
January 26th, 2017

15-251 
Great Theoretical Ideas in Computer Science 

Lecture 4:
Deterministic Finite Automaton (DFA),  Part 2



Formal definition:  DFA

A deterministic finite automaton (DFA)        is a 5-tupleM

M = (Q,⌃, �, q0, F )

Q = {q0, q1, q2, q3}
⌃ = {0, 1}
� : Q⇥ ⌃ ! Q

F = {q1, q2}
q0 is the start state

q0
q1
q2
q3

0 1�
q0

q0

q1
q2 q2

q2
q2

q3



Formal definition:  DFA accepting a string

Let                                  be a DFA.M = (Q,⌃, �, q0, F )

For                        , q 2 Q,w 2 ⌃⇤

�(q, w) = state we end up in when we start at 
and read     .w

q

Otherwise       rejects     .M w

       accepts        if  M w �(q0, w) 2 F.



Definition:  Regular languages

Definition: A language     is called regular if                   
                                    for some DFA     .L = L(M) M

L

Let       be a DFA.

We let            denote the set of strings that      accepts.

M

L(M) M



Non-regular languages

Theorem:
The language                                 is not regular.L = {0n1n : n 2 N}

Theorem:
The language                                is not regular.{a2

n

: n 2 N}L =



The big picture

...

Regular languages

All languages
P(⌃⇤)

{0n1n : n 2 N}

...

{a2
n

: n 2 N}



Regular languages

Questions:

1.  Are all languages regular?
(Are all decision problems computable by a DFA?)

2.  Are there other ways to tell if a language is regular?



Closure properties of regular languages



Closed under complementation

Proposition:
Let     be some finite alphabet.⌃
If              is regular,  then so is                  .             L ✓ ⌃⇤ L = ⌃⇤\L

Proof: If      is regular, then there is a DFAL

M = (Q,⌃, �, q0, F )

recognizing    .L Then

M 0 = (Q,⌃, �, q0, Q\F )

recognizes     .  L So       is regular.L



Closed under complementation

By contrapositive:Proof:

Corollary:
If               is non-regular,  then so is     . L ✓ ⌃⇤ L

If       is regular,  then by the previous PropositionL

            is regular.L = L

Examples:
{0, 1}⇤\{0n1n : n 2 N}
{a}⇤\{a2

n

: n 2 N} are non-regular.

Closure properties can be used to show languages are 
not regular.



Closed under union

Theorem:
Let     be some finite alphabet.⌃
If                and                are regular, then so is             .L1 ✓ ⌃⇤ L2 ✓ ⌃⇤ L1 [ L2

Proof:
and                                       be a DFA deciding      .

Let                                 be a DFA deciding M = (Q,⌃, �, q0, F )

M 0 = (Q0,⌃, �0, q00, F
0)

L1

L2

We construct a DFA M 00 = (Q00,⌃, �00, q000 , F
00)

that decides              , as follows: L1 [ L2

..

.



The mindset

Imagine yourself as a DFA.

Rules:

1) Can only scan the input once,  from left to right.

2) Can only remember “constant” amount of information.

should not change 
based on input length



Step 1:  Imagining ourselves as a DFA



Closed under union

Example

L1 =

L2 =

strings with even 
number of 1’s

strings with length 
divisible by 3.

0, 1 0, 1

0, 1

p0 p1 p2

M2

qeven

q
odd

1 1

0

0

M1



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

Input:  101001

M1

M2

Accept



Closed under union

0, 1 0, 1

0, 1

p0 p1 p2

qeven

q
odd

1 1

0

0

M1

M2

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

Main idea:
Construct a DFA that keeps track of 
both at once.

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1



Closed under union

0

?

Main idea:
Construct a DFA that keeps track of 
both at once.

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

?

1

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0 ?

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

?1

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

Main idea:
Construct a DFA that keeps track of 
both at once.



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Main idea:
Construct a DFA that keeps track of 
both at once.

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

0

1

1

0

Input:  101001



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0



Closed under union

p0 p2qeven

q
odd

qeven qevenp1

q
odd

q
odd

p0 p2p1

0

1

0

1

0

0

Input:  101001

0

1

1

0

Decision:  Accept



Step 2:  Formally defining the DFA



Closed under union

Proof: L1

and                                       be a DFA deciding      .
Let                                 be a DFA deciding M = (Q,⌃, �, q0, F )

M 0 = (Q0,⌃, �0, q00, F
0) L2

We construct a DFA M 00 = (Q00,⌃, �00, q000 , F
00)

that decides              , as follows: L1 [ L2

- Q00 = Q⇥Q0 = {(q, q0) : q 2 Q, q0 2 Q0}
- �00((q, q0), a) = (�(q, a), �0(q0, a))

- q000 = (q0, q
0
0)

- F 00
= {(q, q0) : q 2 F or q0 2 F 0}

It remains to show that                              . L(M 00) = L1 [ L2

L(M 00) ✓ L1 [ L2 : . . .

L1 [ L2 ✓ L(M 00) : . . .



Closed under intersection

Corollary:
Let     be some finite alphabet.⌃
If                and                are regular, then so is             .L1 ✓ ⌃⇤ L2 ✓ ⌃⇤ L1 \ L2

Proof: Follows from:

- L1 \ L2 = L1 [ L2

-  regular languages are closed under complementation

-  regular languages are closed under union



Closed under intersection
Closure properties can be used to show languages are 
not regular.

Example:

Let                     be the language consisting of all words 
with an equal number of 0’s and 1’s.

