## |5-25| <br> Great Theoretical Ideas in Computer Science

Lecture 4:

## Deterministic Finite Automaton (DFA), Part 2



January 26th, 2017

## Formal definition: DFA

A deterministic finite automaton (DFA) $M$ is a 5-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$


$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{0,1\}$
$\delta: Q \times \Sigma \rightarrow Q$

| $\delta$ | 0 | 1 |
| :---: | :---: | :---: |
| $q_{0}$ | $q_{0}$ | $q_{1}$ |
| $q_{1}$ | $q_{2}$ | $q_{2}$ |
| $q_{2}$ | $q_{3}$ | $q_{2}$ |
| $q_{3}$ | $q_{0}$ | $q_{2}$ |

$q_{0}$ is the start state

$$
F=\left\{q_{1}, q_{2}\right\}
$$

## Formal definition: DFA accepting a string

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.

For $q \in Q, w \in \Sigma^{*}$,
$\delta(q, w)=$ state we end up in when we start at $q$ and read $w$.
$M$ accepts $w$ if $\delta\left(q_{0}, w\right) \in F$.
Otherwise $M$ rejects $w$.

## Definition: Regular languages

Let $M$ be a DFA.
We let $L(M)$ denote the set of strings that $M$ accepts.

Definition: A language $L$ is called regular if $L=L(M)$ for some DFA $M$.

## Non-regular languages

## Theorem:

The language $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular.

Theorem:
The language $L=\left\{a^{2^{n}}: n \in \mathbb{N}\right\}$ is not regular.

## The big picture



## Regular languages

## Questions:

I. Are all languages regular?
(Are all decision problems computable by a DFA?)
2. Are there other ways to tell if a language is regular?

## Closure properties of regular languages

## Closed under complementation

## Proposition:

Let $\Sigma$ be some finite alphabet.
If $L \subseteq \Sigma^{*}$ is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Proof: If $L$ is regular, then there is a DFA

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

recognizing $L$. Then

$$
M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)
$$

recognizes $\bar{L}$. So $\bar{L}$ is regular.

## Closed under complementation

Closure properties can be used to show languages are not regular.

## Corollary:

If $L \subseteq \Sigma^{*}$ is non-regular, then so is $\bar{L}$.
Proof: By contrapositive:
If $\bar{L}$ is regular, then by the previous Proposition $\overline{\bar{L}}=L$ is regular.

## Examples:

$$
\begin{aligned}
& \{0,1\}^{*} \backslash\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\} \\
& \{a\}^{*} \backslash\left\{a^{2^{n}}: n \in \mathbb{N}\right\}
\end{aligned}
$$

are non-regular.

## Closed under union

## Theorem:

Let $\Sigma$ be some finite alphabet.
If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular, then so is $L_{1} \cup L_{2}$.

Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA deciding $L_{1}$ and $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be a DFA deciding $L_{2}$.
We construct a DFA $M^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ that decides $L_{1} \cup L_{2}$, as follows:

## The mindset

## Imagine yourself as a DFA.

Rules:

I) Can only scan the input once, from left to right.
2) Can only remember "constant" amount of information.
should not change
based on input length

Step I: Imagining ourselves as a DFA

## Closed under union

## Example

$$
L_{1}=\begin{aligned}
& \text { strings with even } \\
& \text { number of l's }
\end{aligned}
$$

$L_{2}=$ strings with length divisible by 3.


## Closed under union



## Closed under union

Input: 101001

## Closed under union

Input: 10100|

$$
\uparrow
$$

Accept


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Main idea:

Construct a DFA that keeps track of both at once.


## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

$\uparrow$


## Closed under union

## Input: 101001

$\uparrow$


## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

 $\uparrow$

## Closed under union

## Input: 101001

$\uparrow$


## Closed under union

Input: 101001 $\uparrow$


## Closed under union

Input: 101001 $\uparrow$


## Closed under union

## Input: 101001

## $\uparrow$



## Closed under union

## Input: 101001

## $\uparrow$



## Closed under union

## Input: $10100 \mid$

Decision: Accept


## Step 2: Formally defining the DFA

## Closed under union

Proof: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA deciding $L_{1}$ and $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be a DFA deciding $L_{2}$.
We construct a DFA $M^{\prime \prime}=\left(Q^{\prime \prime}, \Sigma, \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right)$ that decides $L_{1} \cup L_{2}$, as follows:

$$
\begin{aligned}
& -Q^{\prime \prime}=Q \times Q^{\prime}=\left\{\left(q, q^{\prime}\right): q \in Q, q^{\prime} \in Q^{\prime}\right\} \\
& -\delta^{\prime \prime}\left(\left(q, q^{\prime}\right), a\right)=\left(\delta(q, a), \delta^{\prime}\left(q^{\prime}, a\right)\right) \\
& -q_{0}^{\prime \prime}=\left(q_{0}, q_{0}^{\prime}\right) \\
& -F^{\prime \prime}=\left\{\left(q, q^{\prime}\right): q \in F \text { or } q^{\prime} \in F^{\prime}\right\}
\end{aligned}
$$

It remains to show that $L\left(M^{\prime \prime}\right)=L_{1} \cup L_{2}$. $L\left(M^{\prime \prime}\right) \subseteq L_{1} \cup L_{2}:$
$L_{1} \cup L_{2} \subseteq L\left(M^{\prime \prime}\right):$

## Closed under intersection

## Corollary:

Let $\Sigma$ be some finite alphabet.
If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular, then so is $L_{1} \cap L_{2}$.

Proof: Follows from:

- $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$
- regular languages are closed under complementation
- regular languages are closed under union


## Closed under intersection

Closure properties can be used to show languages are not regular.

## Example:

Let $L \subseteq\{0,1\}^{*}$ be the language consisting of all words with an equal number of 0 's and I's.

We claim $L$ is not regular. Suppose it was regular.


## More closure properties

Closed under union:
$L_{1}, L_{2}$ regular $\Longrightarrow L_{1} \cup L_{2}$ regular.

$$
L_{1} \cup L_{2}=\left\{x \in \Sigma^{*}: x \in L_{1} \text { or } x \in L_{2}\right\}
$$

Closed under concatenation:
$L_{1}, L_{2}$ regular $\Longrightarrow L_{1} \cdot L_{2}$ regular.

$$
L_{1} \cdot L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}
$$

Closed under star:
$L$ regular $\Longrightarrow L^{*}$ regular.

$$
L^{*}=\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0, \forall i x_{i} \in L\right\}
$$

## awesome vs regular

What is the relationship between awesome and regular ?
awesome $\subseteq$ regular

In fact:
awesome $=$ regular

## awesome $=$ regular

## Theorem:

Can define regular languages recursively as follows:

- $\emptyset$ is regular.
- For every $a \in \Sigma,\{a\}$ is regular.
- $L_{1}, L_{2}$ regular $\Longrightarrow L_{1} \cup L_{2}$ regular.
- $L_{1}, L_{2}$ regular $\Longrightarrow L_{1} \cdot L_{2}$ regular.
- $L$ regular $\Longrightarrow L^{*}$ regular.


## Regular expressions

## Definition:

A regular expression is defined recursively as follows:

- $\emptyset$ is a regular expression.
- $\epsilon$ is a regular expression.
- For every $a \in \Sigma, \quad a$ is a regular expression.
- $R_{1}, R_{2}$ regular expr. $\Longrightarrow\left(R_{1} \cup R_{2}\right)$ regular expr.
- $R_{1}, R_{2}$ regular expr. $\Longrightarrow\left(R_{1} R_{2}\right)$ regular expr.
- $R$ regular expr. $\Longrightarrow\left(R^{*}\right)$ regular expr.


