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Lecture 27: 
Cryptography 



What is cryptography about? 

“I will cut his throat” 

“I will cut his throat” 

Adversary 
Eavesdropper 



What is cryptography about? 

“I will cut his throat” 

“loru23n8uladjkfb!#@” 

“loru23n8uladjkfb!#@” 

“loru23n8uladjkfb!#@” 

encryption 

“I will cut his throat” 

decryption 



What is cryptography about? 

Study of protocols that avoid the bad affects of adversaries. 

- Computation on encrypted data? 

- Secure online voting schemes? 

- Digital signatures. 

- Zero-Knowledge Interactive Proofs: 
   Can I convince you that I have proved P=NP without 
   giving you any information about the proof? 

. . . 



Reasons to like cryptography 

Can do pretty cool and unexpected things. 

Has many important applications. 

Is fundamentally related to computational complexity. 

Uses cool math (e.g. number theory). 

Applications of computationally hard problems. 

In fact, comp. complexity revolutionized cryptography. 



The plan 

First, we will review modular arithmetic. 

Then we’ll talk about private (secret) key crypto. 

Finally, we’ll talk about public key cryptography. 



Review of Modular Arithmetic 



= remainder when you divide     by       
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Can view the universe as                                         .                                          
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behaves nicely 
with respect to 

addition 

behaves nicely 
with respect to 
multiplication 

if     prime, 

if         distinct primes, 



1 

2 

3 

4 

1 2 3 4 . 
1 2 3 

2 4 1 

3 1 4 

4 

3 

2 

4 3 2 1 

2 and 3 are called generators. 
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Euler’s Theorem: 

For any               ,                       .   

Fermat’s Little Theorem: 

Let      be a prime.  For any              ,  

… 

… 

… 



When exponentiating elements               ,  

can think of the exponent living in the universe           . 

IMPORTANT 



Algorithms for Modular Arithmetic 



> addition 

> subtraction 

> multiplication 

> division 

> exponentiation 

Do regular addition.   Then take mod N. 

-B = N-B.   Then do addition. 

Do regular multiplication.   Then take mod N. 

Find B  .   Then do multiplication. - -1 



> addition 

> subtraction 

> multiplication 

> division 

> exponentiation 

Do regular addition.   Then take mod N. 

-B = N-B.   Then do addition. 

Do regular multiplication.   Then take mod N. 

Find B  .   Then do multiplication. - -1 

exists iff 

Our modification of Euclid’s Alg. 
computes        given B and N. 



> addition 

> subtraction 

> multiplication 

> division 

> exponentiation 

Do regular addition.   Then take mod N. 

-B = N-B.   Then do addition. 

Do regular multiplication.   Then take mod N. 

Find B  .   Then do multiplication. - -1 

repeatedly square and mod to compute powers of two 
then multiply those mod n as neccessary 



> addition 

> subtraction 

> multiplication 

> division 

> exponentiation 

Do regular addition.   Then take mod N. 

-B = N-B.   Then do addition. 

Do regular multiplication.   Then take mod N. 

Find B  .   Then do multiplication. - -1 

repeatedly square and mod to compute powers of two 
then multiply those mod n as neccessary 

What about roots and 
logarithms? 



Arithmetic in  

Two inverse functions: 

too big 

??? 

??? 



Arithmetic in  

Two inverse functions: 

too big 

easy 

easy 



In  

easy 

(1881676371789154860897069, 3) 123456789 

easy 

(48519278097689642681155855396759336072749841943521979872827, 3) 

123 

(do binary search and exponentiation) 

(keep dividing by B) 



Arithmetic in  

easy 

??? 

??? 

Two inverse functions: 



Arithmetic in  

easy 

seems 
hard 

seems 
hard 

Two inverse functions: 

Question: Why do the algorithms from the setting 
     of      do not work in       ?  



Two inverse functions: 

easy 

seems 
hard 

seems 
hard 

One-way function: easy to compute, hard to invert. 

seems to be one-way. 

Arithmetic in  



Private Key Cryptography 



Private key cryptography 

Parties must agree on a key pair beforehand. 



Private key cryptography 

there must be a secure way of 
exchanging the key 



Private key cryptography 

Dec 

Enc should be “one-way”. 

Try to ensure it using  
the secrecy of the key. 

(plaintext) 

Enc 

(ciphertext) 



Completely knows the algorithms  Enc  and  Dec . 

Assume the adversary knows everything 
except the key(s) and the message: 

Completely sees cipher text    . 

A note about security 

Better to consider worst-case conditions. 



Caesar shift 

(similarly for capital letters) 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

Example: shift by 3 

“Dear Math, please grow up and solve your own 
problems.”   

“Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq 
sureohpv.”   

:  the shift number Easy to break. 



Substitution cipher 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

:  permutation of the alphabet 

Easy to break by looking at letter frequencies. 



Enigma 

A much more complex cipher. 



