|5-25|

Great Theoretical Ideas in Computer Science

Lecture 25: Communication Complexity

Cool Things About Communication Complexity

Many useful applications:

distributed computing, machine learning, proof complexity, quantum computation, pseudorandom generators, data structures, game theory,...

The setting is simple and neat.

Beautiful mathematics

combinatorics, information theory, algebra, analysis, ...

One of few approaches to prove unconditional lower bounds about computational problems.

Motivating Example I: Checking Equality

Naively: $\Omega(n)$ **Actually:** $O(\log n)$

Defining the model a bit more formally

Goal: Compute F(x, y) (both players should know the value) How: Sending bits back and forth according to a <u>protocol</u>. Resource: Number of communicated bits. (We assume players have unlimited computational power individually.)

Poll I

 $x, y \in \{0, 1\}^n$, PAR(x, y) = parity of the sum of all the bits. (i.e. it's I if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate? Choose the tightest bound.

```
O(1)O(\log n)O(\log^2 n)O(\sqrt{n})O(n/\log n)O(n)
```

Poll I Answer

 $x, y \in \{0, 1\}^n$, PAR(x, y) = parity of the sum of all the bits. (i.e. it's I if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate? Choose the tightest bound.

 $O(1) \checkmark$ $O(\log n)$ $O(\log^2 n)$ $O(\sqrt{n})$ $O(n/\log n)$ O(n)

Poll I Answer

 $x, y \in \{0, 1\}^n$, PAR(x, y) = parity of the sum of all the bits. (i.e. it's I if the parity is odd, 0 otherwise.)

How many bits do the players need to communicate? Choose the tightest bound.

Once Bob knows the parity of x, he can compute PAR(x, y).

- Alice sends PAR(x) to Bob. | bit
- Bob computes PAR(x, y) and sends it to Alice. I bit

2 bits in total

Goal: Compute F(x, y). (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A protocol P is the "strategy" players use to communicate.

It determines what bits the players send in each round.

P(x,y) denotes the output of P.

Goal: Compute F(x, y). (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A (deterministic) protocol P computes F if

$$\begin{array}{ll} \forall (x,y) \in \{0,1\}^n \times \{0,1\}^n, & P(x,y) = F(x,y) \\ & \downarrow & & \searrow \\ & \text{Analogous to:} & \begin{array}{c} \text{algorithm} & \text{decision} \\ & (\mathsf{TM}) & \text{problem} \end{array} \\ & \forall x \in \Sigma^* \quad A(x) = F(x) \end{array}$$

Goal: Compute F(x, y). (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

A randomized protocol P computes F with ϵ error if

$$\forall (x,y) \in \{0,1\}^n \times \{0,1\}^n, \quad \Pr[P(x,y) \neq F(x,y)] \le \epsilon$$

Analogous to: Monte Carlo algorithms

Goal: Compute F(x, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

 $cost(P) = \max_{(x,y)} \# bits P communicates for (x, y)$ if P is randomized, you take max
over the random choices it makes.

Deterministic communication complexity

 $\mathbf{D}(F) = \min \operatorname{cost} \operatorname{of} a$ (deterministic) protocol computing F.

Randomized communication complexity

 $\mathbf{R}^{\epsilon}(F) = \min \operatorname{cost} \operatorname{of} a \operatorname{randomized} \operatorname{protocol} \operatorname{computing} F$ with ϵ error.

Goal: Compute F(x, y) (both players should know the value)

How: Sending bits back and forth according to a protocol.

Resource: Number of communicated bits.

What is considered hard or easy?

$$F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$

$0 \leq \mathbf{R}_{2}^{\epsilon}(F) \leq \mathbf{D}_{2}(F) \leq n+1$ $c \quad \log^{c}(n) \quad n^{\delta} \quad \delta n$

Equality:
$$EQ(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbf{D}(EQ) =$$

Poll 2

Equality:
$$EQ(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

What is $\mathbf{R}^{1/3}(EQ)$?

O(1) $O(\log n)$ $O(\log^2 n)$ $O(\sqrt{n})$ $O(n/\log n)$ O(n)

Poll 2 Answer

Equality:
$$EQ(x, y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

What is $\mathbf{R}^{1/3}(EQ)$? O(1) $O(\log n)$ $O(\log^2 n)$ $O(\sqrt{n})$ $O(n/\log n)$ O(n)

Poll 3

MAJ(x,y) = 1 iff majority of all the bits in x and y are set to 1.

What is D(MAJ)? Choose the tightest bound. O(1) $O(\log n)$ O(1 - 2)

 $O(\log^2 n)$ $O(\sqrt{n})$ $O(n/\log n)$ O(n)

Poll 3 Answer

MAJ(x,y) = 1 iff majority of all the bits in x and y are set to 1.

What is D(MAJ)? Choose the tightest bound. O(1) $O(\log n)$ $O(\log^2 n)$ $O(\sqrt{n})$ $O(n/\log n)$ $\mathcal{O}(n)$

Poll 3 Answer

MAJ(x,y) = 1 iff majority of all the bits in x and y are set to 1.

