
15-251
Great Theoretical Ideas in Computer Science

Lecture 27:
Cryptography

What is cryptography about?

“I will cut his throat”

“I will cut his throat”

Adversary
Eavesdropper

What is cryptography about?

“I will cut his throat”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

“loru23n8uladjkfb!#@”

encryption

“I will cut his throat”

decryption

What is cryptography about?

Study of protocols that avoid the bad affects of adversaries.

- Computation on encrypted data?

- Secure online voting schemes?

- Digital signatures.

- Zero-Knowledge Interactive Proofs:
 Can I convince you that I have proved P=NP without
 giving you any information about the proof?

. . .

Reasons to like cryptography

Can do pretty cool and unexpected things.

Has many important applications.

Is fundamentally related to computational complexity.

Uses cool math (e.g. number theory).

Applications of computationally hard problems.

In fact, comp. complexity revolutionized cryptography.

The plan

First, we will review modular arithmetic.

Then we’ll talk about private (secret) key crypto.

Finally, we’ll talk about public key cryptography.

Review of Modular Arithmetic

= remainder when you divide by

0 1 2 3 4 5 6 7 8 9 10 11 12

Example

…

0 1 2 3 4 0 1 2 3 4 0 1 2 …

We write or

when .

Can view the universe as .

0

1

2

3

0 1 2 3 +
0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

1

3

5

7

1 3 5 7 .
1 3 5 7

3 1 7 5

5 7 1 3

7 5 3 1

behaves nicely
with respect to

addition

behaves nicely
with respect to
multiplication

if prime,

if distinct primes,

1

2

3

4

1 2 3 4 .
1 2 3

2 4 1

3 1 4

4

3

2

4 3 2 1

2 and 3 are called generators.

4 1 4 1 4 1 4 1 1

3 4 2 1 3 4 2 1 1

2 4 3 1 2 4 3 1 1

1 1 1 1 1 1 1 1 1

1

2

3

4

1 2 3 4 .
1 2 3

2 4 1

3 1 4

4

3

2

4 3 2 1

4 1 4 1 4 1 4 1 1

3 4 2 1 3 4 2 1 1

2 4 3 1 2 4 3 1 1

1 1 1 1 1 1 1 1 1

Euler’s Theorem:

For any , .

Fermat’s Little Theorem:

Let be a prime. For any ,

…

…

…

When exponentiating elements ,

can think of the exponent living in the universe .

IMPORTANT

Algorithms for Modular Arithmetic

> addition

> subtraction

> multiplication

> division

> exponentiation

Do regular addition. Then take mod N.

-B = N-B. Then do addition.

Do regular multiplication. Then take mod N.

Find B . Then do multiplication. - -1

> addition

> subtraction

> multiplication

> division

> exponentiation

Do regular addition. Then take mod N.

-B = N-B. Then do addition.

Do regular multiplication. Then take mod N.

Find B . Then do multiplication. - -1

exists iff

Our modification of Euclid’s Alg.
computes given B and N.

> addition

> subtraction

> multiplication

> division

> exponentiation

Do regular addition. Then take mod N.

-B = N-B. Then do addition.

Do regular multiplication. Then take mod N.

Find B . Then do multiplication. - -1

repeatedly square and mod to compute powers of two
then multiply those mod n as neccessary

> addition

> subtraction

> multiplication

> division

> exponentiation

Do regular addition. Then take mod N.

-B = N-B. Then do addition.

Do regular multiplication. Then take mod N.

Find B . Then do multiplication. - -1

repeatedly square and mod to compute powers of two
then multiply those mod n as neccessary

What about roots and
logarithms?

Arithmetic in

Two inverse functions:

too big

???

???

Arithmetic in

Two inverse functions:

too big

easy

easy

In

easy

(1881676371789154860897069, 3) 123456789

easy

(48519278097689642681155855396759336072749841943521979872827, 3)

123

(do binary search and exponentiation)

(keep dividing by B)

Arithmetic in

easy

???

???

Two inverse functions:

Arithmetic in

easy

seems
hard

seems
hard

Two inverse functions:

Question: Why do the algorithms from the setting
 of do not work in ?

Two inverse functions:

easy

seems
hard

seems
hard

One-way function: easy to compute, hard to invert.

seems to be one-way.

Arithmetic in

Private Key Cryptography

Private key cryptography

Parties must agree on a key pair beforehand.

Private key cryptography

there must be a secure way of
exchanging the key

Private key cryptography

Dec

Enc should be “one-way”.

Try to ensure it using
the secrecy of the key.

(plaintext)

Enc

(ciphertext)

Completely knows the algorithms Enc and Dec .

Assume the adversary knows everything
except the key(s) and the message:

Completely sees cipher text .

A note about security

Better to consider worst-case conditions.

Caesar shift

(similarly for capital letters)

a b c d e f g h i j k l m n o p q r s t u v w x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z

Example: shift by 3

“Dear Math, please grow up and solve your own
problems.”

“Ghdu Pdwk, sohdvh jurz xs dqg vroyh brxu rzq
sureohpv.”

: the shift number Easy to break.

