|5-25|

Great Theoretical Ideas in Computer Science

Lecture 26:
 Modular Arithmetic + Number Theory

Next 2 lectures

Modular arithmetic + Number Theory

$+$

Cryptography

(in particular, "public-key" cryptography)

The plan

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve BIG numbers.

36|8502788666|3II0698659328I52I497IIO45574302II69260358536775932020762686IOI 7237846234873269807IO2970I2887435602I48I96423285778229567167502I393065473695 3943653222082II694I5878307696498263IO5897I7739181525033220266350650989268038 3I9483927388I505432422077I79I2I83888828I996I48408052302I96889866637200606252 6501310964926475205090003984I76I220587III64567946559044971683604424076996342 7I8304654479802II682970|349077414009047634829067182274396|203698|42307099664 3455I334I46376I6824423860I0788974I058I3I27I3062262I420863600822465I5I096IOI8 9789006815067664901594246966730927620844732714004599013904409378141724958467 7228950143608277369974692883195684314361862929679227167524851316077587207648 7845058367231603I730798I74714175190513570296719911529635804I2838I8484I733782

Integers

$B=569303002052399999347964290462 \mid 911725098567020556258102766251487234031094429$
$B \approx 5.7 \times 10^{75} \quad$ (5.7 quattorvigintillion)
B is roughly the number of atoms in the universe
Definition: $\operatorname{len}(B)=\#$ bits to write B

$$
\approx \log _{2} B
$$

$\operatorname{len}(B)=251$
(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing stringmanipulation.

The number of steps is measured with respect to the length of the input numbers.

I. Addition in integers

36185027886661311069865932815214971104 A
$+65743021169260358536775932020762686101 \quad B$ 101928049055921669606641864835977657205 C

Grade school addition is linear time:

$$
O(\operatorname{len}(A)+\operatorname{len}(B))
$$

2. Subtraction in integers

IO192804905592|66960664|864835977657205 A
-36185027886661311069865932815214971104 B 6574302II69260358536775932020762686IOI C

Grade school subtraction is linear time:

$$
O(\operatorname{len}(A)+\operatorname{len}(B))
$$

3. Multiplication in integers

X 5932020762686101

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
$214650336722050463946651358202698404452609868137425504 C$
\# steps is quadratic, i.e., $O(\operatorname{len}(A) \cdot \operatorname{len}(B))$

