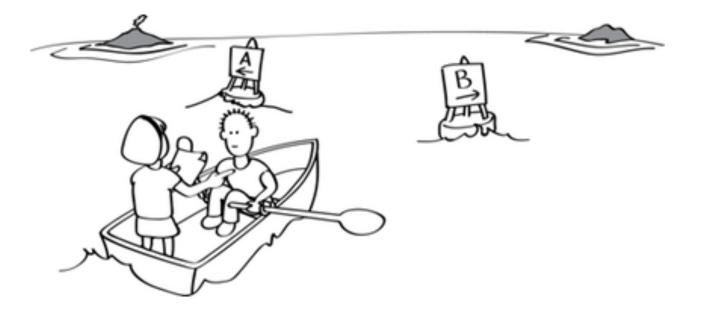
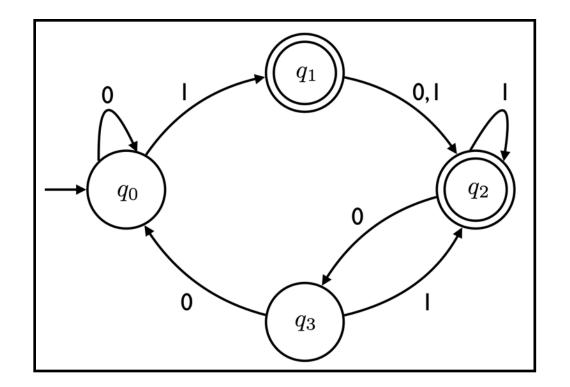
15-251 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2



January 26th, 2017

Formal definition: DFA

A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$



$Q = \{q_0, q_1, q_2, q_3\}$								
$\Sigma = \{0, 1\}$								
$\delta: Q \times \Sigma \to Q$								
δ	0	1						
q_0	q_0	q_1						
q_1	q_2	q_2						
q_2	q_3	q_2						
q_3	q_0	q_2						

 q_0 is the start state $F = \{q_1, q_2\}$

Formal definition: DFA accepting a string

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

For
$$q \in Q, w \in \Sigma^*$$
,

 $\delta(q, w) =$ state we end up in when we start at q and read w.

M accepts w if $\delta(q_0, w) \in F$. Otherwise *M* rejects w.

Definition: Regular languages

Let M be a DFA.

We let L(M) denote the set of strings that M accepts.

<u>Definition</u>: A language L is called *regular* if L = L(M) for some DFA M.

Non-regular languages

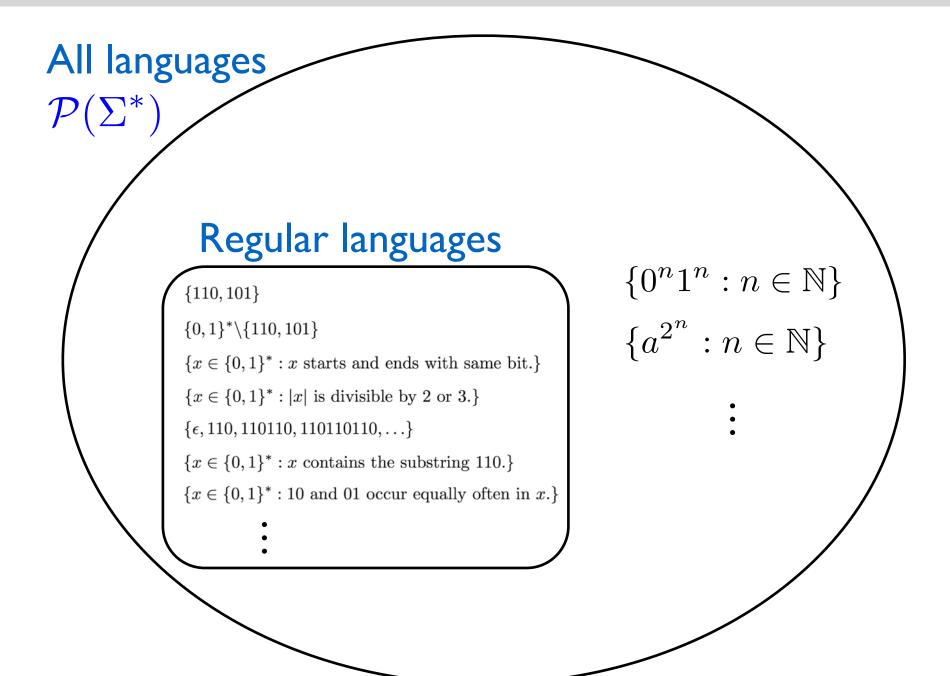
Theorem:

