15-251: Great Theoretical Ideas in Computer Science
Lecture 5

Turing’s Legacy

What Is computation?
What Is an algorithm?

How can we mathematically define them?

Quick Recap

Mathematical definition of a (computational) problem:

Input / output function: f: 2% — 27
Language: L={rzeX*f(x)=1}C X"

A simple mathematical model for algorithms: DFAs
0 0

NN
~-O=0

All Languages

Decidable Languages
(Solvable with “algorithms™) ???

PRIMALITY

Regular Languages
(Solvable with DFAS)

gnym (110)*

STARTEQUALSEND

Solving 0"1" with Python

Determines i1f string S is of form 0”n 1”n
def Solution(S) :
1 =0
7 = len(S)-1
while 7 >= 1:
if S[1] !'= '0' or S[3] !'= "1"':
return False
1 =1+ 1
j =3 -1
return True

Solving 0"1" with C

/* Determines if string S is of form 0”n 1%n */
int Solution(char S[])
{
int 1 = 0, 7j;
while (S[j] != NULL) /* NULL is end-of-string char */
Jt++;
J==7
while (7 >= 1)
{

if (s[i] != '0" [| S[g] !'= "1")
return 0; /* Reject */

i++;

J==i

}

return 1; /* Accept */

All Languages

Decidable Languages
(Solvable with “algorithms”)

PRIMALITY

Regular Languages
(Solvable with DFAS)

gnym (110)*

STARTEQUALSEND

All Languages

Decidable Languages
(Solvable with Python)

PRIMALITY

Regular Languages
(Solvable with DFAS)

gnym (110)*

STARTEQUALSEND

Question:
Should we just define “algorithm™ to mean
a function written in Python?

(allowed access to unlimited memory)

Answer:
Actually, we'll see that this would be OK!

Downsides as a formal definition:

 Why choose Python?
Why not C, or Java, or SML, or...?

« Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

* A “philosophical” justification would be nice...

Downsides as a formal definition:

 Why choose Python?
Why not C, or Java, or SML, or...?

« Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

* A “philosophical” justification would be nice...

Solvable with Python

PRIMALITY

onan

Solvable with C

Claim:
Solvable with Python = Solvable with C

Proof intuition:
Our shared experience with programming.

‘Proof:”

1. Solvable with Python € Solvable with C.
The standard Python interpreter is written in C.

2. Solvable with C € Solvable with Python.
It's pretty clear one can write a C interpreter in Python.

Interpreters
A Python function is (representable by) a string.

A Python interpreter is an algorithm M that
takes two inputs: P, a Python function;

X, a string;
and step-by-step simulates P (x) .

In particular, M(P,x) accepts if and only if P(x) accepts.

Interpreters

You can write a Python inter
You can write a C Inter
You can write a Python inter

oreter in C.
oreter in Python.

oreter In Java.

You can write a Java Interpreter in Python.

You can write a Python interpreter in SML.

You can write an SML interpreter in Python.
You can write a Python interpreter in Python!!

The last one is called a
“Universal Python Program”

Solvable with Python What we want to define
= Solvable with C

= Solvable with Java to be computable '
= Solvable with SML

PRIMALITY

Regular Languages
(Solvable with DFAS)

gnym (110)*

STARTEQUALSEND

Downsides as a formal definition:

 Why choose Python?
Why not C, or Java, or SML, or...?

« Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

* A “philosophical” justification would be nice...

Downsides as a formal definition:

 Why choose Python?
Why not C, or Java, or SML, or...?

« Extremely complicated to rigorously define.
E.g., official 2011 ISO definition of C
requires a 701-page PDF file!

* A “philosophical” justification would be nice...

It would be nice to have a totally minimal ("TM")
programming language such that:

a) can simulate Python, C, Java, SML, etc.;

D) Is simple enough to reason about rigorously
completely mathematically.

Turing Machine

-~

S
v » af
- ﬁ' VAT TUR

“*ﬁk*ﬂk”

ANN HORNADAY | THE WASHINGTON POST

HIDDEN

FIGURES

NOW PLAYING

Turing’s mathematical abstraction of a computer

A (human) computer writes symbols on paper
WLOG, the paper is a sequence of squares
No upper bound on the number of squares
At most finitely many kinds of symbols
Human observes one square at a time
Human has only finitely many mental states

Human can change symbols and change
focus to a neighboring square, but only
based on its state and the symbol it observes

Human acts deterministically

the “finite control”
read/write“head”

(focus)

ojojofofafolafal | | | | | |

Input tape (paper)

lllustration of a TM trying to decide {0"1" : neN}
We’'ll explain the finite control later

the “finite control”

#lojofofafolafal | 1 | | | |

the “tape alphabet” (blank)
In this example is {0,1,#,01}

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 | | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lojofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

#lejofofafolafal | 1 1 | | |

the “finite control”

s alefofafolalal | 1 1 | | |

the “finite control”

s alefofafolalal | 1 1 | | |

the “finite control”

s alefofafolalal | 1 1 | | |

the “finite control”

s alefofafolalal | 1 1 | | |

the “finite control”

s alefofafolalal | 1 1 | | |

the “finite control”

ojojofofafolafal | | | | | |

Input tape (paper)

read/write head

Turing’s mathematical abstraction of a computer

A (human) computer writes symbols on paper
WLOG, the paper is a sequence of squares
No upper bound on the number of squares
At most finitely many kinds of symbols
Human observes one square at a time
Human has only finitely many mental states