4. Division in integers

```
6099949635084593037586 Q
    B 5932020762686101 36185027886661311069865932815214971104 A
    A=Q\cdotB+R
    R=A mod}
XXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXX
    XXXXXXXXXXXXXXXXX
        XXXXXXXXXXXXXXXXX
        XXXXXXXXXXXXXXXXX
        XXXXXXXXXXXXXXXXX
            XXXXXXXXXXXXXXXXX
                XXXXXXXXXXXXXXXXX
                    XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
                        XXXXXXXXXXXXXXXXX
# steps: }O(\operatorname{len}(A)\cdot\operatorname{len}(B)

\section*{5. Exponentiation in integers}

Given as input \(B\), compute \(2^{B}\).

For
\(B=569303002052399999347964290462|9| 1725098567020556258102766251487234031094429\)
\(\operatorname{len}(B)=251\)
but \(\operatorname{len}\left(2^{B}\right) \sim 5.7\) quattorvigintillion
(output length exceeds number of particles in the universe)
exponential in input length

\section*{6. Taking logarithms in integers}

Given as input \(A, B\), compute \(\log _{B} A\).
i.e., find \(X\) such that \(B^{X}=A\).

Try \(X=1,2,3, \ldots\)
Stop when \(B^{X} \geq A\).

\section*{7. Taking roots in integers}

Given as input \(A, E\), compute \(A^{1 / E}\).

Binary search and exponentiation via multiplication.

\section*{The plan}

\section*{Start with algorithms on good old integers.}

Then move to the modular universe.

\section*{Main goal of this lecture}

\section*{Modular Universe}
- How to view the elements of the universe?
- How to do basic operations:
I. addition
2. subtraction
3. multiplication
4. division
5. exponentiation
6. taking roots
7. logarithm
theory
\(+\)
algorithms
(efficient (?))

Modular Operations: Basic Definitions and Properties

\section*{Modular universe: How to view the elements}

Hopefully everyone already knows:
Any integer can be reduced mod \(N\).
\(A \bmod N=\) remainder when you divide \(A\) by \(N\)

\section*{Example}
\[
N=5
\]


\section*{Modular universe: How to view the elements}

We write \(\quad A \equiv B \bmod N \quad\) or \(\quad A \equiv_{N} B\) when \(A \bmod N=B \bmod N\).
(In this case, we say \(A\) is congruent to \(B\) modulo \(N\).)

Examples
\(5 \equiv_{5} 100\)
\(13 \equiv_{7} 27\)

Exercise
\[
A \equiv_{N} B \Longleftrightarrow N \text { divides } A-B
\]

\section*{Modular universe: How to view the elements}

\section*{2 Points of View}

View I
The universe is \(\mathbb{Z}\).
Every element has a "mod \(\boldsymbol{N}\) " representation.
View 2
The universe is the finite set \(\mathbb{Z}_{N}=\{0,1,2, \ldots, N-1\}\).

\(\mathbb{Z}_{5}\)

\section*{Modular universe: Addition}

Can define a "plus" operation in \(\mathbb{Z}_{N}\) :
\[
A+{ }_{N} B=(A+B) \bmod N
\]


\section*{Modular universe: Addition}

\section*{Addition table for \(\mathbb{Z}_{5}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{+N0 1 2334} \\
\hline 0 & 0 & 1 & 2 & 3 & 4 \\
\hline 1 & 1 & 2 & 3 & 4 & 0 \\
\hline 2 & 2 & 3 & 4 & 0 & 1 \\
\hline 3 & 3 & 4 & 0 & 1 & 2 \\