The language $L = \{0^n 1^n : n \in \mathbb{N}\}$ is **not** regular.

Theorem:

The language
$$L = \{a^{2^n} : n \in \mathbb{N}\}$$
 is not regular.

The big picture



Regular languages

Questions:

- I. Are all languages regular? (Are all decision problems computable by a DFA?)
- 2. Are there other ways to tell if a language is regular?

Closure properties of regular languages

Closed under complementation

$\begin{array}{l} \label{eq:proposition:} \\ \mbox{Let } \Sigma \mbox{ be some finite alphabet.} \\ \mbox{If } L \subseteq \Sigma^* \mbox{ is regular, then so is } \overline{L} = \Sigma^* \backslash L. \end{array}$

Proof: If L is regular, then there is a DFA

$$M = (Q, \Sigma, \delta, q_0, F)$$

recognizing L. Then

$$M' = (Q, \Sigma, \delta, q_0, Q \backslash F$$
 recognizes \overline{L} . So \overline{L} is regular.

Closed under complementation

Closure properties can be used to show languages are not regular.

Corollary: If $L \subseteq \Sigma^*$ is non-regular, then so is \overline{L} .

Proof: By contrapositive:

- If \overline{L} is regular, then by the previous Proposition
- $\overline{\overline{L}} = L$ is regular.

Examples:

 $\{0,1\}^* \setminus \{0^n 1^n : n \in \mathbb{N}\}$ $\{a\}^* \setminus \{a^{2^n} : n \in \mathbb{N}\}$

are non-regular.

<u>Theorem:</u>

Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA deciding L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be a DFA deciding L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

The mindset

Imagine yourself as a DFA.

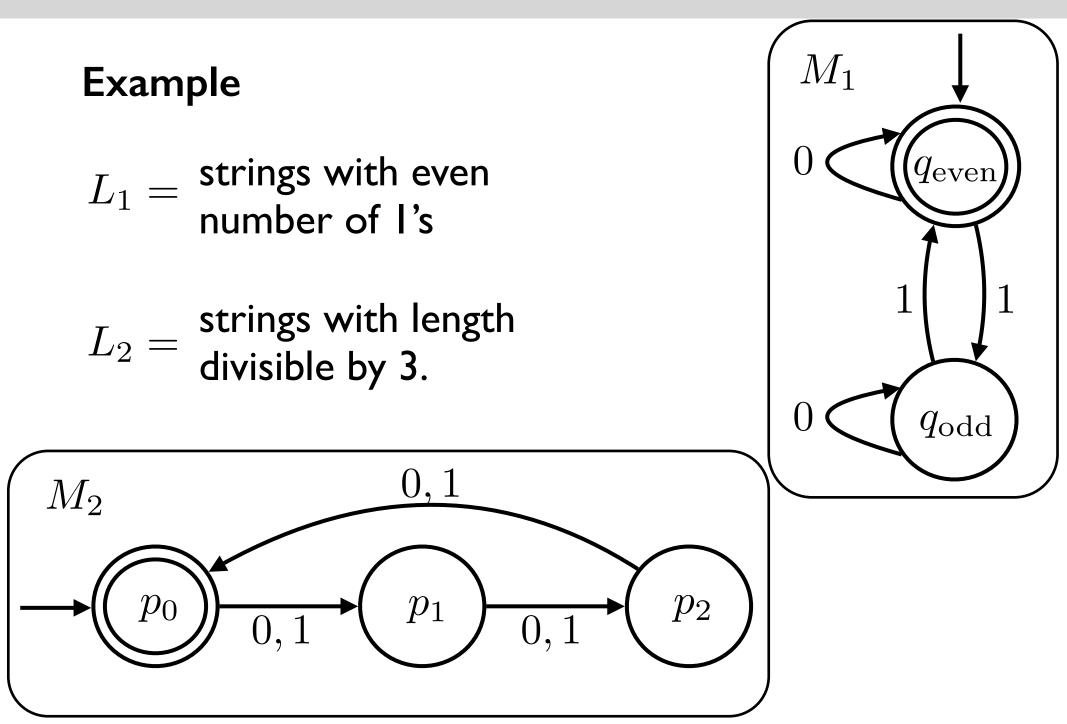
Rules:

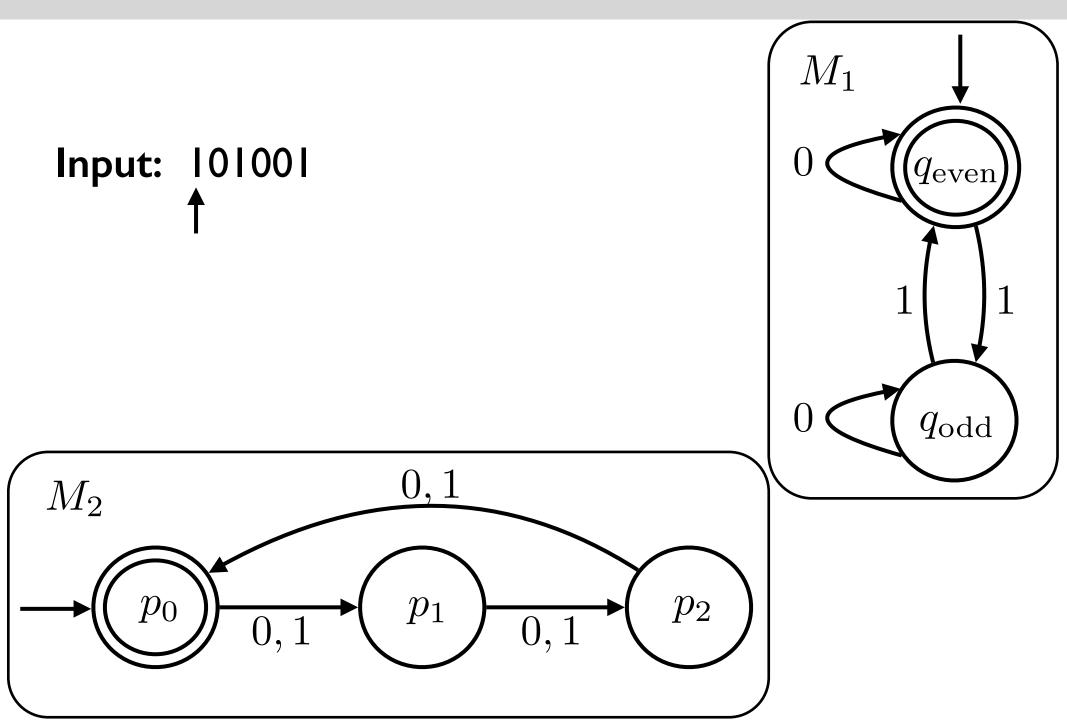
I) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of information.

