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Proofs from 900 BCE until 1800s 

Proof: 

Looks legit. 

Pythagoras’s Theorem: 



Then there was Russell 

Principia Mathematica 
Volume 2 

Russell and others 
worked on formalizing 
proofs. 

This meant proofs could be verified mechanically.  



Proofs and Computers 

All this played a key role in the birth of computer 
science. 

Computers themselves can verify proofs. 
(automated theorem provers) 

Are these really proofs? 

Computers can help us find proofs 
(e.g. 4-Color Theorem) 



TODAY: Proofs and Computer Science 

A modern understanding of proofs in computer 
science includes proofs that are: 

- randomized 

- interactive 

- zero-knowledge (proofs which don’t explain anything) 

- spot-checkable 

This modern understanding of proofs has 
revolutionized much of theoretical computer science. 



Review of NP 

 “           iff there is a polynomial length proof 
that is verifiable by a poly-time algorithm.” 

Definition: 

A language      is in        if 

- there is a polynomial time TM V 
- a polynomial  

such that for all    : 

If           , there is some proof that leads V to accept. 

If           , every “proof” leads V to reject. 



NP:  A game between a Prover and a Verifier 

Verifier Prover 

Given some string    . 

Prover wants to convince Verifier           . 

Prover cooks up a proof string     and sends it to Verifier. 

Verifier, in polynomial time, should be able to tell 
if the proof is legit.  

poly-time 
skeptical 

omniscient 
untrustworthy 



NP:  A game between a Prover and a Verifier 

Verifier Prover 

poly-time 
skeptical 

omniscient 
untrustworthy 

“Completeness” 

“Soundness” 

If            , there must be some proof     that convinces 
the Verifier.  

If            , no matter what “proof” Prover gives,  
Verifier should detect the lie. 



Limitations of NP 

We know many languages are in NP. 

SAT,  3SAT,  CLIQUE,  MAX-CUT,  VERTEX-COVER, 
SUDOKU,  THEOREM-PROVING,  3COL, … 

What about 3COL or 3SAT?  

Given an unsatisfiable formula, is there a way for the 
Prover to convince the Verifier that it is unsatisfiable? 

i.e. 



How can we generalize proofs? 

The NP setting seems too weak for this purpose. 

- Make the verifier probabilistic. 

- Make the protocol interactive. 

One can show interaction does not change the model. 
I.e., whatever you can do with interaction, you can do with 
the original setting. 

We do not think randomization by itself adds 
significant power. 

But, magic happens when you combine the two. 

But, in real life, people use more general ways of 
convincing each other of the validity of statements. 



Interaction + Randomization 

Your friend tells you he can taste the difference between  
Coke and Pepsi. 

How can he convince you of this? 

Coke vs Pepsi Challenge 



Coke vs Pepsi 

Choose Coke or Pepsi 
at random. 

Send it to your friend. Your friend tastes it. 

Coke Gives an answer. 

Repeat 

a challenge 

a response 
to the challenge 



Graph Isomorphism Problem 

= 

≠ 

Given two graphs            ,  are they isomorphic? 
i.e., is there a permutation    of the vertices such 
that 
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Graph Isomorphism Problem 

Is Graph Non-isomorphism in NP? 

Is Graph Isomorphism in NP? 

Sure! A good proof is the permutation of the 
vertices. 

No one knows! 

But there is a simple randomized interactive proof. 



Interactive Proof for Graph Non-isomorphism 

Choose a permutation 
of vertices at random. 

a challenge 

a response 
to the challenge 

Pick at random  

Accept if  



The complexity class IP 

We say that a language     is in     if: 

- there is a probabilistic poly-time Verifier 

- there is a computationally unbounded Prover 

challenges 
and  

responses 

“Completeness” 

“Soundness” 

(poly rounds) 

If            ,  Verifier accepts. 

If            ,  Verifier rejects with prob. at least 1/2. 



The complexity class IP 

But being fooled with 
probability ½ is still 

pretty bad! What can 
we do about it? 

Repeat: After 100 challenges the probability to be 
fooled is < 1/1000000000000000000000000000000 



Poll 1: What is the power of IP 

Poll 1: What is the relation between NP and IP? 

1.  NP ⊂ IP 

2.  IP ⊂ NP 

3.  IP = NP 

4.  They are incomparable 
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What about           ? Is it in IP?             

The power of IP 

Yes! 