\hline & 4 & 0 & 1 & 2 & \\
\hline
\end{tabular}

0 is called the (additive) identity: \(0{ }_{N} A=A \dagger_{N} 0=A\)
for any \(A\)

\section*{Modular universe: Addition}

\section*{In \(\mathbb{Z}\)}


In \(\mathbb{Z}_{5}\)

3019573


3

912382236


I

3019573
\(+\)


4

912382236

YES!

\section*{Modular universe: Addition}

\section*{In \(\mathbb{Z}\)}

A

B


I
\(A+B\)


4

YES!

\section*{Modular universe: Addition}

\section*{In \(\mathbb{Z}\)}

A

B

\(A \bmod N\)
\(B \bmod N\)
\[
A+B \quad \xrightarrow{?}(A \bmod N)+_{N}(B \bmod N)
\]

Is \((A+B) \bmod N=(A \bmod N)+_{N}(B \bmod N)\) ?
YES!

\section*{Modular universe: Subtraction}

\section*{How about subtraction in \(\mathbb{Z}_{N}\) ?}

What does \(A-B\) mean?
It is actually addition in disguise: \(A+(-B)\)
Then what does \(-B\) mean in \(\mathbb{Z}_{N}\) ?

\section*{Definition:}

Given \(B \in \mathbb{Z}_{N}\), its additive inverse, denoted by \(-B\), is the element in \(\mathbb{Z}_{N}\) such that \(B+_{N}-B=0\).
\[
A-_{N} B=A+{ }_{N}-B
\]

\section*{Modular universe: Subtraction}

Addition table for \(\mathbb{Z}_{5}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 2 & 3 & & \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & \(-0=0\) \\
\hline 1 & 1 & 2 & 3 & 4 & 0 & \(-1=4\) \\
\hline 2 & 2 & 3 & 4 & 0 & 1 & \(-2=3\) \\
\hline 3 & 3 & 4 & 0 & 1 & 2 & \(-3=2\) \\
\hline 4 & 4 & 0 & 1 & 2 & 3 & \(-4=1\) \\
\hline
\end{tabular}

\section*{Modular universe: Subtraction}

Addition table for \(\mathbb{Z}_{5}\)


Note:
For every \(A \in \mathbb{Z}_{N},-A\) exists.
Why? \(-A=N-A\)
This implies:
A row contains distinct elements. ie. every row is a permutation of \(\mathbb{Z}_{N}\).
\(\begin{array}{rr}\text { Fix row } A: & A+{ }_{N} B=A+{ }_{N} B^{\prime} \Longrightarrow B=B^{\prime} \\ \text { row col row col same col }\end{array}\)

\section*{Modular universe: Multiplication}

Can define a "multiplication" operation in \(\mathbb{Z}_{N}\) :
\[
A \cdot{ }_{N} B=(A \cdot B) \bmod N
\]

in \(\mathbb{Z}_{N}\)
"multiplication"
in \(\mathbb{Z}\)

\section*{Modular universe: Multiplication}

\section*{Multiplication table for \(\mathbb{Z}_{5}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & 2 & 3 & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 1 & 2 & 3 & 4 \\
\hline 2 & 0 & 2 & 4 & 1 & 3 \\
\hline & 0 & 3 & 1 & 4 & 2 \\
\hline & 0 & 4 & 3 & 2 & \\
\hline
\end{tabular}

I is called the (multiplicative) identity: \({ }^{\circ}{ }_{N} A=A \rho_{N} \mid=A\) for any \(A\)

\section*{Modular universe: Multiplication}

\section*{In \(\mathbb{Z}\)}
\(A \quad \cdots \cdots \cdots \cdots \quad A \bmod N\)
\(B \quad \cdots \cdots \cdots \cdots \quad B \bmod N\)
\[
A \cdot B \quad \cdots \cdots \cdots \cdots \quad(A \bmod N) \cdot{ }_{N}(B \bmod N)
\]

\section*{Modular universe: Division}

\section*{How about division in \(\mathbb{Z}_{N}\) ?}

What does \(A / B\) mean?
It is actually multiplication in disguise: \(A \cdot \frac{1}{B}=A \cdot B^{-1}\)
