15-251: Great Theoretical Ideas in Computer Science Lecture 6

To Infinity and Beyond

Galileo (1564-1642)

Best known publication:
Dialogue Concerning the Two Chief World Systems
His final magnum opus (1638):
Discourses and Mathematical Demonstrations Relating to
Two New Sciences

The three characters

Salviati:
Argues for the Copernican system.
The "smart one". (Obvious Galileo stand-in.)
Named after one of Galileo's friends.
Sagredo:
"Intelligent layperson". He's neutral.
Named after one of Galileo's friends.
Simplicio:
Argues for the Ptolemaic system. The "idiot". Modeled after two of Galilelo's enemies.

Salviati

If I assert that all numbers, including both squares and nonsquares, are more than the squares alone, I shall speak the truth, shall I not?

If I should ask further how many squares there are one might reply truly that there are as many as the corresponding number of square-roots, since every square has its own square-root and every squareroot its own square...

Precisely so.
But if I inquire how many square-roots there are, it cannot be denied that there are as many as the numbers because every number is the square-root of some square. This being granted, we must say that there are as many squares as there are numbers ...
Yet at the outset we said that there are many more numbers than squares.

Sagredo: What then must one conclude under these circumstances?

Salviati

... Neither is the number of squares less than the totality of all the numbers, ...
... nor the latter greater than the former, ...
... and finally, the attributes "equal," "greater," and "less," are not applicable to infinite, but only to finite, quantities.
"Infinity is nothing more than a figure of speech which helps us talk about limits. The notion of a completed infinity doesn't belong in mathematics"

- Carl Friedrich Gauss (1777-1855)

Cantor (1845-1918)

Some of Cantor's contributions

> Explicit definitions comparing the cardinality (size) of (infinite) sets
> There are different levels of infinity.
> There are infinitely many different infinities.
> The diagonalization argument
> Also: $|\mathbb{N}|=\mid$ Squares \mid even though Squares is a proper subset of \mathbb{N}.

Reaction to Cantor's ideas at the time

I don't know what predominates

 in Cantor's theory philosophy or theology.
Reaction to Cantor's ideas at the time

Scientific charlatan.

Reaction to Cantor's ideas at the time

Corrupter of youth.

Reaction to Cantor's ideas at the time

Utter non-sense.

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

Laughable

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

WRONG

- Ludwig Wittgenstein

Reaction to Cantor's ideas at the time

Most of the ideas of Cantorian set theory should be banished from mathematics once and for all!

Reaction to Cantor's ideas at the time

No one should expel us from the Paradise that Cantor has created.

Cantor's Definition

Sets A and B have the same

 'cardinality' (size), written $|\mathrm{A}|=|\mathrm{B}|$, if there exists a bijection between them.Note: This is not a definition of " $|\mathrm{A}|$ ".
This is a definition of the phrase " $|A|=|B|$ ".

In Galileo's case

$$
\mathbb{N}=\{0,1,2,3,4,5,6,7,8,9,10, \ldots\}
$$

There is a bijection between \mathbb{N} and S (namely, $\left.f(a)=a^{2}\right)$ Thus $|S|=|\mathbb{N}|$ (even though $\mathrm{S} \subsetneq \mathbb{N}$).

More examples: Hilbert's Grand Hotel

More examples: Hilbert's Grand Hotel

One extra person:
$|\mathbb{N}|=|\mathbb{N} \backslash\{0\}|$
(bijection is $f(x)=x+1$)
$|\mathbb{N} \uplus\{1\}|=|\mathbb{N}|$
Extra bus:
$|\mathbb{N}|=|\{2,4,6,8, \ldots\}|$
(bijection is $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$)
$|\mathbb{N} \uplus \mathbb{N}|=|\mathbb{N}|$

Infinitely many buses: $|\mathbb{N} \times \mathbb{N}| \leq|\mathbb{N}|$
(injection is $\mathrm{f}(\mathrm{j}, \mathrm{j})=(\text { ith prime })^{\mathrm{i}}$

