
15-251 
Great Theoretical Ideas in Computer Science 

 

Lecture 26: 
Modular Arithmetic + Number Theory 



Next 2 lectures 

Modular arithmetic + Number Theory 

Cryptography 
(in particular,  “public-key” cryptography) 

+ 



The plan 

Start with algorithms on good old integers. 

Then move to the modular universe. 



Integers 

3618502788666131106986593281521497110455743021169260358536775932020762686101 
7237846234873269807102970128874356021481964232857782295671675021393065473695 
3943653222082116941587830769649826310589717739181525033220266350650989268038 
3194839273881505432422077179121838888281996148408052302196889866637200606252 
6501310964926475205090003984176122058711164567946559044971683604424076996342 
7183046544798021168297013490774140090476348290671822743961203698142307099664 
3455133414637616824423860107889741058131271306226214208636008224651510961018 
9789006815067664901594246966730927620844732714004599013904409378141724958467 
7228950143608277369974692883195684314361862929679227167524851316077587207648 
7845058367231603173079817471417519051357029671991152963580412838184841733782  

Algorithms on numbers involve BIG numbers. 



Integers 

5693030020523999993479642904621911725098567020556258102766251487234031094429  

( 5.7 quattorvigintillion ) 

is roughly the number of atoms in the universe 

Definition: 

(for crypto purposes, this is way too small) 



Integers:  Arithmetic 

In general, arithmetic on numbers is not free! 

Think of algorithms as performing string-
manipulation. 

The number of steps is measured with respect to the 
length of the input numbers. 



1.  Addition in integers 

36185027886661311069865932815214971104  
65743021169260358536775932020762686101  

101928049055921669606641864835977657205  

+ 

Grade school addition is linear time: 
  

𝑂(𝑙𝑒𝑛 𝐴 + 𝑙𝑒𝑛(𝐵)) 



2.  Subtraction in integers 

36185027886661311069865932815214971104  

65743021169260358536775932020762686101  

101928049055921669606641864835977657205  
- 

Grade school subtraction is linear time: 
  

𝑂(𝑙𝑒𝑛 𝐴 + 𝑙𝑒𝑛(𝐵)) 



3.  Multiplication in integers 

36185027886661311069865932815214971104  

5932020762686101  

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

x 

214650336722050463946651358202698404452609868137425504  

# steps is quadratic, i.e., 



4.  Division in integers 

36185027886661311069865932815214971104  

6099949635084593037586 
 5932020762686101  

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 

3960087002178918  # steps: 



5.  Exponentiation in integers 

Given as input     , compute      . 

5693030020523999993479642904621911725098567020556258102766251487234031094429  

For 

but                ~    5.7 quattorvigintillion  

(output length exceeds number of particles in the universe) 

exponential in  
input length 



6.  Taking logarithms in integers 

Given as input         , compute            . 

i.e.,  find       such that   

Try      =  1, 2, 3, …  

Stop when  



7.  Taking roots in integers 

Given as input        ,  compute          .    

Binary search and exponentiation via multiplication. 
  



The plan 

Start with algorithms on good old integers. 

Then move to the modular universe. 



Main goal of this lecture 

Modular Universe 

- How to view the elements of the universe? 

- How to do basic operations: 

1. addition 

2. subtraction 

3. multiplication 

4. division 

5. exponentiation 

6. taking roots 

7. logarithm 

theory 
+ 

algorithms 
(efficient (?)) 



Modular Operations: 
Basic Definitions and Properties 



Modular universe:  How to view the elements 

Hopefully everyone already knows: 

Any integer can be reduced mod N. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Example 

… 

0 1 2 3 4 0 1 2 3 4 0 1 2 … 

= remainder when you divide     by  



Modular universe:  How to view the elements 

We write                                or   

when                                     . 

(In this case, we say      is congruent to      modulo     .) 

Examples 

Exercise 



Modular universe:  How to view the elements 

The universe is the finite set                                         .  

View 2 

2 Points of  View 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 1 2 3 4 0 1 2 3 4 0 1 2 

… 

… 

The universe is     . 

Every element has a “mod N ” representation. 