should not change based on input length

Step I: Imagining ourselves as a DFA





 M_1

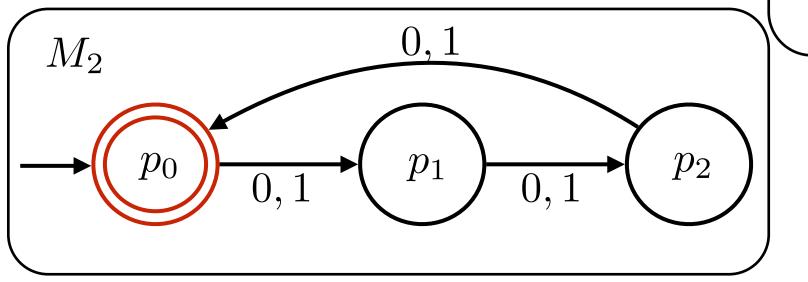
 $q_{\rm even}$

 $q_{\rm odd}$

1

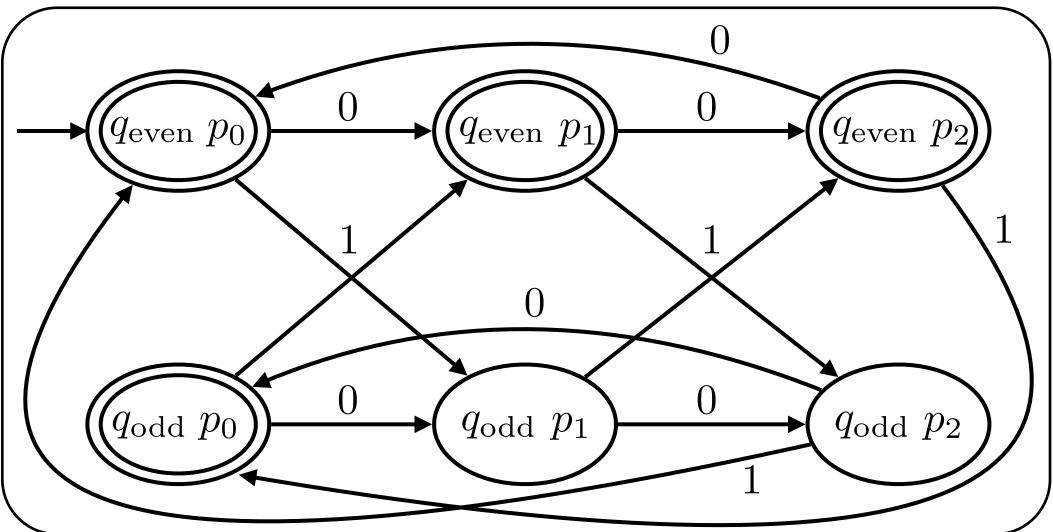
1

Main idea: Construct a DFA that keeps track of both at once.



Main idea:

Construct a DFA that keeps track of both at once.



Step 2: Formally defining the DFA

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA deciding L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be a DFA deciding L_2 . We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

- $Q'' = Q \times Q' = \{(q, q') : q \in Q, q' \in Q'\}$
- $\delta''((q,q'),a) = (\delta(q,a),\delta'(q',a))$

-
$$q_0'' = (q_0, q_0')$$

• $F'' = \{(q, q') : q \in F \text{ or } q' \in F'\}$

It remains to show that $L(M'') = L_1 \cup L_2$.

 $L(M'') \subseteq L_1 \cup L_2 : \dots$ $L_1 \cup L_2 \subseteq L(M'') : \dots$

Closed under intersection

Corollary: Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cap L_2$.

Proof: Follows from:

- $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
- regular languages are closed under complementation
- regular languages are closed under union

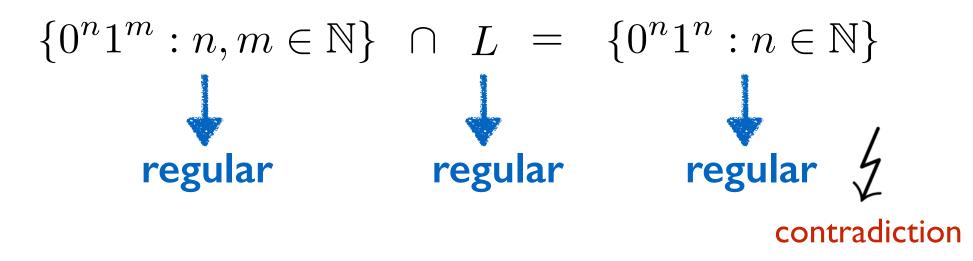
Closed under intersection

Closure properties can be used to show languages are not regular.

Example:

Let $L \subseteq \{0, 1\}^*$ be the language consisting of all words with an equal number of 0's and 1's.

We claim L is not regular. Suppose it was regular.



