15-251
Great Theoretical ldeas in Computer Science

Lecture 3:
Deterministic Finite Automaton (DFA), Part |

January 24th, 2017

4)
Input
data

output

€€ 9
—>»{ ‘computer —
P data

\ J

Computation: manipulation of data.

How do we mathematically/formally represent data?

Representing information

Can encode/represent any kind of data
(numbers, text, pairs of numbers, graphs, images, etc...)
with a finite length (binary) string.

Representing information

/z — 10,1}
alphabet symbols of the alphabet

>* = the set of all finite length strings over X

»* = {¢,0,1,00,01, 10, 11,000,001, 010,011, 100, 101, 110, 111, ...}

l

string of length 0 (empty string)

A subset . C " is called a language.

Representing information

¥, ={0,1}
Y, ={a,b}
> ={a,b,c}

> =1{0,1,2,3,4,5,6,7,8,9)
Z — {07]'72737475767778797a7b7c7d767f7g7h7i7j7k7

l7m7n707p7Q7r7S7t7u7v7w7x7y7z}

Can use whichever is convenient.

What is a computational problem?

~

Definition: A computational problem is a function
3 foX = .
p
Definition: A decision problem is a function
. f:¥*—={0,1}.
No, Yes
False, True

Reject,Accept

What is a computational problem!?

IMPORTANT

There is a one-to-one correspondence between
decision problems and languages.

Instance Solution

(€) 1

L CxY*
L ={e,0,1,00,11,000,...}

e
-
- O R P OO R

001

Our focus will be on languages!
(decision problems)

- Convenient restriction.

- Usually “without loss of generality”.

Integer factorization problem

Given as input a natural number N, output its prime
factorization.

Integer factorization problem, decision version

Given as input natural numbers N and I,
does N have a factor (strictly) between | and I?

This Week and Next Week

(")
Input
data

output

—>{ “computer”
data

| J

What is computation?
What is an algorithm?

How can we mathematically define them!?

This Week

Introducing deterministic finite automata (DFA)

4)

input . DEA __, output
data data

- restricted model of computation
- very limited memory

- reads input from left to right, and accepts or rejects.
(one pass through the input)

Let’s assume two things about our world

No universal machines exist.

4) 4) ("

+ isPrime Sorting

We only have machines to solve decision problems.

> = {0,1)

State diagram of a DFA

State diagram of a DFA

> = {0,1)

State diagram of a DFA

> = {0,1)

Simulation of a DFA

> =40,1}
Input: 1010

% N/
o —() o

Simulation of a DFA

> =40,1}
Input: 1010

0 | 0,1 |
_>

2
O

Simulation of a DFA

> =40,1}
Input: 1010

I
~(g

Simulation of a DFA

> =40,1}
Input: 1010

I
~(g

Simulation of a DFA

> =40,1}
Input: 1010

0 |
~(,
0

Simulation of a DFA

> =40,1}
Input: 1010

% N/
~(») o

Simulation of a DFA

> =40,1}
Input: 1010

% N/
~(») o

Simulation of a DFA

| 0,
aORE=O
0 o |

> =40,1}
Input: 1010

Simulation of a DFA

> = {0,1)

Decision: Reject
Input: 1010

—(»)
0
0 o |

Simulation of a DFA

> =40,1}
Input: Ol111

T iil I “III” 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: Ol111

T iil I “III’) 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

T iil I “III’) 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

‘T iil I ¢‘III” 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

Tiil I “III') 0,1 “i
O

Simulation of a DFA

> =40,1}
Input: 01111

T
% N/
~(») o

Simulation of a DFA

|

- o
N

),

> =40,1}
Input: 0111

Simulation of a DFA

> = {0,1)

Decision: Accept
Input: 0111

|

*

0 | 0, | |

—(»)
0

0 o |

Anatomy of a DFA

states accepting
states

start
state

states

transition rule: labeled arrows

DFA as a programming language

def io((;;(mput). imput=| 0| | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io(o);(mput). oout= [O T 1 | | |
S 0
if (i == input.length): return False;) Have we reached end of input?
letter = mputf[i]; s it an accepting state?
1++;
switch(letter):

case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io((;;(mput). imput=| 0| | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
[i++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

] Read current letter.

