
15-251: Great Theoretical Ideas in Computer Science

Turing’s Legacy

Lecture 5

What is computation?

What is an algorithm?

How can we mathematically define them?

Mathematical definition of a (computational) problem:

A simple mathematical model for algorithms:

q0 q1

0 0

1

1

Quick Recap

Input / output function:

Language:

DFAs

PRIMALITY

0n1m

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(Solvable with “algorithms”) ???

STARTEQUALSEND

All Languages

(110)*

Determines if string S is of form 0^n 1^n

def Solution(S):

 i = 0

 j = len(S)-1

 while j >= i:

 if S[i] != '0' or S[j] != '1':

 return False

 i = i + 1

 j = j - 1

 return True

Solving 0n1n with Python

/* Determines if string S is of form 0^n 1^n */

int Solution(char S[])

{

 int i = 0, j;

 while (S[j] != NULL) /* NULL is end-of-string char */

 j++;

 j--;

 while (j >= i)

 {

 if (S[i] != '0' || S[j] != '1')

 return 0; /* Reject */

 i++;

 j--;

 }

 return 1; /* Accept */

}

Solving 0n1n with C

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

Decidable Languages

(Solvable with “algorithms”)

All Languages

0n1m

STARTEQUALSEND

(110)*

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

All Languages

Decidable Languages

(Solvable with Python)

0n1m

STARTEQUALSEND

(110)*

Question:

 Should we just define “algorithm” to mean

 a function written in Python?
 (allowed access to unlimited memory)

Answer:

 Actually, we’ll see that this would be OK!

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

 requires a 701-page PDF file!

• A “philosophical” justification would be nice…

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

 requires a 701-page PDF file!

• A “philosophical” justification would be nice…

PRIMALITY

0n1n

…

 Solvable with Python Solvable with C

Claim:
=

“Proof:”

 Solvable with Python Solvable with C

Claim:
=

Proof intuition:

 Our shared experience with programming.

Proof:

 1. Solvable with Python ⊆ Solvable with C.

 The standard Python interpreter is written in C.

 2. Solvable with C ⊆ Solvable with Python.

 It’s pretty clear one can write a C interpreter in Python.

Interpreters

A Python function is (representable by) a string.

 A Python interpreter is an algorithm M that

 takes two inputs: P, a Python function;

 x, a string;

 and step-by-step simulates P(x).

In particular, M(P,x) accepts if and only if P(x) accepts.

Interpreters

You can write a Python interpreter in C.

You can write a C interpreter in Python.

You can write a Python interpreter in Java.

You can write a Java interpreter in Python.

You can write a Python interpreter in SML.

You can write an SML interpreter in Python.

You can write a Python interpreter in Python!!

The last one is called a

“Universal Python Program”

 Solvable with Python

= Solvable with C

= Solvable with Java

= Solvable with SML

What we want to define

to be “computable”.

PRIMALITY

0n1n
Regular Languages

(Solvable with DFAs)

0n1m

STARTEQUALSEND

(110)*

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

 requires a 701-page PDF file!

• A “philosophical” justification would be nice…

• Why choose Python?

Why not C, or Java, or SML, or…?

Downsides as a formal definition:

• Extremely complicated to rigorously define.

E.g., official 2011 ISO definition of C

 requires a 701-page PDF file!

• A “philosophical” justification would be nice…

It would be nice to have a totally minimal (“TM”)

programming language such that:

 a) can simulate Python, C, Java, SML, etc.;

 b) is simple enough to reason about rigorously

 completely mathematically.

Turing Machine

Inspired by

™

Turing’s mathematical abstraction of a computer

• A (human) computer writes symbols on paper

• WLOG, the paper is a sequence of squares

• No upper bound on the number of squares

• At most finitely many kinds of symbols

• Human observes one square at a time

• Human has only finitely many mental states

• Human can change symbols and change

 focus to a neighboring square, but only

 based on its state and the symbol it observes

• Human acts deterministically

tape (paper)

0 0 0 0 1 0 1 1

input

the “finite control”

read/write“head”

(focus)

Illustration of a TM trying to decide {0n1n : n∈ℕ}

We’ll explain the finite control later

0 0 0 1 0 1 1

the “finite control”

the “tape alphabet”

in this example is {0,1,#,⊔}

(blank)

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0 1

the “finite control”

0 0 1 0

the “finite control”

0 0 1 0

the “finite control”

0 0 1 0

the “finite control”

0 0 1 0

the “finite control”

0 0 1 0

the “finite control”

0 0 1 0

the “finite control”

0 1 0

the “finite control”

0 1 0

the “finite control”

0 1 0

the “finite control”

0 1 0

the “finite control”

0 1 0

the “finite control”

REJECT

tape (paper)

0 0 0 0 1 0 1 1

input

the “finite control”

read/write head

Turing’s mathematical abstraction of a computer

• A (human) computer writes symbols on paper

• WLOG, the paper is a sequence of squares

• No upper bound on the number of squares

• At most finitely many kinds of symbols

• Human observes one square at a time

• Human has only finitely many mental states

• Human can change its state, change symbols,

 and change focus to a neighboring square,

 but only based on its state and the symbol it observes

• Human acts deterministically

q0

qreject qaccept

qend

qright qleft

qdone?