3 Important Types of Functions

injective, I-to-I
$f: A \rightarrow B$ is injective if
$A \hookrightarrow B$
$a \neq a^{\prime} \Longrightarrow f(a) \neq f\left(a^{\prime}\right)$

surjective, onto
$f: A \rightarrow B$ is surjective if

$$
A \rightarrow B
$$

$\forall b \in B, \exists a \in A$ s.t. $f(a)=b$
bijective, I-to-I correspondence
$f: A \rightarrow B$ is bijective if

$$
A \leftrightarrow B
$$

f is injective and surjective

Comparing cardinalities

$$
|A| \leq|B| \quad A \hookrightarrow B
$$

$$
|A| \geq|B|
$$

$$
A \rightarrow B
$$

$$
|A|=|B|
$$

$A \leftrightarrow B$

Comparing cardinalities of finite sets

$A=\{$ apple, orange, banana $\}$
$B=\{200,300,400,500\}$

What does $|A| \leq|B|$ mean?

$$
\begin{aligned}
& \text { apple } \longrightarrow 500 \\
& \text { orange } \longrightarrow 200 \\
& \text { banana } \longrightarrow 300 \\
& \\
& 400
\end{aligned}
$$

$|A| \leq|B|$ iff there is an injection from A to B.

Comparing cardinalities of finite sets

$A=\{$ apple, orange, banana $\}$
$B=\{200,300,400,500\}$

What does $|B| \geq|A|$ mean?

$|B| \geq|A|$ iff there is an surjection from B to A.

Sanity checks for infinite sets

$|A| \leq|B|$ iff $|B| \geq|A|$

$$
A \hookrightarrow B \text { iff } B \rightarrow A
$$

If $|A| \leq|B|$ and $|B| \leq|C|$ then $|A| \leq|C|$
If $A \hookrightarrow B$ and $B \hookrightarrow C$ then $A \hookrightarrow C$
Transitivity is also true for bijections / equality.
$|A|=|B|$ iff $|A| \leq|B|$ and $|B| \leq|A|$

$$
\frac{A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } A \rightarrow B}{A \leftrightarrow B \text { iff } A \hookrightarrow B \text { and } B \hookrightarrow A}
$$

Cantor
Schröder Bernstein

Cantor Schröder Bernstein

Theorem: $A \leftrightarrow B$ iff $A \hookrightarrow B$ and $B \hookrightarrow A$
Proof:

- Draw injections as directed edges between elements in the domain and elements in the range.
- Each element has exactly one outgoing and at most one incoming edge.
\rightarrow Get the union of directed cycles and directed paths which are infinite on one or both sides - all alternating between elements in A and B.
- For each such path / cyle take every other edge (starting with the end/beginning for one-sided infinite paths)
This gives a perfect matching / 1-to-1 correspondence.

$$
\begin{aligned}
\mathbb{N} & =\{0,1,2,3,4,5,6,7, \ldots\} \\
\mathrm{E} & =\{0,2,4,6,8,10,12,14, \ldots\} \\
\mathbb{Z} & =\{0,-1,+1,-2,+2,-3,+3,-4, \ldots\} \\
\mathrm{P} & =\{2,3,5,7,11,13,17,19, \ldots\}
\end{aligned}
$$

If S is an infinite set and you can
list off its elements as $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots$ uniquely, in a well-defined way, then $|\mathrm{S}|=|\mathbb{N}|$.

Any set S with $|S|=|\mathbb{N}|$ is called countably infinite.

A set is called countable if it is either finite or countably infinite.

So \mathbb{Z} is countable. Is \mathbb{Z}^{2} countable?

O O O O

What about \mathbb{Q}, the rationals? Countable?

Come on, no way! Between any two rationals there are infinitely many more.

Not so fast:

$$
f(p, q)= \begin{cases}p / q & \text { if } q \neq 0 \\ 0 & \text { if } q=0\end{cases}
$$

Is clearly a surjection, so $\left|\mathbb{Z}^{2}\right| \geq|\mathbb{Q}|$.

Let's do one more example.

Let $\{0,1\}^{*}$ denote the set of all binary strings of any finite length. Is $\{0,1\}^{*}$ countable?

Yes, this is easy. Here is my listing:
$\epsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000, \ldots$

Length 0 Length 1 strings strings in binary order

Length 2 strings in binary order

Length 3 strings in binary order

Perhaps this definition

 just captures the difference between finite and infinite?
Good question.

If A and B are infinite sets do we always have $|\mathrm{A}|=|\mathrm{B}|$?

Yeah, I was thinking about all this in 1873.
The next most obvious question: Is \mathbb{R} (the reals) countable?