View 1 



Modular universe:  Addition 

“plus” in “plus” in 

Can define a “plus” operation in        : 



Modular universe:  Addition 

0 

1 

2 

3 

0 1 2 3 + 

0 1 2 3 

1 2 3 4 

2 3 4 0 

3 4 0 1 

4 

0 

1 

2 

4 0 1 2 3 4 

4 

Addition table for  

0 is called the (additive) identity:  0 +  A  =  A +  0  =  A  

for any A 

N N 

N 



Modular universe:  Addition 

In In 

? 

3019573 

912382236 

3 

1 

4 
3019573 

912382236 
+ 

YES! 



Modular universe:  Addition 

In In 

? 

3 

1 

4 

YES! 



Modular universe:  Addition 

In In 

? 

Is                                                                             ? 

YES! 



Modular universe:  Subtraction 

What does             mean?  

It is actually addition in disguise:  

Then what does         mean in       ? 

How about subtraction in        ? 

Given              ,  its additive inverse, denoted by        ,     
is the element in         such that                         . 

Definition: 



Modular universe:  Subtraction 

0 

1 

2 

3 

0 1 2 3 
0 1 2 3 

1 2 3 4 

2 3 4 0 

3 4 0 1 

4 

0 

1 

2 

4 0 1 2 3 4 

4 

Addition table for  

+ N 



Modular universe:  Subtraction 

0 

1 

2 

3 

0 1 2 3 
0 1 2 3 

1 2 3 4 

2 3 4 0 

3 4 0 1 

4 

0 

1 

2 

4 0 1 2 3 4 

4 

Addition table for  

Note: 

i.e. every row is a permutation of      . 

A row contains distinct elements. 

This implies: 

row col row col same col 

  
  For every              ,         exists. 

Why? 

Fix row      : 

+ N 



Modular universe:  Multiplication 

“multiplication”  
        in 

“multiplication” 
       in 

Can define a “multiplication” operation in        : 



Modular universe:  Multiplication 

0 

1 

2 

3 

0 1 2 3 . 
0 0 0 0 

0 1 2 3 

0 2 4 1 

0 3 1 4 

0 

4 

3 

2 

0 4 3 2 1 4 

4 

Multiplication table for  

1 is called the (multiplicative) identity:  1     A  =  A     1  =  A  

for any A 

 .  . 
N N 

N 



Modular universe:  Multiplication 

In In 

? 

Is                                                                             ? 

YES! 



Modular universe:  Division 

How about division in        ? 

What does             mean?  

Then what does          mean in       ? 

It is actually multiplication in disguise:  

Given              ,  its multiplicative inverse, denoted by       ,     
is the element in        such that                          

Definition: 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 1 

0 3 1 4 

0 

4 

3 

2 

0 4 3 2 1 4 

4 

Multiplication table for  

. 
N 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 0 

0 3 0 3 

0 

4 

2 

0 

0 4 2 0 4 4 

4 

Multiplication table for  

0 

5 

4 

3 

2 

0 5 4 3 2 1 5 

5 

WTF? 

. 
N 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 6 

0 3 6 2 

0 

4 

1 

5 

0 4 1 5 2 4 

4 

Multiplication table for  

0 

5 

3 

1 

6 

0 5 3 1 6 4 5 

5 
0 

6 

5 

4 

3 

2 

6 

0 6 5 4 3 2 6 1 

Every number except 0 has a multiplicative inverse. 

. 
N 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 6 

0 3 6 1 

0 

4 

0 

4 

0 4 0 4 0 4 

4 

Multiplication table for  

0 

5 

2 

7 

4 

0 5 2 7 4 1 5 

5 
0 

6 

4 

2 

0 

6 

6 

0 6 4 2 0 6 6 4 

0 7 6 5 4 3 7 2 

0 

7 

6 

5 

4 

3 

7 

2 

1 

{1, 3, 5, 7} have inverses.  Others don’t.  

. 
N 



Modular universe:  Division 

Fact:                     exists if and only if 

= greatest common divisor of     and    . 

Examples: 

If                      ,  we say     and      are relatively prime. 