More closure properties

Closed under union:

$$L_1, L_2$$
 regular $\implies L_1 \cup L_2$ regular.

 $L_1 \cup L_2 = \{x \in \Sigma^* : x \in L_1 \text{ or } x \in L_2\}$

Closed under concatenation:

$$L_1, L_2 \text{ regular } \implies L_1 \cdot L_2 \text{ regular.}$$
$$L_1 \cdot L_2 = \{xy : x \in L_1, y \in L_2\}$$

Closed under star:

L regular $\implies L^*$ regular.

 $L^* = \{x_1 x_2 \cdots x_k : k \ge 0, \forall i \ x_i \in L\}$

awesome vs regular

What is the relationship between awesome and regular ?

awesome \subseteq regular

In fact:

awesome = regular

awesome = regular

Theorem:

Can define regular languages recursively as follows:

- \emptyset is regular.
- For every $a \in \Sigma$, $\{a\}$ is regular.
- L_1, L_2 regular $\implies L_1 \cup L_2$ regular.
- L_1, L_2 regular $\implies L_1 \cdot L_2$ regular.
- L regular $\implies L^*$ regular.

Regular expressions

Definition:

A regular expression is defined recursively as follows:

- \emptyset is a regular expression.
- ϵ is a regular expression.
- For every $a \in \Sigma$, a is a regular expression.
- R_1, R_2 regular expr. $\implies (R_1 \cup R_2)$ regular expr.
- R_1, R_2 regular expr. $\implies (R_1R_2)$ regular expr.
- R regular expr. $\implies (R^*)$ regular expr.

Regular expressions

Examples:

 $(((0 \cup 1)^*1)(0 \cup 1)^*) = \Sigma^* 1 \Sigma^*$

 $\{w \in \{0,1\}^* : w \text{ has at least one } 1\}$

 0^*10^* $\{w \in \{0,1\}^* : w \text{ has exactly one } 1\}$

 $0\Sigma^* 0 \cup 1\Sigma^* 1 \cup 0 \cup 1$ $\{w \in \{0,1\}^* : w \text{ starts and ends with same symbol}\}\$

Closed under concatenation

Theorem:

Let Σ be some finite alphabet. If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is L_1L_2 .

The mindset

Imagine yourself as a DFA.

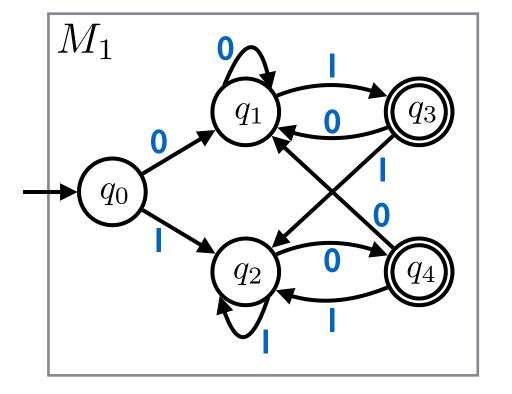
Rules:

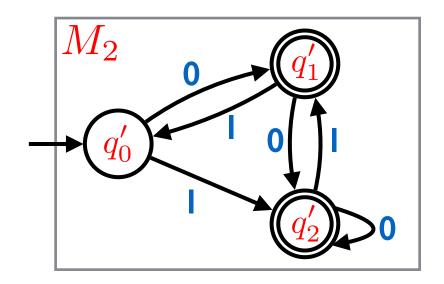
I) Can only scan the input once, from left to right.

2) Can only remember "constant" amount of information.