## Regular expressions

## Examples:

$\left(\left((0 \cup 1)^{*} 1\right)(0 \cup 1)^{*}\right)=\Sigma^{*} 1 \Sigma^{*}$
$\left\{w \in\{0,1\}^{*}: w\right.$ has at least one 1$\}$

0*10*
$\left\{w \in\{0,1\}^{*}: w\right.$ has exactly one 1$\}$
$0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1$
$\left\{w \in\{0,1\}^{*}: w\right.$ starts and ends with same symbol $\}$

## Closed under concatenation

Theorem:
Let $\Sigma$ be some finite alphabet.
If $L_{1} \subseteq \Sigma^{*}$ and $L_{2} \subseteq \Sigma^{*}$ are regular, then so is $L_{1} L_{2}$.

## The mindset

## Imagine yourself as a DFA.

Rules:

I) Can only scan the input once, from left to right.
2) Can only remember "constant" amount of information.
should not change
based on input length

Step I: Imagining ourselves as a DFA


Given $w \in \Sigma^{*}$, we need to decide if

$$
w=u v \quad \text { for } \quad u \in L_{1}, v \in L_{2}
$$

Problem: don't know where $u$ ends, $v$ begins.
When do you stop simulating $M_{1}$ and start simulating $M_{2}$ ?


Suppose God tells you $u$ ends at $w_{3}$.

| 0 | 0 | I | I | 0 | 0 | I | 0 | 0 | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | $w_{2}$ | $w_{3}$ | $w_{4}$ | $w_{5}$ | $w_{6}$ | $w_{7}$ | $w_{8}$ | $w_{9}$ | $w_{10}$ |
| $q_{1}$ | $q_{1}$ | (43) |  |  |  |  |  |  |  |
|  |  | $q_{0}^{\prime}$ | $q_{2}^{\prime}$ | $q_{2}^{\prime}$ | $q_{2}^{\prime}$ | $q_{1}^{\prime}$ | $q_{2}^{\prime}$ | $q_{2}^{\prime}$ | $q_{1}^{\prime}$ |

thread: a simulation of $M_{1}$ and then $M_{2}$ that corresponds to breaking up $w$ into $u v$ where $u \in L_{1}$.




This keeps track of every possible thread.
At any point, need to remember:
$\begin{array}{lc}\text { - an element of } Q & \text { constant amount of } \\ \text { - a subset of } Q^{\prime} & \text { information }\end{array}$

## Step 2: Formally defining the DFA

$$
M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right) \quad M_{2}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)
$$

$$
Q^{\prime \prime}=Q \times \mathcal{P}\left(Q^{\prime}\right)
$$

$$
\delta^{\prime \prime}: Q \times \mathcal{P}\left(Q^{\prime}\right) \times \Sigma \rightarrow Q \times \mathcal{P}\left(Q^{\prime}\right)
$$

for $q \in Q, S \in \mathcal{P}\left(Q^{\prime}\right), a \in \Sigma$
$(q, S, a) \xrightarrow{\delta^{\prime \prime}}\left(\delta(q, a),\left\{\delta^{\prime}(s, a): s \in S\right\}\right) \quad$ if $\delta(q, a) \notin F$ $(q, S, a) \xrightarrow{\delta^{\prime \prime}}\left(\delta(q, a),\left\{\delta^{\prime}(s, a): s \in S\right\} \cup\left\{q_{0}^{\prime}\right\}\right)$ otherwise
$q_{0}^{\prime \prime}=\left(q_{0}, \emptyset\right) \quad$ if $q_{0} \notin F$
$q_{0}^{\prime \prime}=\left(q_{0},\left\{q_{0}^{\prime}\right\}\right)$ otherwise

$$
F^{\prime \prime}=\left\{(q, S): q \in Q, S \in \mathcal{P}\left(Q^{\prime}\right), S \cap F^{\prime} \neq \emptyset\right\}
$$

## Next Time



