long math proofs!”

Spot-Checkable Proofs

Probabilistically Checkable Proofs (PCP) Theorem:

Every problem in NP admits “spot-checkable” proofs
of polynomial length.

The verifier can be convinced with high probability
by looking only at a constant number of bits in the
proof.

Arora Lund Motwani Safra Sudan Szegedy

1998

Spot-Checkable Proofs

This theorem is equivalent to:

PCP Theorem (version 2):

There is some constant such that if there is a
polynomial-time -approximation algorithm for MAX-3SAT
then P=NP.

I.e., it is NP-hard to approximate MAX-3SAT within an
 factor.

This is called an “hardness of approximation” result.

They are hard to prove!

Spot-Checkable Proofs

PCP Theorem is one of the crowning achievements
in CS theory!

Proof is a half a semester course.

Blends together:

P/NP
random walks
expander graphs
polynomials / finite fields
error-correcting codes
Fourier analysis

Summary

Computer science gives a whole new perspective on
proofs:

- can be probabilistic

- can be interactive

- can be zero-knowledge

- can be spot-checkable

Summary

problems whose solutions can be efficiently verifiable:

old-fashioned proof + deterministic verifier

NP

randomization + interaction

PSPACE

problems whose solutions can be efficiently verifiable:

PSPACE = Computationally Zero-Knowledge (CZK)

(some special problems are in SZK)

"Everything provable is provable in zero-knowledge"

Summary

PCP Theorem

Old-fashioned proofs can be turned into spot-checkable.

(you only need to check constant number of bits!)

Equivalent to an hardness of approximation result.

Opens the door to many other hardness of
approximation results.