L ✓ {0, 1}⇤

We claim      is not regular. L

{0n1m : n,m 2 N} {0n1n : n 2 N}\ L =

Suppose it was regular.

regular regular regular
contradiction



More closure properties

     regular                 regular. =) L⇤

L

⇤ = {x1x2 · · ·xk : k � 0, 8i xi 2 L}

L

Closed under star:

          regular                        regular. L1, L2 =) L1 · L2

Closed under concatenation:

L1 · L2 = {xy : x 2 L1, y 2 L2}

          regular                        regular. L1, L2 =) L1 [ L2

Closed under union:

L1 [ L2 = {x 2 ⌃

⇤
: x 2 L1 or x 2 L2}



awesome  vs  regular

What is the relationship between awesome and regular ?

awesome regular✓

awesome regular=

In fact:



awesome  =  regular

Theorem:

Can define regular languages recursively as follows:

;-     is regular.

-  For every           ,         is regular.{a}a 2 ⌃

-             regular                        regular. L1, L2 =) L1 [ L2

-             regular                        regular. L1, L2 =) L1 · L2

-       regular                 regular. =) L⇤L



Regular expressions

Definition:

A regular expression is defined recursively as follows:

;-     is a regular expression.

-  For every           ,         is a regular expression.a 2 ⌃ a

-     is a regular expression.✏

-             regular expr.                            regular expr. =) (R1 [R2)R1, R2

-             regular expr.                        regular expr.  =) (R1R2)R1, R2

-       regular expr.                   regular expr. R =) (R⇤)



Regular expressions

Examples:

(((0 [ 1)⇤1)(0 [ 1)⇤)

0⇤10⇤

0⌃⇤0 [ 1⌃⇤1 [ 0 [ 1

{w 2 {0, 1}⇤ : w starts and ends with same symbol}

{w 2 {0, 1}⇤ : w has at least one 1}

{w 2 {0, 1}⇤ : w has exactly one 1}

⌃⇤1⌃⇤=



Closed under concatenation

Theorem:
Let     be some finite alphabet.⌃
If                and                are regular, then so is          .L1 ✓ ⌃⇤ L2 ✓ ⌃⇤ L1L2



The mindset

Imagine yourself as a DFA.

Rules:

1) Can only scan the input once,  from left to right.

2) Can only remember “constant” amount of information.

should not change 
based on input length



Step 1:  Imagining ourselves as a DFA



Given             , we need to decide if  w 2 ⌃⇤

w = uv for u 2 L1, v 2 L2.

Problem: don’t know where     ends,     begins.u v

When do you stop simulating       and start simulating       ?M1 M2

M1

0

1

0

1

1

0
1
0

0

1

q0

q1

q2

q3

q4

0

1 0 1

1

M2

q02

q01

q00

0



w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10

1

q0 q1 q1
q00 q02 q02 q02 q01 q02 q02 q01

Suppose God tells you      ends at       .u w3

M1

0

1

0

1

1

0
1
0

0

1

q0

q1

q2

q3

q4

0

1 0 1

1

M2

q02

q01

q00

0

thread:  a simulation of        and then        that corresponds to 
breaking up       into        where             .

M1 M2

w uv u 2 L1

q3



M1

0

1

0

1

1

0
1
0

0

1

q0

q1

q2

q3

q4

0

1 0 1

1

w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0

M2

q02

q01

q00

0

w10 w11

1 1

q0 q1 q1

q00

q2

q02

q1

q02

q01

q1

q02

q01

q01

q1

q02

q02

q02

q2

q00

q00

q00

q02

thread1

q00thread2

q00thread3

q00thread4

automatic
teleportation

q3 q4

q02

q3

q01

q00

q3

q01

q01

q01



w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10 w11

1 1

q0 q1 q1 q3 q2 q4 q1 q3 q1 q1 q3 q2

q00 q02 q02 q02 q01 q02 q02 q01 q00

q00 q01 q00 q01

q00 q02

q00 q01 q02 q01 q00

q02 q01 q00

thread1

thread2

thread3

thread4

M1

0

1

0

1

1

0
1
0

0

1

q0

q1

q2

q3

q4

0

1 0 1

1

M2

q02

q01

q00

0

automatic
teleportation



w1 w2 w3 w4 w5 w6 w7 w8 w9

0 0 1 1 0 0 1 0 0
w10 w11

1 1

q0 q1 q1 q3 q2 q4 q1 q3 q1 q1 q3 q2

q00 q02 q02 q02 q01 q02 q02 q01 q00

q00 q01 q00 q01

q00 q02

q00 q01 q02 q01 q00

q02 q01 q00

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0

At any point, need to remember:
- an element of Q
- a subset of Q0

constant amount of 
  information

This keeps track of every possible thread.



Step 2:  Formally defining the DFA



M1 = (Q,⌃, �, q0, F ) M2 = (Q0,⌃, �0, q00, F
0)

Q⇥P(Q0)=Q00

�00 : Q⇥P(Q0)⇥⌃ ! Q⇥P(Q0)

for           ,                  ,  q 2 Q S 2 P(Q0) a 2 ⌃

(�(q, a),{�0(s, a) : s 2 S}) �(q, a) 62 Fif

q000 = (q0, ;) if q0 62 F
q000 = (q0,{q00}) otherwise

F 00 = {(q, ) : q 2 Q,S S 2 P(Q0) , S \ F 0 6= ;}

S �00(q, , a)

S (�(q, a), {�0(s, a) : s 2 S} )[{q00} otherwise(q, , a) �00



Next Time