What is D(MAJ)? Choose the tightest bound.

The result can be computed from

$$\sum_{i \in \{1,2,\dots,n\}} x_i + \sum_{i \in \{1,2,\dots,n\}} y_i$$

- Alice sends $\sum_i x_i$ to Bob. log n + l bits
- Bob computes MAJ(x, y) and sends it to Alice. I bit $\log n + 2$ in total

Another Important Example

Disjointness:
$$DISJ(x, y) = \begin{cases} 0 & \text{if } \exists i : x_i = y_i = 1 \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbf{R}^{1/3}(DISJ) = \Omega(n).$$
 hard

The plan

I. Efficient randomized communication protocol for checking equality.

2. Several applications of communication complexity.

Efficient randomized communication protocol for checking equality

$$\mathbf{R}^{1/3}(EQ) = O(\log n).$$

Alice gets $x \in \{0,1\}^n$, Bob gets $y \in \{0,1\}^n$. We treat x and y as numbers: $0 \le x, y \le 2^n - 1$. <u>The Protocol:</u>

- Let p_i be the *i*'th smallest prime number. $p_1=2,\ p_2=3,\ p_3=5,\ p_4=7,\ \ldots$

- Alice picks a random $i \in \{1, 2, \dots, n^2\}$.

- Alice sends Bob: $i, \mod p_i$

- Bob outputs I iff $x \mod p_i = y \mod p_i$. ($x \equiv_{p_i} y$)

$$\mathbf{R}^{1/3}(EQ) = O(\log n).$$

Correctness:

<u>*Want to show:*</u> For all (x, y), probability of error is $\leq 1/3$. For all (x, y) with x = y : $\Pr[\text{error}] = \Pr_i[x \not\equiv_{p_i} y] = 0.$ For all (x, y) with $x \neq y$: $\Pr[\operatorname{error}] = \Pr_{i}[x \equiv_{p_{i}} y] = \Pr_{i}[p_{i} \text{ divides } x - y]$ Claim: x - y has at most n distinct prime factors. $\Pr[\text{error}] = \Pr[p_i \text{ is a prime factor of } x - y] \leq \frac{n}{n^2} = \frac{1}{n}.$

$$\mathbf{R}^{1/3}(EQ) = O(\log n).$$

<u>Cost:</u>

The only communication is:

- Alice sends Bob:
$$i, \mod p_i$$

The first number i is such that $i \leq n^2$.

Can represent it using $\sim \log_2 n^2 = 2 \log_2 n = O(\log n)$ bits.

The second number $x \mod p_i$ is at most p_{n^2} .

By the Prime Number Theorem: $p_{n^2} \sim n^2 \log n^2 \leq 2n^3$ Can represent p_{n^2} using at most $\log(2n^3) = O(\log n)$ bits. \square

$$\mathbf{R}^{1/3}(EQ) = O(\log n).$$

Alice gets $x \in \{0,1\}^n$, Bob gets $y \in \{0,1\}^n$. We treat x and y as numbers: $0 \le x, y \le 2^n - 1$. <u>The Protocol:</u>

- Let p_i be the *i*'th smallest prime number. $p_1=2,\ p_2=3,\ p_3=5,\ p_4=7,\ \ldots$

- Alice picks a random $i \in \{1, 2, \dots, n^2\}$.

- Alice sends Bob: $i, \mod p_i$

- Bob outputs I iff $x \mod p_i = y \mod p_i$. ($x \equiv_{p_i} y$)

The plan

I. Efficient randomized communication protocol for checking equality.

2. Several applications of communication complexity.

Applications of Communication Complexity

- circuit complexity
- time/space tradeoffs for Turing Machines
- VLSI chips
- machine learning
- game theory
- data structures
- proof complexity

- pseudorandom generators
- pseudorandomness
- branching programs
- data streaming algorithms
- quantum computation
- lower bounds for polytopes representing NP-complete problems

How Communication Complexity Comes In

Setting: Solve some task while minimizing some resource. e.g. find a fast algorithm, design a small circuit, find a short proof of a theorem, ...

Goal: Prove lower bounds on the resource needed.

Sometimes: efficient solution to our problem efficient communication protocol for a certain function.

i.e. no efficient protocol for the function no efficient solution to our problem.

Lower bounds for data streaming algorithms

 $S \in [n]^n$

 $S \in [n]^n$

 $S \in [n]^n$

 $S \in [n]^n$

Fix some function $f : [n]^n \to \mathbb{Z}$. *e.g.* f(S) = # most frequent symbol in S

Goal: On input S, compute (or approximate) f(S) while minimizing space usage.

Lower Bounds via Communication Complexity

$$f(S) = \# \text{ most frequent symbol in } S$$

Space efficient streaming algorithm computing f communication efficient protocol computing DISJ.