0,1 ↦ R

⊔,# ↦ L

0,1 ↦ L

The finite control (aka transition rules)

Formal definition of Turing Machines

A Turing Machine is a 7-tuple

M = (Q, q0, qaccept, qreject, Σ, Γ, δ):

 Q is a finite set of states,

 q0 ∈ Q is the start state,

 qaccept ∈ Q is the accept state,

 qreject ∈ Q is the reject state, qreject ≠ qaccept.

 Σ is a finite input alphabet (with ⊔∉Σ),

 Γ is a finite tape alphabet (with ⊔∈Γ, Σ ⊆ Γ),

 δ : Q’×Γ → Q×Γ×{L,R} is the transition function

 (here Q’ = Q \ {qaccept, qreject})

Input alphabet: Σ = {0,1} Tape alphabet: Σ = {0,1,#,⊔}

q0

qreject qaccept

qend

qright qleft

qdone?

0,1 ↦ R

⊔,# ↦ L

0,1 ↦ L

Formal definition of Turing Machines

Rules of computation:

 Tape starts with input x∈Σ*, followed by infinite ⊔’s.

 Control starts in state q0, head starts in leftmost square.

 If the current state is q and head is reading symbol s∈Γ,

 the machine transitions according to δ(q,s), which gives:

 the next state,

 what tape symbol to overwrite the current square with,

 and whether the head moves Left or Right.

 Technicality: moving left from the leftmost square ≡ staying put.

 Continues until either the accept state or reject state reached.

 When accept/reject state is reached, M halts.

 M might also never halt, in which case we say it loops.

Decidable languages

Definition:

A language L ⊆ Σ* is decidable if there is

 a Turing Machine M which:

1. Halts on every input x∈ Σ*.

2. Accepts inputs x∈L and rejects inputs x∉L.

Such a Turing Machine is called a decider.

It ‘decides’ the language L.

We like deciders. We don’t like TM’s that sometimes loop.

Computable functions

Definition:

A function f: Σ* → (Γ \ {⊔})* is computable if there is

 a Turing Machine M which:

 Halts on every input x∈ Σ* with

 the tape containing f(x) followed by ⊔’s.

A function f : Σ* → {0,1} is computable

if L = {x∈Σ* : f(x) = 1} is decidable

Decidable languages

Examples:

Hopefully you’re convinced that {0n1n : n∈ℕ}

 is decidable. (Recall it’s not “regular”.)

The language {02n
 : n∈ℕ} ⊆ {0}*,

 i.e. {0, 00, 0000, 00000000, …},

 is decidable.

Proof: I’ll show you a decider TM for it…

fig. by Mike Sipser,

using slightly different notation:

Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM

operates. Should be ‘obvious’ how to

translate into a Low Level description.

High Level:

Skips ‘standard’ details, just highlights

‘tricky’ details. For experts only!

{02n
 : n∈ℕ} is decidable

Medium Level description:

1. Sweep from left to right across the tape,

 overwriting a # over top of every other 0.

2. If you saw one 0 on the sweep, accept.

3. If you saw an odd number of 0’s, reject.

4. Move back to the leftmost square.

 (Say you write ⊔ on the leftmost square at the

 very beginning so that you can recognize it later.)

5. Go back to step 1.

TM programming exercises & tricks

1. Move right (or left) until first ⊔ encountered.

2. Shift entire input string one cell to the right

3. Convert input x1x2x3···xn to x1⊔x2⊔x3⊔··· ⊔xn

4. Simulate large tape alphabet Γ with just {0,1,⊔}

5. Ability to “mark” cells (e.g., replace symbol a by å)

6. Copy a stretch of tape between two marked cells into

 another marked section

7. Increment or Decrement an input in binary.

8. Implement basic string and arithmetic operations

TM programming exercises & tricks

9. Simulate a TM with 2 tapes and read/write heads

10. Implement a dictionary data structure

11. Simulate “random access memory”

12. ….

13. Simulate an assembly language interpreter

14. Simulate a C interpreter

15. Create a Turing Machine interpreter or Universal TM, i.e.,

 a Turing Machine U whose input is

 ⟨M⟩, the encoding of a TM M,

 x, a string

 and which simulates the execution of M on x.

Universal Turing Machine

If you get stuck on the last exercise, you can

look up the answer in Turing’s 1936 paper!

 Solvable with Python

= Solvable with C

= Solvable with Java

= Solvable with SML

PRIMALITY

EVENLENGTH

0n1n
Regular Languages

(Solvable with DFAs)

CONTAINS-DEDEDEN

Decidable Languages

(decidable by Turing Machienes)
=

Church–Turing Thesis:

“Any natural / reasonable notion of

computation can be simulated by a TM.”

Describing Turing Machines

Low Level:

Medium Level:

High Level:

Super-high Level:

 Just describe an algorithm / pseudocode.

Assuming the Church–Turing Thesis

there exists a TM which executes that algorithm.

Definitions:

 Turing Machines
 Decidable languages/
 computable functions

 Universal TM

 Church−Turing Thesis

Theorems/proofs:

 {02n
 : n∈ℕ} is decidable

 {0n1n : n∈ℕ} is decidable

 Equivalence of Solvability
 (between Python, C, TM)

Practice:

 Programming with TM’s

Study Guide

