
15-251
Great Theoretical Ideas in Computer Science

Lecture 26:
Modular Arithmetic + Number Theory

Next 2 lectures

Modular arithmetic + Number Theory

Cryptography
(in particular, “public-key” cryptography)

+

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

3618502788666131106986593281521497110455743021169260358536775932020762686101
7237846234873269807102970128874356021481964232857782295671675021393065473695
3943653222082116941587830769649826310589717739181525033220266350650989268038
3194839273881505432422077179121838888281996148408052302196889866637200606252
6501310964926475205090003984176122058711164567946559044971683604424076996342
7183046544798021168297013490774140090476348290671822743961203698142307099664
3455133414637616824423860107889741058131271306226214208636008224651510961018
9789006815067664901594246966730927620844732714004599013904409378141724958467
7228950143608277369974692883195684314361862929679227167524851316077587207648
7845058367231603173079817471417519051357029671991152963580412838184841733782

Algorithms on numbers involve BIG numbers.

Integers

5693030020523999993479642904621911725098567020556258102766251487234031094429

(5.7 quattorvigintillion)

is roughly the number of atoms in the universe

Definition:

(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing string-
manipulation.

The number of steps is measured with respect to the
length of the input numbers.

1. Addition in integers

36185027886661311069865932815214971104
65743021169260358536775932020762686101

101928049055921669606641864835977657205

+

Grade school addition is linear time:

𝑂(𝑙𝑒𝑛 𝐴 + 𝑙𝑒𝑛(𝐵))

2. Subtraction in integers

36185027886661311069865932815214971104

65743021169260358536775932020762686101

101928049055921669606641864835977657205
-

Grade school subtraction is linear time:

𝑂(𝑙𝑒𝑛 𝐴 + 𝑙𝑒𝑛(𝐵))

3. Multiplication in integers

36185027886661311069865932815214971104

5932020762686101

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

x

214650336722050463946651358202698404452609868137425504

steps is quadratic, i.e.,

4. Division in integers

36185027886661311069865932815214971104

6099949635084593037586
 5932020762686101

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

3960087002178918 # steps:

5. Exponentiation in integers

Given as input , compute .

5693030020523999993479642904621911725098567020556258102766251487234031094429

For

but ~ 5.7 quattorvigintillion

(output length exceeds number of particles in the universe)

exponential in
input length

6. Taking logarithms in integers

Given as input , compute .

i.e., find such that

Try = 1, 2, 3, …

Stop when

7. Taking roots in integers

Given as input , compute .

Binary search and exponentiation via multiplication.

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?

- How to do basic operations:

1. addition

2. subtraction

3. multiplication

4. division

5. exponentiation

6. taking roots

7. logarithm

theory
+

algorithms
(efficient (?))

Modular Operations:
Basic Definitions and Properties

Modular universe: How to view the elements

Hopefully everyone already knows:

Any integer can be reduced mod N.

0 1 2 3 4 5 6 7 8 9 10 11 12

Example

…

0 1 2 3 4 0 1 2 3 4 0 1 2 …

= remainder when you divide by

Modular universe: How to view the elements

We write or

when .

(In this case, we say is congruent to modulo .)

Examples

Exercise

Modular universe: How to view the elements

The universe is the finite set .

View 2

2 Points of View

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 0 1 2 3 4 0 1 2

…

…

The universe is .

Every element has a “mod N ” representation.

View 1

Modular universe: Addition

“plus” in “plus” in

Can define a “plus” operation in :

Modular universe: Addition

0

1

2

3

0 1 2 3 +

0 1 2 3

1 2 3 4

2 3 4 0

3 4 0 1

4

0

1

2

4 0 1 2 3 4

4

Addition table for

0 is called the (additive) identity: 0 + A = A + 0 = A

for any A

N N

N

Modular universe: Addition

In In

?

3019573

912382236

3

1

4
3019573

912382236
+

YES!

Modular universe: Addition

In In

?

3

1

4

YES!

Modular universe: Addition

In In

?

Is ?

YES!

Modular universe: Subtraction

What does mean?

It is actually addition in disguise:

Then what does mean in ?

How about subtraction in ?

Given , its additive inverse, denoted by ,
is the element in such that .

Definition:

Modular universe: Subtraction

0

1

2

3

0 1 2 3
0 1 2 3

1 2 3 4

2 3 4 0

3 4 0 1

4

0

1

2

4 0 1 2 3 4

4

Addition table for

+ N

Modular universe: Subtraction

0

1

2

3

0 1 2 3
0 1 2 3

1 2 3 4

2 3 4 0

3 4 0 1

4

0

1

2

4 0 1 2 3 4

4

Addition table for

Note:

i.e. every row is a permutation of .