Then what does \(B^{-1}\) mean in \(\mathbb{Z}_{N}\) ?

\section*{Definition:}

Given \(B \in \mathbb{Z}_{N}\) its multiplicative inverse, denoted by \(B^{-1}\), is the element in \(\mathbb{Z}_{N}\) such that \(B \cdot{ }_{N} B^{-1}=1\).
\[
A /{ }_{N} B=A \cdot{ }_{N} B^{-1}
\]

\section*{Modular universe: Division}

Multiplication table for \(\mathbb{Z}_{5}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & 2 & 3 & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I & 0 & 1 & 2 & 3 & 4 \\
\hline 2 & 0 & 2 & 4 & 1 & 3 \\
\hline 3 & 0 & 3 & 1 & 4 & 2 \\
\hline 4 & 0 & 4 & 3 & 2 & \\
\hline
\end{tabular}
\[
\begin{aligned}
& 0^{-1}=\text { undefined } \\
& 1^{-1}=1 \\
& 2^{-1}=3 \\
& 3^{-1}=2 \\
& 4^{-1}=4
\end{aligned}
\]

\section*{Modular universe: Division}

Multiplication table for \(\mathbb{Z}_{6}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 2 & 0 & 2 & 4 & 0 & 2 & 4 \\
\hline 3 & 0 & 3 & 0 & 3 & 0 & 3 \\
\hline 4 & 0 & 4 & 2 & 0 & 4 & 2 \\
\hline 5 & 0 & 5 & 4 & 3 & 2 & I \\
\hline
\end{tabular}
\(0^{-1}=\) undefined
\(1^{-1}=1\)
\(2^{-1}=\) undefined
\(3^{-1}=\) undefined
\(4^{-1}=\) undefined
\(5^{-1}=5\)

WTF?

\section*{Modular universe: Division}

\section*{Multiplication table for \(\mathbb{Z}_{7}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2 & 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline 3 & 0 & 3 & 6 & 2 & 5 & 1 & 4 \\
\hline 4 & 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline 5 & 0 & 5 & 3 & 1 & 6 & 4 & 2 \\
\hline 6 & 0 & 6 & 5 & 4 & 3 & 2 & I \\
\hline
\end{tabular}

Every number except 0 has a multiplicative inverse.

\section*{Modular universe: Division}

Multiplication table for \(\mathbb{Z}_{8}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & 2 & 3 & 4 & 5 & 6 & \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2 & 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 \\
\hline 3 & 0 & 3 & 6 & 1 & 4 & 7 & 2 & 5 \\
\hline 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 \\
\hline 5 & 0 & 5 & 2 & 7 & 4 & 1 & 6 & 3 \\
\hline 6 & 0 & 6 & 4 & 2 & 0 & 6 & 4 & 2 \\
\hline 7 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & I \\
\hline
\end{tabular}
\(\{I, 3,5,7\}\) have inverses. Others don't.

\section*{Modular universe: Division}

Fact: \(\quad A^{-1} \in \mathbb{Z}_{N}\) exists if and only ifgcd \((A, N)=1\). \(\operatorname{gcd}(a, b)=\) greatest common divisor of \(a\) and \(b\).

Examples:
\[
\begin{aligned}
& \operatorname{gcd}(12,18)=6 \\
& \operatorname{gcd}(13,9)=1 \\
& \operatorname{gcd}(1, a)=1 \quad \forall a \\
& \operatorname{gcd}(0, a)=a \quad \forall a
\end{aligned}
\]

If \(\operatorname{gcd}(a, b)=1\), we say \(a\) and \(b\) are relatively prime.

\section*{Modular universe: Division}

Fact: \(\quad A^{-1} \in \mathbb{Z}_{N}\) exists if and only if \(\operatorname{gcd}(A, N)=1\).
Definition: \(\mathbb{Z}_{N}^{*}=\left\{A \in \mathbb{Z}_{N}: \operatorname{gcd}(A, N)=1\right\}\).