Substitution cipher

a b c d e f g h i j k l m n o p q r s t u v w x y z

a b c d e f g h i j k l m n o p q r s t u v w x y z

: permutation of the alphabet

Easy to break by looking at letter frequencies.

Enigma

A much more complex cipher.

One-time pad

For all i: C[i] = M[i] + K[i] (mod 2)

01011010111010100000111 M =

K = 11001100010101111000101

C =

+

C = M + K (bit-wise XOR)

10010110101111011000010

Encryption:

M = message K = key C = encrypted message

(everything in binary)

One-time pad

01011010111010100000111 M =

K = 11001100010101111000101

C =

+

10010110101111011000010

Decryption:

(because K + K = 0)

M = message K = key C = encrypted message

(everything in binary)

C = M + K

C + K = (M + K) + K = M + (K + K) = M

Encryption:

Decryption:

One-time pad

01011010111010100000111 M =

K = 11001100010101111000101

C =

+

10010110101111011000010

One-time pad is perfectly secure:

For any M, if K is chosen uniformly at random,
then C is uniformly at random.

So adversary learns nothing about M by seeing C.

But the shared key has to be as long as the message!

Could we reuse the key?

One-time pad

01011010111010100000111 M =

K = 11001100010101111000101

C =

+

10010110101111011000010

Could we reuse the key?

Suppose you encrypt two messages M and M with K

C = M + K 1 1

C = M + K 2 2

Then C + C = M + M 1 2 1 2

One-time only:

1 2

Shannon’s Theorem

Is it possible to have a secure system like one-time pad
with a smaller key size?

Shannon proved “no”.

An adversary with unlimited computational power
can learn some information about M.

If K is shorter than M:

Secret Key Sharing

Secret Key Sharing

Diffie-Hellman key exchange

Whitfield Diffie Martin Hellman

1976

Diffie-Hellman key exchange

In

easy

seems
hard

Want to make sure for the inputs we pick, is hard.

e.g. we don’t want

Much better to have a generator .

Diffie-Hellman key exchange

In

easy

seems
hard

We’ll pick so that it is a generator.

We’ll pick a prime number.

(This ensures there is a generator in .)

Diffie-Hellman key exchange

Compute

Pick prime
Pick generator
Pick random

Pick random

Compute

Diffie-Hellman key exchange

Compute

Pick prime
Pick generator
Pick random

Pick random

Compute

This is what the adversary sees.

If he can compute
we are screwed!

Secure?

Adversary sees:

Hopefully he can’t compute from .

(our hope is that is hard)

Bad news: Proving that it cannot be computed
efficiently is at least as hard as the P vs NP problem.

Diffie-Hellman assumption:
Computing from is hard.

Decisional Diffie-Hellman assumption:
You actually learn no information about
.

Good news: No one knows how to compute
 efficiently.

One can use:

Diffie-Hellman
(to share a secret key)

+

One-time Pad

This is as secure as its weakest link, i.e. Diffie-Hellman.

Note

for secure message transmissions

Question

What if we relax the assumption that the adversary
is computationally unbounded?

We can get rid of the secret key sharing part.

We can find a way to share a random secret key.
(over an insecure channel)

(public key cryptography)

Public Key Cryptography

Public Key Cryptography

public

private

Public Key Cryptography

Can be used to lock.
But can’t be used to unlock.

public

private

Public key cryptography

Enc Dec

Enc should be “one-way”.

Try to ensure it using
computational

complexity.

RSA crypto system

Ron Rivest Adi Shamir Leonard Adleman

1977

RSA crypto system

Clifford Cocks

Discovered RSA system 3 years before them.

Remained secret until 1997. (classified information)

RSA crypto system

In

easy

seems
hard

What if we encode using ? ()

Public key can be .

Enc

assume

and

RSA crypto system

Dec

Private key should allow
us to invert EXP.

i.e. compute ROOT E

RSA crypto system

Dec

RSA crypto system

Dec

RSA crypto system

Dec lives in .

We want to have an
inverse.

So we choose

RSA crypto system

RSA crypto system

Why is N = PQ
(product of distinct primes)?

What if, say, N = P ?

How to choose N

If the adversary can compute ,

we are screwed!

Computing is easy if you know

Adversary sees .

Can he compute ?

We believe this is computationally hard.

How does Margaery compute ?

She knows and , so .

If the adversary can factor efficiently,

he can also compute

RSA crypto system

Secure?

The advantage Margaery has over the adversary

is that she can compute

(and therefore)

If the adversary can factor efficiently,

he can also compute

(and therefore)

Concluding remarks

From , if we can efficiently compute ,
we can crack RSA.

If we can factor , we can compute .

Is this the only way to crack RSA?
We don’t know!

A variant of this is widely used in practice.

So we are really hoping it is secure.

Quantum computers
can factor efficiently.

Study Guide
Modular Arithmetic:

 - fast exponentiation
 - generators
 - hardness of root and
 logarithm (mod n)
 - exp as a one-way func.

Cryptographic Algorithms:

 - Cesar Cypher
 - One Time Pad
 - Diffie Hellman
 (Secure Key Exchange)
 - RSA
 (Public Key Encryption)