The 1873 proof was specifically

 tailored to \mathbb{R}.In 1891, I described a much slicker proof of uncountability.

People call it...

The

 Diagonal ArgumentI'll use the diagonal argument to prove the set of all infinite binary strings, denoted $\{0,1\}^{\mathrm{N}}$, is uncountable.

Examples of infinite binary strings:
$x=000000000000000000000000000 \ldots$ $y=010101010101010101010101010 \ldots$
$z=101101110111101111101111110 \ldots$
$w=001101010001010001010001000 \ldots$
(Here $w_{n}=1$ if and only if n is a prime.)

I'll use the diagonal argument to prove the set of all infinite binary strings, denoted $\{0,1\}^{N}$, is uncountable.

Interesting! I remember we showed that $\{0,1\}^{*}$, the set of all finite binary strings, is countable.

What about \mathbb{R} ?

We'll come back to it. Anyway, strings are more interesting than real numbers, don't you think?

Theorem: $\{0,1\}^{\mathrm{N}}$ is NOT countable.

Suppose for the sake of contradiction that you can make a list of all the infinite binary strings.

For illustration, perhaps the list starts like this:

$$
\begin{aligned}
& \text { 0: } 0000000000000000000000 \text {... } \\
& \text { 1: } 0101010101010101010101 \ldots \\
& \text { 2: } 1011011101111011111011 \ldots \\
& \text { 3: } 0011010100010100010100 \ldots \\
& \text { 4: } 0101001111111111111111 \ldots \\
& \text { 5: } 110001000000000000000 \text {... }
\end{aligned}
$$

Theorem: $\{0,1\}^{\mathbb{N}}$ is NOT countable.

Consider the string formed by the 'diagonal':

0: 0000000000000000000000 ...
1: $0101010101010101010101 \ldots$
2: $1011011101111011111011 \ldots$
3: $0011010100010100010100 \ldots$
4: $0101001111111111111111 \ldots$
5: 110001000000000000000 ...

Theorem: $\{0,1\}^{\mathbb{N}}$ is NOT countable.

Consider the string formed by the 'diagonal':

0: 0000000000000000000000 ...
1: $0101010101010101010101 \ldots$
2: $1011011101111011111011 \ldots$
3: $0011010100010100010100 \ldots$
4: $0101001111111111111111 \ldots$
5: 110001000000000000000 ...

Theorem: $\{0,1\}^{\mathrm{N}}$ is NOT countable.

Actually, take the negation of the string on the diagonal: 100010 ...

It can't be anywhere on the list, since it differs from every string on the list!

Contradiction.
0: 0000000000000000000000 ...
1: 0101010101010101010101 ...
2: $1011011101111011111011 \ldots$
3: $0011010100010100010100 \ldots$
4: $0101001111111111111111 \ldots$
5: 110001000000000000000 ...

Theorem: $\{0,1\}^{N}$ is NOT countable.

Here is the same proof, using words:

Suppose for contradiction's sake that $\{0,1\}^{N}$ is countable.
Thus $|\mathbb{N}| \geq\left|\{0,1\}^{\infty}\right|$;
i.e., there's a surjection $\mathrm{f}: \mathbb{N} \rightarrow\{0,1\}^{\infty}$.

Define an infinite binary string $w \in\{0,1\}^{\infty}$ by $w_{n}=\neg f(n)_{n}$.
We claim that $w \neq f(m)$ for every $m \in \mathbb{N}$. This is because,
by definition, they disagree in the $m^{\text {th }}$ position.
Therefore \mathfrak{f} is not a surjection onto $\{0,1\}^{\mathbb{N}}$, contradiction.

The same proof also shows:

Theorem: For any nonempty set $A,|A|<|\mathcal{P}(A)|$.
$\mathcal{P}(A)=\{B \mid B \subseteq A\}$
For example: $S=\{1,2,3\}$
$\mathcal{P}(S)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
$\mathcal{P}(S) \leftrightarrow\{0,1\}^{|S|} \quad S=\{1,2,3\}$

$$
\begin{aligned}
& \longleftrightarrow\{1,3\} \\
& \longleftrightarrow \emptyset
\end{aligned}
$$

The same proof also shows:

Theorem: For any non-empty set $A,|A|<|\mathcal{P}(A)|$.