Definition: \(\varphi(N)=\left|\mathbb{Z}_{N}^{*}\right|\)

Note that \(\mathbb{Z}_{N}^{*}\) is "closed" under multiplication, i.e., \(A, B \in \mathbb{Z}_{N}^{*} \Longrightarrow A{ }_{N} B \in \mathbb{Z}_{N}^{*}\)
(Why?)
\[
\mathbb{Z}_{5}^{*}
\]

\[
\varphi(5)=4
\]
\[
\mathbb{Z}_{5}^{*}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & & & 3 & \\
\hline I & 1 & 2 & 3 & 4 \\
\hline 2 & 2 & 4 & 1 & 3 \\
\hline 3 & 3 & 1 & 4 & 2 \\
\hline & 4 & 3 & 2 & \\
\hline
\end{tabular}
\[
\varphi(5)=4
\]

\section*{Modular universe: Division}
\[
\mathbb{Z}_{5}^{*}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & & 2 & 3 & \\
\hline I. & 1 & 2 & 3 & 4 \\
\hline 2 & 2 & 4 & 1 & 3 \\
\hline 3 & 3 & 1 & 4 & 2 \\
\hline 4 & 4 & 3 & 2 & \\
\hline
\end{tabular}

For \(P\) prime, \(\varphi(P)=P-1\).

\section*{Modular universe: Division}
\(\mathbb{Z}_{8}^{*}\)


\section*{Modular universe: Division}

\[
\varphi(8)=4
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\(\mathbb{Z}_{15}^{*}\)} \\
\hline \multirow[t]{2}{*}{\({ }^{-1}\)} & & & & & & & & \\
\hline & 1 & 2 & 4 & 7 & 8 & 11 & 1311 & 14 \\
\hline 2 & 2 & 4 & 8 & 14 & 1 & 7 & 1113 & 13 \\
\hline 4 & 4 & 8 & 1 & 13 & 2 & 14 & 7 & 11 \\
\hline 7 & 7 & 14 & 13 & 4 & 11 & 2 & 18 & 8 \\
\hline 8 & 8 & 1 & 2 & 11 & 4 & 13 & 14 & 7 \\
\hline & 11 & 7 & 14 & 2 & 13 & 1 & 8 & 4 \\
\hline \[
13
\] & 13 & 11 & 7 & 1 & 14 & 8 & 4 & 2 \\
\hline & 14 & 13 & 11 & 8 & 7 & 4 & 2 & 1 \\
\hline & & & & 15) & \(=8\) & & & \\
\hline
\end{tabular}

\section*{Modular universe: Division}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\(\mathbb{Z}_{15}^{*}\)} \\
\hline \multicolumn{2}{|l|}{\({ }^{\circ} N\)} & 2 & 4 & 7 & & & & \\
\hline 1 & , & 2 & 4 & 7 & 8 & 11 & 13 & 14 \\
\hline 2 & 2 & 4 & 8 & 14 & 1 & 7 & 11 & 13 \\
\hline 4 & 4 & 8 & 1 & 13 & 2 & 14 & 7 & 11 \\
\hline 7 & 7 & 14 & 13 & 4 & 11 & 2 & 1 & 8 \\
\hline 8 & 8 & 1 & 2 & 11 & 4 & 13 & 14 & 7 \\
\hline 11 & 11 & 7 & 14 & 2 & 13 & 1 & 8 & 4 \\
\hline 13 & 13 & 11 & 7 & 1 & 14 & 8 & 4 & 2 \\
\hline 14 & 14 & 13 & 11 & 8 & 7 & 4 & 2 & 1 \\
\hline
\end{tabular}

Exercise: For \(P, Q\) distinct primes, \(\varphi(P Q)=(P-1)(Q-1)\)

\section*{Modular universe: Division}
\(\mathbb{Z}_{8}^{*}\)

\(\varphi(8)=4\)

For every \(A \in \mathbb{Z}_{N}^{*}, A^{-1}\) exists.
This implies:
A row contains distinct elements. i.e. every row is a permutation of \(\mathbb{Z}_{N}^{*}\)
\(A \cdot{ }_{N} B=A \cdot{ }_{N} B^{\prime} \quad \Longrightarrow \quad B=B^{\prime}\)

Summary so far

\(\mathbb{Z}_{N}\)
behaves nicely
with respect to
addition / subtraction

\(\mathbb{Z}_{N}^{*}\)
behaves nicely with respect to multiplication / division

\section*{Modular universe: Exponentiation}

\section*{Exponentiation in \(\mathbb{Z}_{N}\)}

\section*{Notation:}

For \(A \in \mathbb{Z}_{N}, E \in \mathbb{N}\),
\[
A^{E}=\underbrace{A \cdot{ }_{N} A \cdot{ }_{N} \cdots{ }_{N} A}_{E \text { times }}
\]

