|5-25|

Great Theoretical Ideas in Computer Science

Lecture 26: Modular Arithmetic + Number Theory

Next 2 lectures

Modular arithmetic + Number Theory

╋

Cryptography (in particular, "public-key" cryptography)

Start with algorithms on good old integers.

Then move to the modular universe.

Integers

Algorithms on numbers involve <u>BIG</u> numbers.

B=5693030020523999993479642904621911725098567020556258102766251487234031094429

 $B \approx 5.7 \times 10^{75}$ (5.7 quattorvigintillion)

B is roughly the number of atoms in the universe

Definition:
$$len(B) = \#$$
 bits to write B
 $\approx log_2 B$

len(B) = 251(for crypto purposes, this is way too small)

Integers: Arithmetic

In general, arithmetic on numbers is not free!

Think of algorithms as performing stringmanipulation.

The number of steps is measured with respect to the <u>length of the input numbers</u>.

I. Addition in integers

- 36185027886661311069865932815214971104 A
- + 65743021169260358536775932020762686101 B
 - 101928049055921669606641864835977657205 C

Grade school addition is linear time:

O(len(A) + len(B))

2. Subtraction in integers

- 101928049055921669606641864835977657205 A
- <u>- 36185027886661311069865932815214971104</u> B
 - 65743021169260358536775932020762686101 C

Grade school subtraction is linear time:

O(len(A) + len(B))

3. Multiplication in integers

steps is quadratic, i.e., $O(\text{len}(A) \cdot \text{len}(B))$

4. Division in integers

5. Exponentiation in integers

Given as input B, compute 2^B .

For

B=5693030020523999993479642904621911725098567020556258102766251487234031094429

len(B) = 251but $len(2^B) \sim 5.7$ quattorvigintillion

(output length exceeds number of particles in the universe)

6. Taking logarithms in integers

Given as input A, B, compute $\log_B A$.

i.e., find X such that $B^X = A$.

Try X = 1, 2, 3, ...Stop when $B^X \ge A$.

7. Taking roots in integers

Given as input A, E, compute $A^{1/E}$.

Binary search and exponentiation via multiplication.

Start with algorithms on good old integers.

Then move to the modular universe.

Main goal of this lecture

Modular Universe

- How to view the elements of the universe?
- How to do basic operations:
 - I. addition
 - 2. subtraction
 - 3. multiplication
 - 4. division
 - 5. exponentiation
 - 6. taking roots
 - 7. logarithm

theory + algorithms (efficient (?))

Modular Operations: Basic Definitions and Properties

Modular universe: How to view the elements

Hopefully everyone already knows:

Any integer can be reduced mod *N*.

 $A \mod N$ = remainder when you divide $A \mod N$

Modular universe: How to view the elements

We write $A \equiv B \mod N$ or $A \equiv_N B$ when $A \mod N = B \mod N$. (In this case, we say A is congruent to B modulo N.)

> Examples $5 \equiv_5 100$ $13 \equiv_7 27$

Exercise

 $A \equiv_N B \iff N \text{ divides } A - B$

Modular universe: How to view the elements

2 Points of View

- View I
 - The universe is $\,\mathbb Z\,$.
 - Every element has a "mod N" representation.
- View 2

The universe is the finite set $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$.

Can define a "plus" operation in \mathbb{Z}_N :

Addition table for \mathbb{Z}_5

0 is called the (additive) identity: $0 +_{\mathcal{N}} A = A +_{\mathcal{N}} 0 = A$ for any A

YES!

Modular universe: Subtraction

How about subtraction in \mathbb{Z}_N ?

What does A - B mean? It is actually addition in disguise: A + (-B)Then what does -B mean in \mathbb{Z}_N ?

Definition:

Given $B \in \mathbb{Z}_N$, its *additive inverse*, denoted by -B, is the element in \mathbb{Z}_N such that $B +_N - B = 0$.

$$A - {}_N B = A + {}_N - B$$

Modular universe: Subtraction

Addition table for \mathbb{Z}_5

+~	0 1		2	3	4	_
0	0	Ι	2	3	4	-0 = 0
Ι		2	3	4	0	-1 = 4
		3				-2 = 3
3	3	4	0		2	-3 = 2
4	4	0		2	3	-4 = 1

Modular universe: Subtraction

Addition table for \mathbb{Z}_5

Note:

For every $A \in \mathbb{Z}_N$, -A exists. Why? -A = N - A

This implies:

A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N .

Modular universe: Multiplication

Can define a "multiplication" operation in \mathbb{Z}_N :

Modular universe: Multiplication

Multiplication table for \mathbb{Z}_5

I is called the (multiplicative) identity: $| \cdot_N A = A \cdot_N | = A$ for any A

Modular universe: Multiplication

Is $(A \cdot B) \mod N = (A \mod N) \cdot_N (B \mod N)$?

YES!

How about division in \mathbb{Z}_N ?

What does A/B mean? It is actually multiplication in disguise: $A \cdot \frac{1}{B} = A \cdot B^{-1}$ Then what does B^{-1} mean in \mathbb{Z}_N ?

