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Great Theoretical Ideas in Computer Science 

Lecture 3:
Deterministic Finite Automaton (DFA),  Part 1



input
data

output
data“computer”

Computation:  manipulation of data.

How do we mathematically/formally represent data?



Representing information

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc…)
with a finite length (binary) string.



Representing information

⌃ = {0, 1}

alphabet symbols of the alphabet

⌃⇤ = the set of all finite length strings over ⌃

⌃⇤ = {✏, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, . . .}

string of length 0 (empty string)

A subset              is called a language.L ✓ ⌃⇤



Representing information

⌃ = {a, b}

⌃ = {a, b, c}

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k,
l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Can use whichever is convenient.

⌃ = {0, 1}



What is a computational problem?

f : ⌃⇤ ! ⌃⇤
Definition: A computational problem is a function
                                                   .

Definition: A decision problem is a function
                                                   .f : ⌃⇤ ! {0, 1}

No, Yes

False, True

Reject, Accept



What is a computational problem?

Important
There is a one-to-one correspondence between
decision problems and languages.

Instance Solution

✏ 1

0 1

1 1

00 1

01 0

10 0

11 1

000 1

001 0

.

.

.

.

.

.

L ✓ ⌃⇤

{✏, 0, 1, 00, 11, 000, . . .}L =



Our focus will be on languages!
(decision problems)

- Convenient restriction.

- Usually “without loss of generality”.



Integer factorization problem

Given as input a natural number N, output its prime 
factorization.

Integer factorization problem, decision version

Given as input natural numbers N and k,
does N have a factor between 1 and k?



input
data

output
data

“computer”

What is computation?

What is an algorithm?

How can we mathematically define them?

This Week and Next Week



- restricted model of computation

- very limited memory

- reads input from left to right, and accepts or rejects.
(one pass through the input)

Introducing deterministic finite automata (DFA)

input
data

output
data

DFA

This Week



Let’s assume two things about our world

No universal machines exist.

We only have machines to solve decision problems.

+ isPrime Sorting



Anatomy of a DFA

states

states

accepting
states

start
state

transition rule: labeled arrows



DFA as a programming language

0 1 1 1 1input =
def foo(input):
    i = 0;
    STATE 0: 
        if (i == input.length): return False;
        letter = input[i];
        i++;
        switch(letter):
           case ‘0’:  go to STATE 0;
           case ‘1’:  go to STATE 1;

    STATE 1: 
        if (i == input.length): return True;
        letter = input[i];
        i++;
        switch(letter):
           case ‘0’:  go to STATE 2;
           case ‘1’:  go to STATE 2;
          …



Definition:  Language decided by a DFA

Let       be a DFA.

We let            denote the set of strings that      accepts.

M

L(M) M

So, L(M) = {x 2 ⌃⇤ : M(x) accepts.}

If                  , we say that        recognizes     .L = L(M) M L
accepts
decides

computes

✓ ⌃⇤



DFA Examples

L(M) = all binary strings with an even number of 1’s 

= {x 2 {0, 1}⇤ : x has an even number of 1’s}

q0 q1

1

1

0 0
M



DFA Examples

q0 q1

M

L(M) = all binary strings with even length

0, 1

0, 1

= {x 2 {0, 1}⇤ : |x| is even}



DFA Examples

q0 q1

1

0
M

L(M) =

1

0

{x 2 {0, 1}⇤ : x ends with a 0} [ {✏}



DFA Examples

q0 q1

M

L(M) =

q2 q3

⌃ = {a, b, c}
a, b, c

a

c

a, b

b, c a, b, c

{a, b, cb, cc}



Poll

The set of all words ending in 00

None of the above
Beats me

The set of all words ending in 000

The set of all words ending in 0

The set of all words that contain 00 as a substring
The set of all words that contain 000 as a substring
The set of all words that contain at least two 0’s
The set of all words that contain at least three 0’s



DFA construction practice

L = {110, 101}

L = {0, 1}⇤\{110, 101}

L = {x 2 {0, 1}⇤ : x starts and ends with same bit.}

L = {x 2 {0, 1}⇤ : |x| is divisible by 2 or 3.}

L = {✏, 110, 110110, 110110110, . . .}

L = {x 2 {0, 1}⇤ : x contains the substring 110.}

L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.}



Formal definition:  DFA

A deterministic finite automaton (DFA)        is a 5-tupleM

M = (Q,⌃, �, q0, F )

where
-      is a finite, non-empty set  (which we call the set of states);Q

-      is a finite, non-empty set  (which we call the alphabet);⌃

-      is a function of the form � � : Q⇥ ⌃ ! Q
(which we call the transition function);

-              is an element of q0 2 Q Q
(which we call the start state);

-              is a subset of F ✓ Q Q
(which we call the set of accepting states).