\section*{Modular universe: Exponentiation}

\section*{Exponentiation in \(\mathbb{Z}_{N}^{*}\)}
(Same as before)

\section*{Notation:}

For \(A \in \mathbb{Z}_{N}^{*}, E \in \mathbb{N}\),
\[
A^{E}=\underbrace{A \cdot{ }_{N} A \cdot{ }_{N} \cdots{ }_{N} A}_{E \text { times }}
\]

There is more though...

\section*{Modular universe: Exponentiation}

Exponentiation in \(\mathbb{Z}_{N}^{*}\)


2 and 3 are called generators.

\section*{Modular universe: Exponentiation}

Exponentiation in \(\mathbb{Z}_{N}^{*}\)


\section*{Modular universe: Exponentiation}

\section*{Euler's Theorem:}

For any \(A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1\).
Equivalently, for \(A \in \mathbb{Z}, N \in \mathbb{N}\) with \(\operatorname{gcd}(A, N)=1\),
\[
A^{\varphi(N)} \equiv 1 \bmod N
\]

When \(N\) is a prime, this is known as:

\section*{Fermat's Little Theorem:}

Let \(P\) be a prime. For any \(A \in \mathbb{Z}_{P}^{*}, \quad A^{P-1}=1\).
Equivalently, for any \(A\) not divisible by \(P\),
\[
A^{P-1} \equiv 1 \bmod P
\]

\section*{Poll}

What is \(213^{248} \bmod 7\) ?
- 0
- I
- 2
- 3
- 4
- 5
- 6
- Beats me.

\section*{Poll Answer}

\section*{Euler's Theorem:}

For any \(A \in \mathbb{Z}_{N}^{*}, \quad A^{\varphi(N)}=1\).
\(\begin{array}{lll:lll:l}A^{0} & A^{1} & A^{2} & \cdots & A^{\varphi(N)} & A^{\varphi(N)+1} & \cdots \\ \| & & \| & A^{2 \varphi(N)} & A^{2 \varphi(N)+1} \\ 1 & & \| & & \| & \| \\ 1 & & A^{0} & A^{1} & \cdots & A^{0} & A^{1}\end{array}\)
In other words, the exponent can be reduced \(\bmod \varphi(N)\).
\[
\begin{aligned}
213^{248} & \equiv_{7} 3^{248} \\
3^{248} & \equiv_{7} 3^{2}
\end{aligned}=2
\]

\section*{Poll Answer}

\section*{IMPORTANT!!!}

\section*{When exponentiating elements \(A \in \mathbb{Z}_{N}^{*}\)}
can think of the exponent living in the universe \(\mathbb{Z}_{\varphi(N)}\).

\section*{Modular Operations: Computational Complexity}

\section*{Complexity of Addition}

Input: \(A, B \in \mathbb{Z}_{N}\)
Output: \(A+{ }_{N} B\)

Compute \((A+B) \bmod N\).

Poly-time


\section*{Complexity of Subtraction}

Input: \(A, B \in \mathbb{Z}_{N}\)
Output: \(A-{ }_{N} B\)

Compute \((A+(N-B)) \bmod N\).

Poly-time


\section*{Complexity of Multiplication}

Input: \(A, B \in \mathbb{Z}_{N}\)
Output: \(A \cdot{ }_{N} B\)

Compute \((A \cdot B) \bmod N\).

Poly-time


\section*{Complexity of Division}

Input: \(A, B \in \mathbb{Z}_{N}\)
Output: \(A /{ }_{N} B\) (if the answer exists)

Now things get interesting.
\[
A /{ }_{N} B=A \cdot{ }_{N} B^{-1}
\]

\section*{Questions:}
I. Does \(B^{-1}\) exist?
2. If it does, how do you compute it?

\section*{Complexity of Division}

Recall: \(B^{-1}\) exists iff \(\operatorname{gcd}(B, N)=1\).

So to determine if \(B\) has an inverse, we need to compute \(\operatorname{gcd}(B, N)\).

Euclid's Algorithm finds gcd in polynomial time.
Arguably the first algorithm ever. ~ 300 BC

\section*{Complexity of Division}

\section*{Euclid's Algorithm}
```