Definition:

Given $B \in \mathbb{Z}_N$ its *multiplicative inverse*, denoted by B^{-1} , is the element in \mathbb{Z}_N such that $B \cdot_N B^{-1} = 1$.

$$A/_N B = A \cdot_N B^{-1}$$

Multiplication table for \mathbb{Z}_5

Multiplication table for \mathbb{Z}_6

•~	0 1		2	3	4	5
0	0	0	0	0	0	0
Т	0	Ι	2	3	4	5
2	0	2	4	0	2	4
3	0		0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	Ι

$$0^{-1} =$$
undefined
 $1^{-1} = 1$
 $2^{-1} =$ undefined
 $3^{-1} =$ undefined
 $4^{-1} =$ undefined

$$4^{-1} = undefined$$

$$5^{-1} = 5$$

WTF?

Multiplication table for \mathbb{Z}_7

Every number except 0 has a multiplicative inverse.

{1, 3, 5, 7} have inverses. Others don't.

Fact:
$$A^{-1} \in \mathbb{Z}_N$$
 exists if and only if $gcd(A, N) = 1$.

gcd(a, b) = greatest common divisor of a and b.

Examples:

$$\gcd(12, 18) = 6$$

 $\gcd(13, 9) = 1$
 $\gcd(1, a) = 1 \quad \forall a$
 $\gcd(0, a) = a \quad \forall a$

If gcd(a, b) = 1, we say a and b are relatively prime.

Fact:
$$A^{-1} \in \mathbb{Z}_N$$
exists if and only if $gcd(A, N) = 1$.Definition: $\mathbb{Z}_N^* = \{A \in \mathbb{Z}_N : gcd(A, N) = 1\}.$ Definition: $\varphi(N) = |\mathbb{Z}_N^*|$

Note that \mathbb{Z}_N^* is "closed" under multiplication, i.e., $A, B \in \mathbb{Z}_N^* \implies A \cdot_N B \in \mathbb{Z}_N^*$

(Why?)

 $\varphi(5) = 4$

•		2	3	4
1	Ι	2	3	4
2	2	4		3
3	3	Ι	4	2
4	4	3	2	Ι

$$\varphi(5) = 4$$

•N		2	3	4
Т	Ι	2	3	4
2	2	4		3
3	3	Ι	4	2
4	4	3	2	Ι

For P prime, $\varphi(P) = P - 1$.

 $\omega(8)$ =4

 $\varphi(15) = 8$

Exercise: For P, Q distinct primes, $\varphi(PQ) = (P-1)(Q-1)$

 $\varphi(8) = 4$

 \mathbb{Z}_8^*

For every $A \in \mathbb{Z}_N^*$, A^{-1} exists.

This implies:

A row contains distinct elements.

i.e. every row is a permutation of \mathbb{Z}_N^*

$$A \cdot_N B = A \cdot_N B' \implies B = B'$$

Summary so far

 \mathbb{Z}_N

behaves nicely with respect to <u>addition / subtraction</u> \mathbb{Z}_N^*

behaves nicely with respect to <u>multiplication / division</u>

Exponentiation in \mathbb{Z}_N

Notation:

For $A \in \mathbb{Z}_N$, $E \in \mathbb{N}$,

$$A^E = \underbrace{A \cdot_N A \cdot_N \cdots \cdot_N A}_{E \text{ times}}$$

Exponentiation in \mathbb{Z}_N^*

(Same as before)

Notation:

For $A \in \mathbb{Z}_N^*$, $E \in \mathbb{N}$,

$$A^E = \underbrace{A \cdot_N A \cdot_N \cdots \cdot_N A}_{E \text{ times}}$$

There is more though...

Exponentiation in \mathbb{Z}_N^*

18

 3^8

 5^8

 7^{8}

Euler's Theorem:

For any $A\in \mathbb{Z}_N^*$, $A^{arphi(N)}=1$.

Equivalently, for $A \in \mathbb{Z}, N \in \mathbb{N}$ with gcd(A, N) = 1, $A^{\varphi(N)} \equiv 1 \mod N$

When N is a prime, this is known as:

Fermat's Little Theorem:

Let P be a prime. For any $A \in \mathbb{Z}_P^*$, $A^{P-1} = 1$. Equivalently, for any A not divisible by P,

 $A^{P-1} \equiv 1 \bmod P$

Poll

What is $213^{248} \mod 7$?

- 0
- |
- 2
- 3
- 4
- 5
- 6
- Beats me.

Poll Answer

Euler's Theorem:

For any $A\in \mathbb{Z}_N^*$, $A^{\varphi(N)}=1$.

In other words, the exponent can be reduced mod $\varphi(N)$.

$$213^{248} \equiv_7 3^{248}$$

$$3^{248} \equiv_7 3^2 = 2$$

IMPORTANT!!!

can think of the exponent living in the universe $\mathbb{Z}_{\varphi(N)}$.

Modular Operations: Computational Complexity

Complexity of Addition

Input: $A, B \in \mathbb{Z}_N$ Output: $A +_N B$

Compute $(A + B) \mod N$.