In fact, the complement of any language in NP is in IP. 

Many more languages beyond this are in IP, too. 

We showed that Graph Non-Isomorphism is in IP. 



How powerful is IP? 

So how powerful are interactive proofs? 

How big is IP? 

Theorem: 

Adi Shamir 

1990 

(another application of polynomials) 



Chess 

An interesting corollary: 

Suppose in chess, white can always win in ≤ 300 
moves. 

How can the wizard prove this to you? 



Zero Knowledge Proofs 

  



Zero-Knowledge Proofs 

I found a truly marvelous proof of Riemann 
Hypothesis. 

I want to convince you that I have a valid proof. 

But I don’t want you to learn anything about the 
proof. 

Is this possible? 

For what problems is there a zero-knowledge IP? 



Back to Graph Non-isomorphism 

Accept if  

Choose a permutation 
of vertices at random. 

Pick at random  

There is more 
to this protocol 
than meets the 
eye. 



Back to Graph Non-isomorphism 

Accept if  

Choose a permutation 
of vertices at random. 

Pick at random  

There is more 
to this protocol 
than meets the 
eye. 

Does the verifier gain any insight about why the 
graphs are not isomorphic? 



Zero-Knowledge Proofs 

The Verifier is convinced, 
   but he learns nothing about why the graphs are  
   not isomorphic! 

The Verifier could have produced the 
communication transcript by himself, with no help 
from the Prover. 

A proof with 0 explanatory content! 



Zero-Knowledge Proofs for NP 

Does every problem in NP have a zero-knowledge IP? 

Goldreich Micali Wigderson 

1986 

Yes!   (under plausible cryptographic assumptions) 

And the prover need not be a wizard. 

He just needs to know the ordinary proof. 



Zero-Knowledge Proofs for NP 

Does every problem in NP have a zero-knowledge IP? 

It suffices to show this for your favorite NP-complete 
problem.                 (every problem in NP reduces to an NP-
complete prob.) 

We’ll pick the 3-COLORING Problem. 

Yes!   (under plausible cryptographic assumptions) 

And the prover need not be a wizard. 

He just needs to know the ordinary proof. 



Zero-Knowledge Proof for 3-Coloring 

• We want to design an zero knowledge proof 
system for 3-COLORING 

• We will rely on a cryptographic construction 
known as bit commitment 

• Prover can put bits in envelopes and send 
them to Verifier  

• Verifier can only open 
an envelope if Prover 
provides the key 



Zero-Knowledge Proof for 3-Coloring 

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ; 

commits to 𝜋 𝛾 𝑣  for all 𝑣 ∈ 𝑉 

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly 
at random 

Reveals 𝑎 = 𝜋 𝛾 𝑢  and 𝑏 = 𝜋(𝛾 𝑣 ) 

Accepts iff 𝑎 ≠ 𝑏 



Zero-Knowledge Proof for 3-Coloring 

𝑐 𝑑 

𝑒 

𝑏 

𝑎 

𝛾(𝐺) 

𝑐 𝑑 

𝑐 𝑑 

Accept 



Poll 2: Zero-Knowledge Proof for 3-Coloring 

Selects random permutation 𝜋 of 𝑅, 𝐺, 𝐵 ; 

commits to 𝜋 𝛾 𝑣  for all 𝑣 ∈ 𝑉 

Selects an edge 𝑢, 𝑣 ∈ 𝐸 uniformly 
at random 

Reveals 𝑎 = 𝜋 𝛾 𝑢  and 𝑏 = 𝜋(𝛾 𝑣 ) 

Accepts iff 𝑎 ≠ 𝑏 

 

 

 

 

Poll 2: If 𝐺 has no 3-coloring, what is the worst-
case prob. for Prover to convince Verifier? 
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Completeness: 
      Follows from valid 3-coloring 
Soundness:  
      Repeat 2 𝐸  times to get ½ prob. 
Zero knowledge:   
      Prover just reveals a pair of distinct 
      random colors. 



Zero-Knowledge for all? 

In fact, every problem in IP = PSPACE has a  
zero-knowledge proof! 

Ben-Or Goldreich Goldwasser Håstad Kilian Micali Rogaway 

1990 

"Everything provable is provable in zero-knowledge" 

This shows that every problem in NP has a zero 
knowledge IP. 