gcd(A, B):
if B == 0, return A
return gcd(B,A mod B)

```

\section*{Recitation or Homework or Practice}

Why does it work?
Why is it polynomial time?

\section*{Major open problem in Computer Science}

\section*{Is gcd computation efficiently parallelizable?}
i.e., is there a circuit family of
- poly(n) size
- polylog(n) depth that computes gcd?

\section*{Complexity of Division}

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

Claim: An extension of Euclid's Algorithm gives us the inverse. First, a definition:

Definition: We say that \(C\) is a miix of \(A\) and \(B\) if
\[
C=k \cdot A+\ell \cdot B
\]
for some \(k, \ell \in \mathbb{Z}\).

\section*{Examples:}

2 is a miix of 14 and \(10: \quad 2=(-2) \cdot 14+3 \cdot 10\)
7 is not a miix of 55 and 40 . (why?)

\section*{Complexity of Division}

Fact: \(C\) is a mix of \(A\) and \(B\) if and only if \(C\) is a multiple of \(\operatorname{gcd}(A, B)\).
\[
\text { So } \operatorname{gcd}(A, B)=k \cdot A+\ell \cdot B
\]

Exercise: The coefficients \(k\) and \(\ell\) can be found by slightly modifying Euclid's Algorithm (in poly-time).

Finding \(B^{-1}\) :
If \(\operatorname{gcd}(B, N)=1\), we can find \(k, \ell \in \mathbb{Z} \quad\) such that
\[
\begin{aligned}
& 1=k \cdot \beta+\ell \cdot N \\
& \text { and } \\
& B^{-1}
\end{aligned}
\]

\section*{Complexity of Division}

\section*{Summary for the complexity of division}

To compute \(A /{ }_{N} B=A \cdot{ }_{N} B^{-1}\), we need to compute \(B^{-1}\) (if it exists).
\(B^{-1}\) exists iff \(\operatorname{gcd}(B, N)=1\) (can be computed with Euclid)

Extension of Euclid gives us (in poly-time) \(k, \ell \in \mathbb{Z}\) such that
\[
\operatorname{gcd}(B, N)=1=k \cdot B+\ell \cdot N
\]
\(B^{-1}=k \bmod N\)

\section*{Complexity of Exponentiation}

Input: \(A, E, N \in \mathbb{N}\)
Output: \(A^{E} \bmod N\)

In the modular universe, length of output not an issue.

Can we compute this efficiently?

\section*{Complexity of Exponentiation}

\section*{Example}

\section*{Compute \(2337^{32} \bmod 100\).}

Naïve strategy:
\(2337 \times 2337=5461569\)
\(2337 \times 546 \mid 569=12763686753\)
\(2337 \times 12763686753=\ldots\)
:(30 more multiplications later)

\section*{Complexity of Exponentiation}

\section*{Example}

Compute \(2337^{32} \bmod 100\).
2 improvements:
- Do mod 100 after every step.
- Don't multiply 32 times. Square 5 times. \(2337 \longrightarrow 2337^{2} \longrightarrow 2337^{4} \longrightarrow 2337^{8} \longrightarrow 2337^{16} \longrightarrow 2337^{32}\) (what if the exponent is 53?)

\section*{Complexity of Exponentiation}

\section*{Example}

\section*{Compute \(2337^{53} \bmod 100\).}

\section*{(what if the exponent is 53?)}

Multiply powers \(32,16,4, I . \quad(53=32+16+4+1)\)
\[
\begin{aligned}
2337^{53}= & 2337^{32} \cdot 2337^{16} \cdot 2337^{4} \cdot 2337^{1} \\
& 53 \text { in binary }=110101
\end{aligned}
\]

\section*{Complexity of Exponentiation}

Input: \(\quad A, E, N \in \mathbb{N} \quad\) (each at most \(n\) bits)
Output: \(A^{E} \bmod N\)

\section*{Algorithm:}
- Repeatedly square \(A\), always \(\bmod N\).

Do this \(n\) times.
- Multiply together the powers of \(A\) corresponding to the binary digits of \(E\) (again, always \(\bmod N\) ).

Running time: a bit more than \(O\left(n^{2} \log n\right)\).

\section*{Complexity of Log}

Input: \(A, B, P\) such that
- \(P\) is prime
- \(A \in \mathbb{Z}_{P}^{*}\)
- \(B \in \mathbb{Z}_{P}^{*}\) is a generator.

Output: \(X\) such that \(B^{X} \equiv_{P} A\).

Note: \(\left\{B^{0}, B^{1}, B^{2}, B^{3}, \cdots, B^{P-2}\right\}=\mathbb{Z}_{P}^{*}\)
Which one corresponds to \(A\) ?
We don't know how to compute this efficiently!

\section*{Complexity of Taking Roots}

Input: \(A, E, N\) such that \(A \in \mathbb{Z}_{N}^{*}\)
Output: \(B\) such that \(B^{E} \equiv_{N} A\)

So we want to compute \(A^{1 / E}\) in \(\mathbb{Z}_{N}^{*}\).

We don't know how to compute this efficiently!

\section*{Next Lecture}

\section*{Cryptography}
```