Modular universe:  Division 

Fact:                     exists if and only if 

Definition: 

Definition: 

Note that         is “closed” under multiplication, 

i.e.,  

(Why?) 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 1 

0 3 1 4 

0 

4 

3 

2 

0 4 3 2 1 4 

4 . 
N 



Modular universe:  Division 

1 

2 

3 

1 2 3 

1 2 3 

2 4 1 

3 1 4 

4 

3 

2 

4 3 2 1 4 

4 . 
N 



Modular universe:  Division 

1 

2 

3 

1 2 3 

1 2 3 

2 4 1 

3 1 4 

4 

3 

2 

4 3 2 1 4 

4 

For       prime,                         

. 
N 



Modular universe:  Division 

0 

1 

2 

3 

0 1 2 3 
0 0 0 0 

0 1 2 3 

0 2 4 6 

0 3 6 1 

0 

4 

0 

4 

0 4 0 4 0 4 

4 
0 

5 

2 

7 

4 

0 5 2 7 4 1 5 

5 
0 

6 

4 

2 

0 

6 

6 

0 6 4 2 0 6 6 4 

0 7 6 5 4 3 7 2 

0 

7 

6 

5 

4 

3 

7 

2 

1 

. 
N 



Modular universe:  Division 

1 

3 

1 3 

1 3 

3 1 

5 

7 

5 7 1 5 

5 

7 5 3 7 

7 

5 

3 

7 

1 

. 
N 



Modular universe:  Division 

1 

2 

4 

7 

1 2 4 7 
1 2 4 7 

2 4 8 14 

4 8 1 13 

7 14 13 4 

8 

1 

2 

11 

8 1 2 11 4 8 

8 
11 

7 

14 

2 

13 

11 7 14 2 13 1 11 

11 
13 

11 

7 

1 

14 

8 

13 

13 11 7 1 14 8 13 4 

14 13 11 8 7 4 14 2 

14 

13 

11 

8 

7 

4 

14 

2 

1 

. 
N 



Modular universe:  Division 

1 

2 

4 

7 

1 2 4 7 
1 2 4 7 

2 4 8 14 

4 8 1 13 

7 14 13 4 

8 

1 

2 

11 

8 1 2 11 4 8 

8 
11 

7 

14 

2 

13 

11 7 14 2 13 1 11 

11 
13 

11 

7 

1 

14 

8 

13 

13 11 7 1 14 8 13 4 

14 13 11 8 7 4 14 2 

14 

13 

11 

8 

7 

4 

14 

2 

1 

Exercise: For         distinct primes,                                  . 

. 
N 



Modular universe:  Division 

1 

3 

1 3 

1 3 

3 1 

5 

7 

5 7 1 5 

5 

7 5 3 7 

7 

5 

3 

7 

1 i.e. every row is a permutation of       . 

A row contains distinct elements. 

This implies: 

For every              ,           exists.    . 
N 



0 

1 

2 

3 

0 1 2 3 + 

0 1 2 3 

1 2 3 0 

2 3 0 1 

3 0 1 2 

1 

3 

5 

7 

1 3 5 7 
1 3 5 7 

3 1 7 5 

5 7 1 3 

7 5 3 1 

behaves nicely 
with respect to 

addition / subtraction 

behaves nicely 
with respect to 

multiplication / division 

Summary so far 

. 
N N 



Modular universe:  Exponentiation 

Exponentiation in  

For              ,             , 

Notation: 



Modular universe:  Exponentiation 

Exponentiation in  

For              ,             , 

Notation: 

(Same as before) 

There is more though… 



Modular universe:  Exponentiation 

1 

2 

3 

4 

1 2 3 4 . 
1 1 1 1 1 1 1 1 

3 4 2 1 3 4 2 1 

1 2 3 

2 4 1 

3 1 4 

4 

3 

2 

4 3 2 1 

2 4 3 1 2 4 3 1 

4 1 4 1 4 1 4 1 

2 and 3 are called generators. 

N 

Exponentiation in  



Modular universe:  Exponentiation 

1 

3 

5 

7 

1 3 5 7 
1 3 5 7 

3 1 7 5 

5 7 1 3 

7 5 3 1 

1 1 1 1 1 1 1 1 

3 1 3 1 3 1 3 1 

5 1 5 1 5 1 5 1 

7 1 7 1 7 1 7 1 

Exponentiation in  

. 
N 



Fermat’s Little Theorem: 

Let      be a prime.  For any              ,  

Equivalently, for any      not divisible by     , 

Modular universe:  Exponentiation 

Euler’s Theorem: 

For any               ,                       .   