Disjointness:
$$DISJ(S_x, S_y) = \begin{cases} 1 & S_x \cap S_y = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Lower Bounds via Communication Complexity

$$f(S) = \# \text{ most frequent symbol in } S$$

Space efficient streaming algorithm computing f communication efficient protocol computing DISJ.

$$S_x = \{2, 4, 5\} \qquad S_y = \{1, 5, 7, 8\}$$

$$x = \boxed{0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0} \qquad y = \boxed{0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0}$$

$$I \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

Protocol: Alice runs streaming algorithm on S_x . She sends the state and memory contents to Bob. Bob continues to run the algorithm on S_y . If $f(S_x \cdot S_y) = 2$, Bob outputs 0, otherwise 1. Correctness

Time/space tradeoffs for TMs

Recall Turing Machines

T(n) time: # steps the machine takes

S(n) space: # work tape cells the machine uses

An observation

Suppose we both know the input and the TM.

- You start running the TM with the input.
- You pause after a certain number of steps.
- What information do I need to be able to continue the computation from where you left it?

- I. current state
- 2. positions of tape heads
- 3. contents of work tape

Let
$$L = \{x \#^{|x|} x : x \in \{0, 1\}^*$$

 $000 \# \# \# 000 \in L$
 $1010 \# \# \# 1010 \in L$
 $001 \# \# 000 \notin L$
 $000 \# 000 \notin L$

Theorem:

If a TM M decides L in T(n) time and S(n) space on inputs of size 3n, then $T(n) \cdot S(n) = \Omega(n^2)$.

Let
$$L = \{x \#^{|x|} x : x \in \{0, 1\}^*\}$$

Theorem:

If a TM M decides L in T(n) time and S(n) space on inputs of size 3n, then $T(n) \cdot S(n) = \Omega(n^2)$.

Strategy:

Using M, we design a communication protocol for EQ of cost $\leq c T(n)S(n)/n$ for some constant c.

We know EQ requires $\geq n$ bits of communication.

$$\implies c T(n)S(n)/n \ge n \implies c T(n)S(n) \ge n^2$$

Let
$$L = \{x \#^{|x|} x : x \in \{0,1\}^*\}$$
. M decides L .

<u>**Protocol for** EQ:</u>

Given input $x \in \{0,1\}^n$ to Alice, and $y \in \{0,1\}^n$ to Bob.

They want to decide if x = y. They will make use of M.

Let
$$w = x \#^n y$$
.

They simulate M(w).

If M(w) accepts, they output 1.

If M(w) rejects, they output 0. A correct protocol.

Let
$$L = \{x \#^{|x|} x : x \in \{0,1\}^*\}$$
. M decides L.

<u>**Protocol for** EQ:</u>

Given input $x \in \{0,1\}^n$ to Alice, and $y \in \{0,1\}^n$ to Bob.

They want to decide if x = y. They will make use of M.

Let
$$w = x \#^n y$$
.

They simulate M(w).

How do they simulate M?

What is the cost?

If M(w) accepts, they output 1.

If M(w) rejects, they output 0. A correct protocol.

Let
$$L = \{ x \#^{|x|} x : x \in \{0,1\}^* \}$$
. M decides L .

<u>**Protocol for** EQ:</u>

They simulate $M(x #^n y)$.

Alice starts the simulation.

When input tape head reaches a y symbol, she sends

- I. current state
- 2. position of work tape head
- 3. contents of work tape

Let
$$L = \{ x \#^{|x|} x : x \in \{0,1\}^* \}$$
. M decides L .

<u>**Protocol for** EQ:</u>

They simulate $M(x #^n y)$.

Bob continues the simulation.

When input tape head reaches an x symbol, he sends
I. current state
2. position of work tape head
3. contents of work tape

This continues until M halts.

<u>Analysis:</u>

It is clear the protocol is correct. What is the cost?

In each transmission, players send

- I. current state —
- 2. position of work tape head —

What is the number of transmissions?

3. contents of work tape

$$\xrightarrow{O(1)} O(\log S(n))$$

$$\xrightarrow{O(1)} O(\log S(n))$$

$$\xrightarrow{O(1)} O(\log S(n))$$

O(S(n))

For each transmission, M takes $\geq n$ steps.

So $T(n) \ge (\# \text{ transmissions}) \cdot n$.

 \implies # transmissions $\leq T(n)/n$.

Total cost: O(S(n)T(n)/n).

Let
$$L = \{x \#^{|x|} x : x \in \{0, 1\}^*\}$$

Theorem:

If a TM M decides L in T(n) time and S(n) space on inputs of size 3n, then $T(n) \cdot S(n) = \Omega(n^2)$.

Strategy:

Using M, we design a communication protocol for EQ of cost $\leq c T(n)S(n)/n$ for some constant c.

We know EQ requires $\geq n$ bits of communication.

$$\implies c T(n)S(n)/n \ge n \implies c T(n)S(n) \ge n^2$$