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io(o);(mput). imput=| 0| | | | |
STATE 0:

if (1 == input.length): return False;
letter = input[i];
1++;

(switch(letter):

case ‘0’: go to STATE 0;

case ‘1’: goto STATE 1;

Depending on the letter
change the state.

\

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

DFA as a programming language

def io((;;(mput). imput=| O] | | | |
STATE 0:
if (1 == input.length): return False;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 0;
case ‘1’: goto STATE 1;

STATE 1:
if (1 == input.length): return True;
letter = input[i];
1++;
switch(letter):
case ‘0’: go to STATE 2;
case ‘1’: go to STATE 2;

Definition: Language decided by a DFA

Let M be a DFA.

We let L(M) denote the set of strings that M accepts.

So, L(M)={x € X" : M(x) accepts.} C ¥*

If L = L(M),we say that M recognizes L.
accepts

decides
computes

DFA Examples

M

N

°
1

= all binary strings with an even number of |’s

= {x € {0,1}" : = has an even number of 1’s}

DFA Examples

M
0,1

2O
0,1

= all binary strings with even length

= {z € {0,1}* : |z| is even}

DFA Examples

M

N

_> 0
0

L(M)= {x e {0,1}* : z ends with a 0} U {¢}

DFA Examples

> =1{a,b,c}
M a,b,c

a ‘
C a.b.c
> b7 > — >

a,b

L(M) = {a,b,cb,cc}

he set of a
ne set of a
ne set of a
he set of a
ne set of a

ne set of a

= e e T = = B

he set of a

words t

words t
words t

words t

nat contain at least three Q’s
nat contain at least two O’s

nat contain 000 as a substring

hat contain 00 as a substring

words ending in 000

words ending in 00

words ending in 0

None of the above

Beats me

DFA construction practice

L = {110,101}

L = {0,1}*\{110,101}

L ={x € {0,1}" : z starts and ends with same bit.}
L ={x€{0,1}" : |z| is divisible by 2 or 3.}

L = {¢,110,110110, 110110110, .. .}

L ={x €{0,1}" : x contains the substring 110.}
L ={x€{0,1}* : 10 and 01 occur equally often in x.}

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple
M = (Q72757QO7F)
where
- () is a finite, non-empty set (which we call the set of states);

- 2. is a finite, non-empty set (which we call the alphabet);

- 0 is afunction of theform 0 : Q) x X — @)

(which we call the transition function);

- qo € @ is an element of ()

(which we call the start state);

- FFC @ isasubset of ()

(which we call the set of accepting states).

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple
M = (Q72757QO7F)

Q — {QO7 d1, 42, QS}

>, =40,1}
0:0Q XX —Q
0 0 1

qo qo q1
d1 q2 qo
q2 qs3 q2
q3 qo q2

qo is the start state
b= {Q17 QQ}

Formal definition: DFA accepting a string

Let w = wiws - --w, be a string over an alphabet >..
Let M = (Q,X,9,q0, F) be a DFA.

We say that M accepts the string w

if there exists a sequence of states 7¢,71,...,"n € @,
such that

- ’]"O :qo;
- 0(ri_1,w;) =1r; foreach i€ {1,2,...,n};
- T'n GF.

Otherwise we say M rejects the string w.

Formal definition: DFA accepting a string

Simplifying notation
Let M = (Q,X,9,q0, F) be a DFA.
0:Q XX —(canbe extendedto 6" :(Q X X" — Q)

as follows:
for g € Q,w e X7,

0" (q,w) = state we end up in when we start at ¢
and read w

In fact, even OK to drop * from the notation.