A row contains distinct elements.

This implies:

row col row col same col

 For every , exists.

Why?

Fix row :

+ N

Modular universe: Multiplication

“multiplication”
 in

“multiplication”
 in

Can define a “multiplication” operation in :

Modular universe: Multiplication

0

1

2

3

0 1 2 3 .
0 0 0 0

0 1 2 3

0 2 4 1

0 3 1 4

0

4

3

2

0 4 3 2 1 4

4

Multiplication table for

1 is called the (multiplicative) identity: 1 A = A 1 = A

for any A

 . .
N N

N

Modular universe: Multiplication

In In

?

Is ?

YES!

Modular universe: Division

How about division in ?

What does mean?

Then what does mean in ?

It is actually multiplication in disguise:

Given , its multiplicative inverse, denoted by ,
is the element in such that

Definition:

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 1

0 3 1 4

0

4

3

2

0 4 3 2 1 4

4

Multiplication table for

.
N

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 0

0 3 0 3

0

4

2

0

0 4 2 0 4 4

4

Multiplication table for

0

5

4

3

2

0 5 4 3 2 1 5

5

WTF?

.
N

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 2

0

4

1

5

0 4 1 5 2 4

4

Multiplication table for

0

5

3

1

6

0 5 3 1 6 4 5

5
0

6

5

4

3

2

6

0 6 5 4 3 2 6 1

Every number except 0 has a multiplicative inverse.

.
N

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 1

0

4

0

4

0 4 0 4 0 4

4

Multiplication table for

0

5

2

7

4

0 5 2 7 4 1 5

5
0

6

4

2

0

6

6

0 6 4 2 0 6 6 4

0 7 6 5 4 3 7 2

0

7

6

5

4

3

7

2

1

{1, 3, 5, 7} have inverses. Others don’t.

.
N

Modular universe: Division

Fact: exists if and only if

= greatest common divisor of and .

Examples:

If , we say and are relatively prime.

Modular universe: Division

Fact: exists if and only if

Definition:

Definition:

Note that is “closed” under multiplication,

i.e.,

(Why?)

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 1

0 3 1 4

0

4

3

2

0 4 3 2 1 4

4 .
N

Modular universe: Division

1

2

3

1 2 3

1 2 3

2 4 1

3 1 4

4

3

2

4 3 2 1 4

4 .
N

Modular universe: Division

1

2

3

1 2 3

1 2 3

2 4 1

3 1 4

4

3

2

4 3 2 1 4

4

For prime,

.
N

Modular universe: Division

0

1

2

3

0 1 2 3
0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 1

0

4

0

4

0 4 0 4 0 4

4
0

5

2

7

4

0 5 2 7 4 1 5

5
0

6

4

2

0

6

6

0 6 4 2 0 6 6 4

0 7 6 5 4 3 7 2

0

7

6

5

4

3

7

2

1

.
N

Modular universe: Division

1

3

1 3

1 3

3 1

5

7

5 7 1 5

5

7 5 3 7

7

5

3

7

1

.
N

Modular universe: Division

1

2

4

7

1 2 4 7
1 2 4 7

2 4 8 14

4 8 1 13

7 14 13 4

8

1

2

11

8 1 2 11 4 8

8
11

7

14

2

13

11 7 14 2 13 1 11

11
13

11

7

1

14

8

13

13 11 7 1 14 8 13 4

14 13 11 8 7 4 14 2

14

13

11

8

7

4

14

2

1

.
N

Modular universe: Division

1

2

4

7

1 2 4 7
1 2 4 7

2 4 8 14

4 8 1 13

7 14 13 4

8

1

2

11

8 1 2 11 4 8

8
11

7

14

2

13

11 7 14 2 13 1 11

11
13

11

7

1

14

8

13

13 11 7 1 14 8 13 4

14 13 11 8 7 4 14 2

14

13

11

8

7

4

14

2

1

Exercise: For distinct primes, .

.
N

Modular universe: Division

1

3

1 3

1 3

3 1

5

7

5 7 1 5

5

7 5 3 7

7

5

3

7

1 i.e. every row is a permutation of .

A row contains distinct elements.