Statistical vs Computational Zero-Knowledge 

There is a difference between  
- zero-knowledge proof for Graph Non-isomorphism 
- zero-knowledge proof for Hamiltonian Cycle 

Statistical zero-knowledge: 

Verifier wouldn’t learn anything even if it was 
computationally unbounded.  

Computational zero-knowledge: 

Verifier wouldn’t learn anything assuming it cannot 
unlock the locks in polynomial time. 



Statistical vs Computational Zero-Knowledge 

SZK = set of all problems with  
          statistically zero-knowledge proofs 

CZK = set of all problems with  
           computationally zero-knowledge proofs 

IP = PSPACE = CZK 

SZK is believed to be much smaller. 

In fact, it is believed that it does not contain  
NP-complete problems. 



And now… 

Modern computer science proofs can be: 

- randomized 

- interactive 

- zero-knowledge 

- spot-checkable 



Spot-Checkable Proofs 

Suppose I have a proof that is a  few hundred pages 
long. 

I give you the proof, and ask you to verify it. 

It could be that there is some tiny mistake 
somewhere in the proof.  

Trying to find it is super annoying! 



Spot-Checkable Proofs 

If only there was a way to just check a few random 
places of the proof, and be convinced that the proof 
is correct… 

That’s a dream too good to be true. 

Or is it? 

Let’s go back to Graph Non-isomorphism. 

Can we realize this dream for this problem? 

Given two graphs           ,  is there a “spot-
checkable” proof that they are non-isomorphic? 



Spot-Checkable Proofs 

Index i: if               , put 0.   

if               ,  put 1.   

if neither,     put 0 or 1  (doesn’t matter). 
Verifier: 

Choose a permutation     of vertices at random. 

Pick at random                . 

Figure out the index     corresponding to          .  

Check:  is the bit at index    equal to   . 

Enumerate all possible n-vertex graphs: 

0 1 proof: 0 0 1 1 0 1 … 



Spot-Checkable Proofs 

OK, the proof is exponentially long. 

Not so useful in that sense. 

Is there a way to do something similar but with 
poly-length proof? 



Spot-Checkable Proofs 

Probabilistically Checkable Proofs (PCP) Theorem: 

Every problem in NP admits “spot-checkable” proofs 
of polynomial length. 

The verifier can be convinced with high probability 
by looking only at a constant number of bits in the 
proof. 

old proof new proof 

tiny local error error almost everywhere 

(poly-length) (poly-length) 

“New shortcut found for long math proofs!” 



Spot-Checkable Proofs 

Probabilistically Checkable Proofs (PCP) Theorem: 

Every problem in NP admits “spot-checkable” proofs 
of polynomial length. 

The verifier can be convinced with high probability 
by looking only at a constant number of bits in the 
proof. 

Arora Lund Motwani Safra Sudan Szegedy 

1998 



Spot-Checkable Proofs 

This theorem is equivalent to: 

PCP Theorem (version 2): 

There is some constant     such that if there is a  
polynomial-time    -approximation algorithm for MAX-3SAT 
then P=NP. 

I.e., it is NP-hard to approximate MAX-3SAT within an 
    factor. 

This is called an “hardness of approximation” result. 

They are hard to prove! 



Spot-Checkable Proofs 

PCP Theorem is one of the crowning achievements 
in CS theory! 

Proof is a half a semester course. 

Blends together: 

P/NP 
random walks 
expander graphs 
polynomials / finite fields 
error-correcting codes 
Fourier analysis 



Summary 

Computer science gives a whole new perspective on 
proofs: 

- can be probabilistic 

- can be interactive 

- can be zero-knowledge 

- can be spot-checkable 



Summary 

problems whose solutions can be efficiently verifiable: 

old-fashioned proof + deterministic verifier 

NP 

randomization + interaction 

PSPACE 

problems whose solutions can be efficiently verifiable: 

PSPACE = Computationally Zero-Knowledge (CZK) 

(some special problems are in SZK)  

"Everything provable is provable in zero-knowledge" 



Summary 

PCP Theorem 

Old-fashioned proofs can be turned into spot-checkable. 

(you only need to check constant number of bits!) 

Equivalent to an hardness of approximation result. 

Opens the door to many other hardness of 
approximation results. 