Formal definition:  DFA

A deterministic finite automaton (DFA)        is a 5-tupleM

M = (Q,⌃, �, q0, F )

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
� : Q⇥ ⌃ ! Q

F = {q1, q2}
q0 is the start state

q0
q1
q2
q3

0 1�
q0

q0

q1
q2 q2

q2
q2

q3



Formal definition:  DFA accepting a string

Let                             be a string over an alphabet    . w = w1w2 · · ·wn ⌃

Let                                  be a DFA.M = (Q,⌃, �, q0, F )

We say that       accepts the string     
if there exists a sequence of states
such that

M w
r0, r1, . . . , rn 2 Q

-              ; r0 = q0

-                             for each                           ;�(ri�1, wi) = ri i 2 {1, 2, . . . , n}
-             .rn 2 F

Otherwise we say       rejects the string     .M w



Formal definition:  DFA accepting a string

Let                                  be a DFA.M = (Q,⌃, �, q0, F )

                         can be extended to � : Q⇥ ⌃ ! Q �⇤ : Q⇥ ⌃⇤ ! Q

as follows:

for                        , q 2 Q,w 2 ⌃⇤

�⇤(q, w) = state we end up in when we start at 
and read w

q

In fact, even OK to drop     from the notation.⇤

Otherwise       rejects     .M w

       accepts        if  M w �(q0, w) 2 F.

Simplifying notation



Definition:  Regular languages

Definition: A language     is called regular if                   
                                    for some DFA     .L = L(M) M

L



Regular languages

...

Regular languages

All languages

?

P(⌃⇤)



Regular languages

Questions:

1.  Are all languages regular?
(Are all decision problems computable by a DFA?)

2.  Are there other ways to tell if a language is regular?



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Note on notation:

a 2 ⌃ an aa · · · aFor            ,            denotes the string               .}

n times

u, v 2 ⌃⇤For                 ,         denotes     concatenated with    .       uv u v

a0 = ✏

L = {✏, 01, 0011, 000111, 00001111, . . .}So                                                               .     



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Intuition:

Seems like the DFA would need to remember
how many 0’s it sees.

But it has a constant number of states.
And no other way of remembering things.

Careful though:
L = {x 2 {0, 1}⇤ : 10 and 01 occur equally often in x.} is regular!



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

A key component of the proof:

Pigeonhole principle  (PHP)



A non-regular language

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Proof: So suppose      is regular.L
This means there is a DFA       that decides    .LM

Let      denote the state      is in after reading     .rn M 0n
Let     denote the number of states of     . k M

By PHP, there exists                              ,          , such thati, j 2 {0, 1, . . . , k} i 6= j
ri = rj            .  So      and      end up in the same state.0i 0j

For any string    ,         and        end up in the same state.w 0iw 0jw
But for            ,         should end up in an accepting state, w = 1i 0iw

and         should end up in a rejecting state.0jw
This is the desired contradiction.

Proof is by contradiction. 



Proving a language is not regular

Usually the proof goes like this:

1.  Assume (to reach a contradiction) that the language
    is regular.  So a DFA decides it.

2.  Argue by PHP that there are two strings     and  
    that lead to the same state in the DFA.

x y

(For any string    ,       and      lead to the same state.) z xz yz

3.  Find a string    such that              but             .z
xz 2 L yz 62 L



Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

L = {c251anb2n : n 2 N}.

⌃ = {a, b, c}(                    )



Regular languages

...

Regular languages

All languages
P(⌃⇤)

{0n1n : n 2 N}

...



Another non-regular language?

Question:  Are all unary languages regular?

(a language      is unary if              , where             .)L L ✓ ⌃⇤ |⌃| = 1

Theorem:
The language                         is not regular.{a2

n

: n 2 N}



Regular languages

Questions:

1.  Are all languages regular?
(Are all decision problems computable by a DFA?)

2.  Are there other ways to tell if a language is regular?



Next Time

Closure properties of regular languages