This implies:

For every , exists. .
N

0

1

2

3

0 1 2 3 +

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

1

3

5

7

1 3 5 7
1 3 5 7

3 1 7 5

5 7 1 3

7 5 3 1

behaves nicely
with respect to

addition / subtraction

behaves nicely
with respect to

multiplication / division

Summary so far

.
N N

Modular universe: Exponentiation

Exponentiation in

For , ,

Notation:

Modular universe: Exponentiation

Exponentiation in

For , ,

Notation:

(Same as before)

There is more though…

Modular universe: Exponentiation

1

2

3

4

1 2 3 4 .
1 1 1 1 1 1 1 1

3 4 2 1 3 4 2 1

1 2 3

2 4 1

3 1 4

4

3

2

4 3 2 1

2 4 3 1 2 4 3 1

4 1 4 1 4 1 4 1

2 and 3 are called generators.

N

Exponentiation in

Modular universe: Exponentiation

1

3

5

7

1 3 5 7
1 3 5 7

3 1 7 5

5 7 1 3

7 5 3 1

1 1 1 1 1 1 1 1

3 1 3 1 3 1 3 1

5 1 5 1 5 1 5 1

7 1 7 1 7 1 7 1

Exponentiation in

.
N

Fermat’s Little Theorem:

Let be a prime. For any ,

Equivalently, for any not divisible by ,

Modular universe: Exponentiation

Euler’s Theorem:

For any , .

Equivalently, for with ,

When N is a prime, this is known as:

Poll

What is ?

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler’s Theorem:

For any , .

In other words, the exponent can be reduced

Poll Answer

When exponentiating elements

can think of the exponent living in the universe .

IMPORTANT!!!

Modular Operations:
Computational Complexity

Complexity of Addition

Input:

Output:

Compute .

Poly-time

Complexity of Subtraction

Input:

Output:

Compute .

Poly-time

Complexity of Multiplication

Input:

Output:

Compute .

Poly-time

Complexity of Division

Input:

Output: (if the answer exists)

Now things get interesting.

Questions:

1. Does exist?

2. If it does, how do you compute it?

Complexity of Division

Euclid’s Algorithm finds gcd in polynomial time.

Arguably the first algorithm ever. ~ 300 BC

Recall: exists iff .

So to determine if has an inverse, we need to compute

.

Complexity of Division

gcd(A, B):

 if B == 0, return A

 return gcd(B, A mod B)

Euclid’s Algorithm

Recitation or Homework or Practice

Why does it work?

Why is it polynomial time?

Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of
 - poly(n) size
 - polylog(n) depth
 that computes gcd?

Complexity of Division

Ok, Euclid’s Algorithm tells us whether an element
has an inverse. How do you find it if it exists?

Definition: We say that is a miix of and if

for some

Examples:

2 is a miix of 14 and 10: 2 = (-2) 14 + 3 10 . .

7 is not a miix of 55 and 40. (why?)

not a real term 😋

Claim: An extension of Euclid’s Algorithm gives us the inverse.

First, a definition:

Complexity of Division

Fact: is a miix of and if and only if

 is a multiple of .

Exercise: The coefficients and can be found by

slightly modifying Euclid’s Algorithm (in poly-time).

If , we can find such that

So

Therefore found

Finding :

Complexity of Division

Summary for the complexity of division

To compute , we need to compute

 (if it exists).

 exists iff (can be computed with Euclid).

Extension of Euclid gives us (in poly-time) such that

Complexity of Exponentiation

Can we compute this efficiently?

In the modular universe, length of output not an issue.

Input:

Output:

Complexity of Exponentiation

Example

Compute .

Naïve strategy:

2337 x 2337 = 5461569

2337 x 5461569 = 12763686753

2337 x 12763686753 = …
. . . (30 more multiplications later)

626727565152155511653188886668668588313475824236665607396755008905770146236635537228216696030970612828922881

Complexity of Exponentiation

Example

Compute .

2 improvements:

- Do mod 100 after every step.

- Don’t multiply 32 times. Square 5 times.

(what if the exponent is 53?)

Complexity of Exponentiation

Example

Compute .

Multiply powers 32, 16, 4, 1. (53 = 32 + 16 + 4 + 1)

53 in binary =

(what if the exponent is 53?)

Complexity of Exponentiation

Algorithm:

Running time: a bit more than .

- Repeatedly square , always mod .

 Do this times.

- Multiply together the powers of
 corresponding to the binary digits of

(again, always mod).

Input: (each at most bits)

Output:

Complexity of Log

Input: such that

Output:

- is prime
-

- is a generator.

 such that .

Note:

Which one corresponds to ?

We don’t know how to compute this efficiently!

Complexity of Taking Roots

We don’t know how to compute this efficiently!

Input: such that

Output: such that

So we want to compute in .

Next Lecture

Cryptography