One-time pad 

For all i:    C[i]  =  M[i]  +  K[i]    (mod 2) 

01011010111010100000111 M = 

K = 11001100010101111000101 

C = 

+ 

C = M + K    (bit-wise XOR) 

10010110101111011000010 

Encryption: 

M = message       K = key        C = encrypted message 

(everything in binary) 



One-time pad 

01011010111010100000111 M = 

K = 11001100010101111000101 

C = 

+ 

10010110101111011000010 

Decryption: 

(because K + K = 0) 

M = message       K = key        C = encrypted message 

(everything in binary) 

C = M + K   

C + K = (M + K) + K = M + (K + K) = M  

Encryption: 

Decryption: 



One-time pad 

01011010111010100000111 M = 

K = 11001100010101111000101 

C = 

+ 

10010110101111011000010 

One-time pad is perfectly secure: 

For any M,  if K is chosen uniformly at random,   
then C is uniformly at random. 

So adversary learns nothing about M by seeing C. 

But the shared key has to be as long as the message! 

Could we reuse the key? 



One-time pad 

01011010111010100000111 M = 

K = 11001100010101111000101 

C = 

+ 

10010110101111011000010 

Could we reuse the key? 

Suppose you encrypt two messages M  and M   with K 

C  = M  + K    1 1 

C  = M  + K    2 2 

Then  C  + C  = M  + M 1 2 1 2 

One-time only: 

1 2 



Shannon’s Theorem 

Is it possible to have a secure system like one-time pad 
with a smaller key size? 

Shannon proved “no”. 

An adversary with unlimited computational power 
can learn some information about M. 

If K is shorter than M: 



Secret Key Sharing 



Secret Key Sharing 



Diffie-Hellman key exchange 

Whitfield Diffie Martin Hellman 

1976 



Diffie-Hellman key exchange 

In  

easy 

seems 
hard 

Want to make sure for the inputs we pick,          is hard. 

e.g.  we don’t want 

Much better to have a generator    . 



Diffie-Hellman key exchange 

In  

easy 

seems 
hard 

We’ll pick               so that it is a generator.            

We’ll pick              a prime number. 

(This ensures there is a generator in       .)  



Diffie-Hellman key exchange 

Compute  

Pick prime  
Pick generator  
Pick random   

Pick random   

Compute  



Diffie-Hellman key exchange 

Compute  

Pick prime  
Pick generator  
Pick random   

Pick random   

Compute  

This is what the adversary sees. 

If he can compute 
we are screwed! 



Secure? 

Adversary sees: 

Hopefully he can’t compute       from        .   

(our hope is that             is hard) 

Bad news:  Proving that it cannot be computed 
efficiently is at least as hard as the P vs NP problem. 

Diffie-Hellman assumption: 
Computing             from                          is hard. 

Decisional Diffie-Hellman assumption: 
You actually learn no information about             
. 

Good news:  No one knows how to compute  
                    efficiently. 



One can use: 

Diffie-Hellman 
(to share a secret key) 

+ 

One-time Pad 

This is as secure as its weakest link, i.e. Diffie-Hellman. 

Note 

for secure message transmissions 



Question 

What if we relax the assumption that the adversary 
is computationally unbounded? 

We can get rid of the secret key sharing part. 

We can find a way to share a random secret key. 
(over an insecure channel) 

(public key cryptography) 



Public Key Cryptography 



Public Key Cryptography 

public 

private 



Public Key Cryptography 

Can be used to lock. 
But can’t be used to unlock. 

public 

private 



Public key cryptography 

Enc Dec 

Enc should be “one-way”. 

Try to ensure it using  
computational 

complexity. 



RSA crypto system 

Ron Rivest Adi Shamir Leonard Adleman 

1977 



RSA crypto system 

Clifford Cocks 

Discovered RSA system 3 years before them. 

Remained secret until 1997.  (classified information)  



RSA crypto system 

In  

easy 

seems 
hard 

What if we encode using          ?    (             ) 

Public key can be             .  

Enc 

assume 

and  



RSA crypto system 

Dec 

Private key should allow 
us to invert EXP. 

i.e. compute ROOT E 



RSA crypto system 

Dec 



RSA crypto system 

Dec 



RSA crypto system 

Dec lives in             .  

We want       to have an 
inverse. 

So we choose  



RSA crypto system 



RSA crypto system 

Why is N = PQ  
(product of distinct primes)? 

What if, say, N = P ? 



How to choose N 

If the adversary can compute                       , 

we are screwed! 

Computing                      is easy if you know 

Adversary sees            . 

Can he compute           ? 

We believe this is computationally hard. 

How does Margaery compute       ?   

She knows     and    , so                                   .                                       

If the adversary can factor     efficiently, 

he can also compute  



RSA crypto system 



Secure? 

The advantage Margaery has over the adversary 

is that she can compute 

(and therefore        ) 

If the adversary can factor     efficiently, 

he can also compute  

(and therefore         ) 



Concluding remarks 

From    , if we can efficiently compute         , 
we can crack RSA. 

If we can factor    , we can compute         .  

Is this the only way to crack RSA? 
We don’t know! 

A variant of this is widely used in practice. 

So we are really hoping it is secure. 

Quantum computers  
can factor efficiently. 



Study Guide 
Modular Arithmetic: 
  

 - fast exponentiation 
 - generators 
 - hardness of root and  
    logarithm (mod n) 
 - exp as a one-way func. 
  
Cryptographic Algorithms:
  

 - Cesar Cypher 
 - One Time Pad 
 - Diffie Hellman 
   (Secure Key Exchange) 
 - RSA  
   (Public Key Encryption) 
 
 
  