Human can change Iits state, change symbols,

and change focus to a neighboring square,

but only based on its state and the symbol it observes
Human acts deterministically

The finite control (aka transition rules)

Formal definition of Turing Machines

A Turing Machine is a 7-tuple
M = (Q1 Yo qaccepv qreject’ 21 r1 6)

Q Is a finite set of states,

Uz € D81
Oreject € Q ISt
2 1S a finite In
[Is a finite ta

out a
ne al

Jo € Q Is the start state,
ne accept state,
ne rej

ect state, qreject # qaccept'
phabet (with LgY),
ohabet (with uel, 2 c),

0: QX[— QXI xX{L,R} is the transition function
(here Q’ - Q \ {qaccept’ qreject})

Input alphabet: 2 = {0,1} Tape alphabet: 2 = {0,1,#,U}

Formal definition of Turing Machines

Rules of computation:

Tape starts with input xeZ", followed by infinite L’s.
Control starts in state q,, head starts in leftmost square.

If the current state is g and head is reading symbol ser,

the machine transitions according to &(q,s), which gives:
the next state,

what tape symbol to overwrite the current square with,
and whether the head moves Left or Right.

Technicality: moving left from the leftmost square = staying put.

Continues until either the accept state or reject state reached.
When accept/reject state is reached, M halts.

M might also never halt, in which case we say it loops.

Decidable languages

Definition:

Alanguage L € 2"is decidable if there is
a Turing Machine M which:

1. Halts on every input xe %",
2. Accepts inputs XeL and rejects inputs Xé&L.

Such a Turing Machine is called a decider.
It ‘decides’ the language L.

We like deciders. We don't like TM'’s that sometimes loop.

Computable functions

Definition:

A function f: 2" — {0,1} is computable
If L ={xe2": f(x) = 1} is decidable

Afunction f: 2" — (' \ {u})" is computable if there is
a Turing Machine M which:

Halts on every input xe 2" with
the tape containing f(x) followed by U’s.

Decidable languages

Examples:

Hopefully you're convinced that {O"1" : neN}
is decidable. (Recall it's not “regular”.)

The language {02 : neN} c {0},
l.e. {0, 00, 0000, 00000000, ...},
IS decidable.

Proof. I'll show you a decider TM for it...

fig. by Mike Sipser,
using slightly different notation:

1
—/ 0—u,R

u—R
x—R

Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM
operates. Should be ‘obvious’ how to
translate into a Low Level description.

High Level:

Skips ‘standard’ details, just highlights
tricky’ details. For experts only!

02" : neN} is decidable

Medium Level description:.
1. Sweep from left to right across the tape,
overwriting a # over top of every other 0.
2. If you saw one 0 on the sweep, accept.
3. If you saw an odd number of O’s, reject.

4. Move back to the leftmost square.

(Say you write £/ on the leftmost square at the
very beginning so that you can recognize it later.)

5. Go back to step 1.

o O A~ W DM =

TM programming exercises & tricks

Move right (or left) until first LU encountered.

Shift entire input string one cell to the right
Convert input X;X,X5---X, 10 X LIX,LIXgLl -+ LIX,,
Simulate large tape alphabet I with just {0,1,1}
Ability to “mark” cells (e.g., replace symbol a by a)

Copy a stretch of tape between two marked cells into
another marked section

Increment or Decrement an input in binary.

Implement basic string and arithmetic operations

TM programming exercises & tricks

9. Simulate a TM with 2 tapes and read/write heads

10. Implement a dictionary data structure

11. Simulate “random access memory”

13. Simulate an assembly language interpreter
14. Simulate a C interpreter

15. Create a Turing Machine interpreter or Universal TM, I.e.,
a Turing Machine U whose input is
(M), the encoding of a TM M,
X, a string
and which simulates the execution of M on x.

Universal Turing Machine

If you get stuck on the last exercise, you can
look up the answer in Turing’'s 1936 paper!

Solvable with Python
= Solvable with C Decidable Languages

= Solvable with Java (decidable by Turing Machienes)
= Solvable with SML

PRIMALITY

Regular Languages
(Solvable with DFAS)

EVENLENGTH

CONTAINS-DEDEDEN

Church—Turing Thesis:

"Any natural / reasonable notion of
computation can be simulated by a TM.”

Describing Turing Machines

Low Level:
Medium Level:

High Level:
Super-high Level.

Just describe an algorithm / pseudocode.

Assuming the Church—Turing Thesis
there exists a TM which executes that algorithm.

Study Guide

Definitions:

Turing Machines
Decidable languages/
computable functions

Universal TM
Church—Turing Thesis

Theorems/proofs:
{02" : neN} is decidable
{O"1" : neN} is decidable

Equivalence of Solvability
(between Python, C, TM)

Practice:
Programming with TM's