Complexity of Subtraction

Input: $A, B \in \mathbb{Z}_N$ Output: $A - _N B$

Compute $(A + (N - B)) \mod N$.

Complexity of Multiplication

Input: $A, B \in \mathbb{Z}_N$ Output: $A \cdot_N B$

Compute $(A \cdot B) \mod N$.

Input: $A, B \in \mathbb{Z}_N$

<u>Output</u>: $A/_NB$ (if the answer exists)

Now things get interesting.

$$A/_N B = A \cdot_N B^{-1}$$

Questions:

- I. Does B^{-1} exist?
- 2. If it does, how do you compute it?

<u>**Recall</u>: B^{-1} exists iff gcd(B, N) = 1.</u>**

So to determine if B has an inverse, we need to compute gcd(B, N).

Euclid's Algorithm finds gcd in polynomial time. Arguably the first algorithm ever. ~ 300 BC

Euclid's Algorithm

gcd(A, B): **if** B == 0, **return** A **return** gcd(B, A mod B)

Recitation or Homework or Practice Why does it work? Why is it polynomial time? Major open problem in Computer Science

Is gcd computation efficiently parallelizable?

i.e., is there a circuit family of
poly(n) size
polylog(n) depth
that computes gcd?

Ok, Euclid's Algorithm tells us whether an element has an inverse. How do you find it if it exists?

<u>Claim</u>: An extension of Euclid's Algorithm gives us the inverse. First, a definition:

 $\begin{array}{l} \hline \textbf{Definition: We say that } C \text{ is a mix of } A \text{ and } B \text{ if} \\ \hline C = k \cdot A + \ell \cdot B \\ \hline & \\ \text{not a real term } \textcircled{\texttt{S}} \end{array}$

Examples:

- 2 is a mix of 14 and 10: $2 = (-2) \cdot 14 + 3 \cdot 10$
- 7 is not a miix of 55 and 40. (why?)

Fact: C is a mix of A and B if and only if C is a multiple of gcd(A, B).

So
$$gcd(A,B) = k \cdot A + \ell \cdot B$$

<u>Exercise</u>: The coefficients k and ℓ can be found by slightly modifying Euclid's Algorithm (in poly-time).

Finding
$$B^{-1}$$
:If $gcd(B,N) = 1$, we can find $k, \ell \in \mathbb{Z}$ such that $1 = \begin{bmatrix} k \cdot B + \ell \cdot N \\ || \\ B^{-1} \end{bmatrix}$ Therefore found

Summary for the complexity of division

To compute $A/_N B = A \cdot_N B^{-1}$, we need to compute B^{-1} (if it exists).

 B^{-1} exists iff $\gcd(B,N)=1$ (can be computed with Euclid)

Extension of Euclid gives us (in poly-time) $k, \ell \in \mathbb{Z}$ such that $\gcd(B,N) = 1 = k \cdot B + \ell \cdot N$

 $B^{-1} = k \bmod N$

Input: $A, E, N \in \mathbb{N}$ Output: $A^E \mod N$

In the modular universe, length of output not an issue.

Can we compute this efficiently?

Example

Compute $2337^{32} \mod 100$.

Naïve strategy:

```
2337 \times 2337 = 5461569

2337 \times 5461569 = 12763686753

2337 \times 12763686753 = ...

: (30 more multiplications later)
```

Example

Compute $2337^{32} \mod 100$.

2 improvements:

- Do mod 100 after every step.
- Don't multiply 32 times. Square 5 times.

 $2337 \longrightarrow 2337^2 \longrightarrow 2337^4 \longrightarrow 2337^8 \longrightarrow 2337^{16} \longrightarrow 2337^{32}$

(what if the exponent is 53?)

Example

Compute $2337^{53} \mod 100$.

(what if the exponent is 53?)

Multiply powers 32, 16, 4, 1. (53 = 32 + 16 + 4 + 1)

$$2337^{53} = 2337^{32} \cdot 2337^{16} \cdot 2337^4 \cdot 2337^1$$

53 in binary = 110101

<u>Input</u>: $A, E, N \in \mathbb{N}$ (each at most *n* bits) <u>Output</u>: $A^E \mod N$

<u>Algorithm</u>:

- Repeatedly square A, always mod N. Do this n times.
- Multiply together the powers of A corresponding to the binary digits of E (again, always mod N).

Running time: a bit more than $O(n^2 \log n)$.

Complexity of Log

Input: A, B, P such that

- P is prime
- $A \in \mathbb{Z}_P^*$
- $B \in \mathbb{Z}_P^*$ is a generator.

<u>Output</u>: X such that $B^X \equiv_P A$.

Note: $\{B^0, B^1, B^2, B^3, \cdots, B^{P-2}\} = \mathbb{Z}_P^*$

Which one corresponds to A ?

We don't know how to compute this efficiently!

Complexity of Taking Roots

<u>Input</u>: A, E, N such that $A \in \mathbb{Z}_N^*$

<u>Output</u>: B such that $B^E \equiv_N A$

So we want to compute
$$A^{1/E}$$
 in \mathbb{Z}_N^* .

We don't know how to compute this efficiently!

Next Lecture Cryptography