should not change based on input length

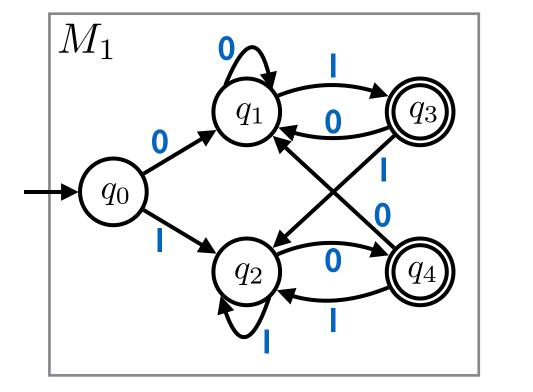
Step I: Imagining ourselves as a DFA

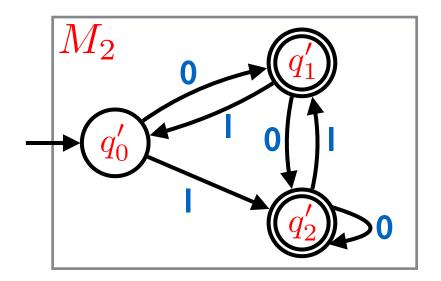


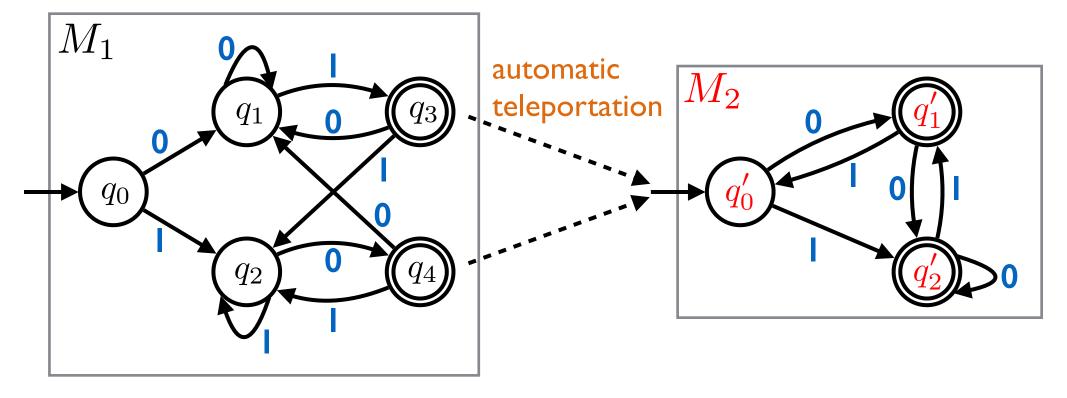


Given $w \in \Sigma^*$, we need to decide if w = uv for $u \in L_1, v \in L_2$.

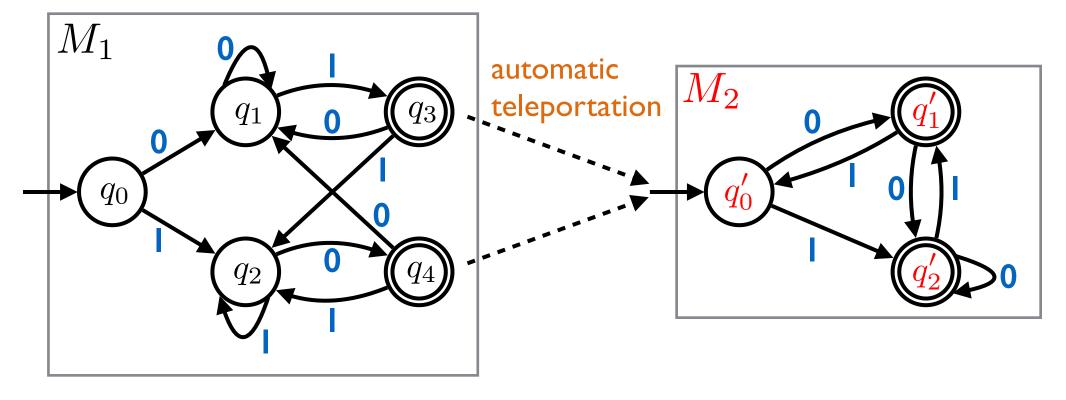
Problem: don't know where u ends, v begins. When do you stop simulating M_1 and start simulating M_2 ?