M accepts w if 6(qo,w) € F.

Otherwise M rejects w.

Definition: Regular languages

-

_

Definition: A language L is called regular if

L =L(M) for some DFA M.

Regular languages

All languages
P(X™)

Regular languages

(//;110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{e,110,110110,110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Regular languages

Questions:

|. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

A non-regular language

4)
Theorem:

The language L = {0"1™ : n € N} is not regular.
.

Note on notation:

For a €, a" denotesthestring aa---a.
Y
n times
a’ = e

For w,v € ¥*, uv denotes u concatenated with v.

So L = {¢,01,0011,000111,00001111,...}.

A non-regular language

p
Theorem:

The language L = {0"1™ : n € N} is not regular.
.

Intuition:

Seems like the DFA would need to remember
how many O’s it sees.

But it has a constant number of states.
And no other way of remembering things.

Careful though:
L ={z € {0,1}" : 10 and 01 occur equally often in .} is regular!

A non-regular language

p
Theorem:

The language L = {0"1™ : n € N} is not regular.
N\

A key component of the proof:

Pigeonhole principle (PHP)

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N},

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [I TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTT]

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 [T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

T

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}

Input: 000000001 T TTTTI

@ imagine some
° ° °
arbitrary transitions

A non-regular language

Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}
Input: 00000000| T After 00 and 000000

we ended up in the
same state q;g

‘ ‘ 0011 and 000000 |
_, Imagine some end uptmt the
arbitrary transitions same state.
‘ But
00l — accept
OOOOOO

0000001 |—>reject

A non-regular language
Warm-up:
Suppose a DFA with 6 states decides L = {0"1" : n € N}
Input: 000000001 TTTTTTI

Pigeonhole Principle
Where will 0000000 go!?

T
:
_» imagine some 000
arbitrary transitions

0000

00000
000000

A non-regular language

-

The language L = {0"1™ : n € N} is not regular.
.

Theorem:

J

Proof: Proof is by contradiction. So suppose L is regular.

This means there is a DFA M that decides L.

Let k& denote the number of states of M.

Let 7, denote the state M is in after reading 0".

By PHP, there exists 7,5 € {0,1,...,k}, ¢ # j,such that

r; =1;. So 0" and 0’ end up in the same state.

For any string w, 0"w and 07w end up in the same state.

But for w = 1°, 0“w should end up in an accepting state,
and 0’w should end up in a rejecting state.

This is the desired contradiction. []

Proving a language is not regular

Usually the proof goes like this:

|. Assume (to reach a contradiction) that the language
is regular. So a DFA decides it.

2. Argue by PHP that there are two strings * and y
that lead to the same state in the DFA.

(For any string z, xz and yz lead to the same state.)

3. Find a string z such that xz € L but yz ¢ L.

Proving a language is not regular

Exercise (test your understanding):

Show that the following language is not regular:

L ={c***a"b*" : n € N}.

(¥ ={a,b,c})

Regular languages

All languages
P(X™)

Regular languages

(//;110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{e,110,110110,110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Regular languages

All languages
P(X™)

Regular languages

(//5110,101} ﬂ‘\\\

{0,1}*\{110, 101}

{x € {0,1}" : x starts and ends with same bit.}

{z € {0,1}" : |z| is divisible by 2 or 3.}
{€,110,110110, 110110110, ...}
{z € {0,1}" : = contains the substring 110.}

{z € {0,1}" : 10 and 01 occur equally often in z.}

. /

Another non-regular language!

Question: Are all unary languages regular?

(a language L is unaryif L C »",where |X| =1))

p
Theorem:

The language {a?" :n € N} is not regular.
.

Regular languages

Questions:

|. Are all languages regular?
(Are all decision problems computable by a DFA?)

2. Are there other ways to tell if a language is regular?

Next Time

Closure properties of regular languages