Equivalently,  for                         with                         , 

When N is a prime, this is known as: 



Poll 

What is                         ? 

- 0 
- 1 
- 2 
- 3 
- 4 
- 5 
- 6 
- Beats me. 



Poll Answer 

Euler’s Theorem: 

For any               ,                       .   

In other words, the exponent can be reduced  



Poll Answer 

When exponentiating elements 

can think of the exponent living in the universe           . 

IMPORTANT!!! 



Modular Operations: 
Computational Complexity 



Complexity of  Addition 

Input:  

Output:  

Compute                            . 

Poly-time 



Complexity of Subtraction 

Input:  

Output:  

Compute                                      . 

Poly-time 



Complexity of Multiplication 

Input:  

Output:  

Compute                          . 

Poly-time 



Complexity of Division 

Input:  

Output:                (if the answer exists) 

Now things get interesting. 

Questions: 

1.  Does          exist? 

2.  If it does,  how do you compute it? 



Complexity of Division 

Euclid’s Algorithm finds gcd in polynomial time. 

Arguably the first algorithm ever.  ~ 300 BC 

Recall:         exists  iff                          .  

So to determine if      has an inverse, we need to compute 

. 



Complexity of Division 

gcd(A, B): 

     if B == 0, return A 

     return gcd(B,  A mod B) 

Euclid’s Algorithm 

Recitation or Homework or Practice 

Why does it work? 

Why is it polynomial time? 



Major open problem in Computer Science 

Is gcd computation efficiently parallelizable? 

i.e., is there a circuit family of  
        -  poly(n) size 
        -  polylog(n) depth 
     that computes gcd? 



Complexity of Division 

Ok,  Euclid’s Algorithm tells us whether an element 
has an inverse.      How do you find it if it exists? 

Definition: We say that      is a miix of      and      if 

for some  

Examples: 

2 is a miix of 14 and 10:        2 = (-2) 14 + 3 10 . . 

7 is not a miix of 55 and 40.  (why?) 

not a real term 😋 

Claim: An extension of Euclid’s Algorithm gives us the inverse. 

First, a definition: 



Complexity of Division 

Fact:      is a miix of      and      if and only if 

    is a multiple of                  .  

Exercise:  The coefficients      and      can be found by 

slightly modifying Euclid’s Algorithm (in poly-time).   

If                          ,  we can find                 such that   

So 

Therefore found 

Finding         :  



Complexity of Division 

Summary for the complexity of division 

To compute                               ,  we need to compute  

          (if it exists). 

                   exists  iff                           (can be computed with Euclid). 

Extension of Euclid gives us (in poly-time)               such that  



Complexity of Exponentiation 

Can we compute this efficiently? 

In the modular universe, length of output not an issue. 

Input:  

Output:                



Complexity of Exponentiation 

Example 

Compute                           . 

Naïve strategy: 

2337 x 2337 = 5461569 

2337 x 5461569 = 12763686753 

2337 x 12763686753 = … 
. . . (30 more multiplications later) 

626727565152155511653188886668668588313475824236665607396755008905770146236635537228216696030970612828922881  



Complexity of Exponentiation 

Example 

Compute                           . 

2 improvements: 

- Do mod 100 after every step. 

- Don’t multiply 32 times.  Square 5 times. 

(what if the exponent is 53?) 



Complexity of Exponentiation 

Example 

Compute                           . 

Multiply powers 32, 16, 4, 1.    (53 = 32 + 16 + 4 + 1) 

53 in binary  =  

(what if the exponent is 53?) 



Complexity of Exponentiation 

Algorithm: 

Running time:   a bit more than                    . 

- Repeatedly square    ,  always mod    . 

  Do this     times. 

- Multiply together the powers of  
  corresponding to the binary digits of  

(again, always mod     ). 

Input:                             (each at most     bits) 

Output:                



Complexity of Log 

Input:                 such that                           

Output:                

-      is prime 
-      

-               is a generator.     

             such that                  . 

Note: 

Which one corresponds to     ?  

We don’t know how to compute this efficiently! 



Complexity of  Taking Roots 

We don’t know how to compute this efficiently! 

Input:                 such that                           

Output:        such that            

So we want to compute            in       .  



Next Lecture 

Cryptography 