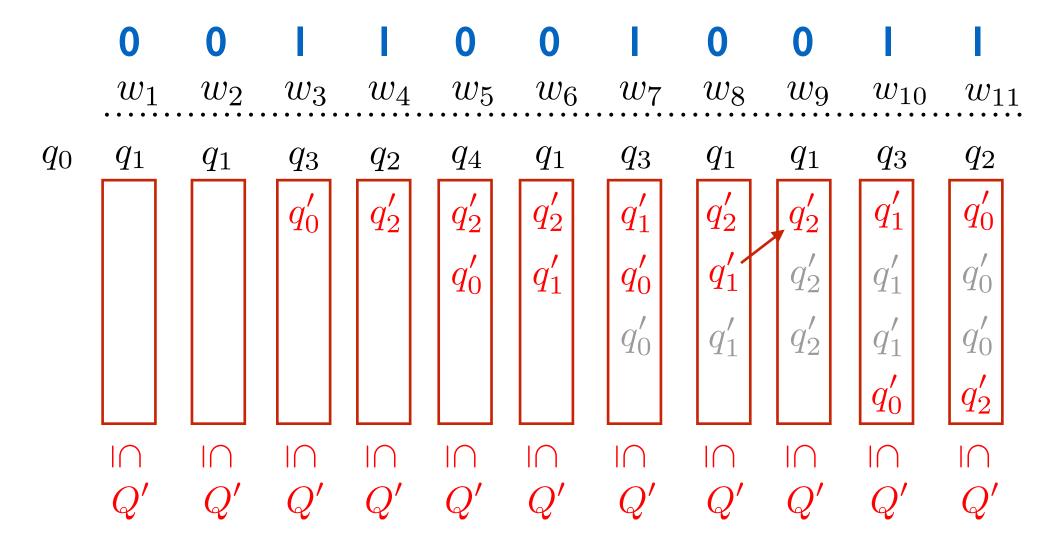




	0	0		1	0	0		0	0		1
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_{10}	w_{11}
q_0	q_1	q_1	(q_3)	q_2	(q_4)	q_1	(q_3)	q_1	q_1	(q_3)	q_2
thread I						q_2'	q_1'	q_2'	q_2'	q_1'	q_0'
thread2					q_0'	q_1'	q_0'	q_1'	q_2'	q_1'	q_0'
thread3							q_0'	q_1'	q_2'	q_1'	q_0'
thread4										q_0'	q_2'



	0	0		1	0	0	1	0	0		1
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9	w_{10}	w_{11}
q_0	q_1	q_1	(q_3)	q_2	(q_4)	q_1	<i>Q</i> 3	q_1	q_1	(q_3)	q_2
thread I			q_0'	q_2'	q_2'	q_2'	q_1'	q_2'	q_2'	q_1'	q_0'
thread2					q_0'	q_1'	q_0'	q_1'	q_2'	q_1'	q_0'
thread3							q_0'	q_1'	q_2'	q_1'	q_0'
thread4										q_0'	q_2'



This keeps track of every possible thread.

At any point, need to remember:

- an element of Q constant amount of
- a subset of Q'

constant amount of information

Step 2: Formally defining the DFA

$$\begin{split} M_1 &= (Q, \Sigma, \delta, q_0, F) \qquad M_2 = (Q', \Sigma, \delta', q'_0, F') \\ \hline Q'' &= Q \times \mathcal{P}(Q') \\ \delta'' : Q \times \mathcal{P}(Q') \times \Sigma \to Q \times \mathcal{P}(Q') \\ \text{for } q \in Q, \ S \in \mathcal{P}(Q'), \ a \in \Sigma \\ (q, S, a) \xrightarrow{\delta''} (\delta(q, a), \{\delta'(s, a) : s \in S\}) & \text{if } \delta(q, a) \notin F \\ (q, S, a) \xrightarrow{\delta''} (\delta(q, a), \{\delta'(s, a) : s \in S\} \cup \{q'_0\}) \text{ otherwise} \\ \hline q_0'' &= (q_0, \emptyset) & \text{if } q_0 \notin F \\ q_0'' &= (q_0, \{q'_0\}) & \text{otherwise} \\ \hline F'' &= \{(q, S) : q \in Q, \ S \in \mathcal{P}(Q'), \ S \cap F' \neq \emptyset\} \end{split}$$

Next Time