Suppose for contradiction's sake that $\mathrm{A} \geq\{0,1\}^{\mathrm{A}}$, i.e., there's a surjection $\mathrm{f}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{A}}$.

Define an string $w \in\{0,1\}^{A}$ by $w_{a}=\neg f(a)_{a}$ for every $a \in A$.
We claim that $w \neq f(b)$ for every $b \in A$. This is because,
by definition, they disagree in the position indexed by b.
Therefore f is not a surjection onto $\{0,1\}^{\mathrm{A}}$, contradiction.

Awesome. So not only is $\{0,1\}^{\mathbb{N}}$ uncountable but there is a whole hirarchy of larger and larger infinities:
$|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))|<\cdots$

But what about \mathbb{R} ?
\mathbb{R} is uncountable. Even the set $[0,1]$ of all reals between 0 and 1 is uncountable.

This is because there is a bijection between $[0,1]$ and $\{0,1\}^{\mathrm{N}}$.
Hence $|\mathbb{R}| \geq|[0,1]|=\left|\{0,1\}^{\mathbb{N}}\right|>|\mathbb{N}|$.

What's the bijection between $[0,1]$ and $\{0,1\}^{\infty}$?

It's just the function f which maps each real number between 0 and 1 to its binary expansion!

$$
\text { E.g.: } \begin{aligned}
1 / 2 & \leftrightarrow \\
1 / 3 & =.1000000000 \ldots \\
& \leftrightarrow \\
\pi-3 & =.0101010101 \ldots \\
& \leftrightarrow .14159265358979323 \ldots 10 \\
& \leftrightarrow .00100100001111110 \ldots 2
\end{aligned}
$$

Um, technically that's not a surjection. It misses, e.g., . $011111111111111 . .$.

It's just the function f which maps each

 real number between 0 and 1 to its binary expansion!$$
\text { E.g.: } \begin{array}{rll}
1 / 2 & \leftrightarrow & .1000000000 \ldots \\
1 / 3 & =1 / 4+1 / 16+1 / 64+\ldots \\
& \leftrightarrow & .0101010101 \ldots \\
\pi-3 & =.14159265358979323 \ldots 10 \\
& \leftrightarrow & .00100100001111110 \ldots 2
\end{array}
$$

Um, technically that's not a surjection. It misses, e.g., . $011111111111111 .$. .

You're saying because this also equals $1 / 2$? In the same way that, in base 10, .499999... is the same as .500000...?

Ugh. I was hoping you wouldn't notice that. This was all so elegant - and you had to go and bring that up!

There are a variety of easy hacks you can use to get around this issue.

Summary: cardinalities we've seen so far

Summary: cardinalities we've seen so far

Fact: There are no infinite sets with cardinality less than $|\mathbb{N}|$.

Question: Is there any set S with

$$
|\mathbb{N}|<S<|\mathbb{R}| ?
$$

I didn't think so, and called this the Continuum Hypothesis. I spent a really long time trying to prove it, with no success. ©

Summary: cardinalities we've seen so far

There's a reason you failed...

And it's not because the
Continuum Hypothesis is false...

Question: Is there any set S with

$$
|\mathbb{N}|<S<|\mathbb{R}| ?
$$

I didn't think so, and called this the Continuum Hypothesis. I spent a really long time trying to prove it, with no success. :

Proving sets countable:

 the computer scientist's method$$
\text { We showed }\left|\{0,1\}^{*}\right|=|\mathbb{N}| \text {. }
$$

Actually, if Σ is any finite "alphabet" (set) then $\Sigma^{*}=\{$ all finite strings over alphabet $\Sigma\}$ is countably infinite.

$$
\begin{aligned}
& \text { E.g., if } \Sigma=\left\{0,1, \ldots, 9, a, b, \ldots, z,+,-,^{*}, /, \wedge\right\} \text { : } \\
& \epsilon, 0,1, \ldots, a, \ldots, /, \wedge, 00,01, \ldots, 0 a, 0 \wedge, 0^{\wedge}, 10, \ldots, \wedge, \wedge, 000,001, \ldots
\end{aligned}
$$

Proving sets countable:

the computer scientist's method

Suppose we want to show that a set $S=\{$ all mathematical objects of type-T $\}$ is countable.

First specify a way to encode any such object X with strings over some finite alphabet Σ.
(recall, we write $\langle X\rangle$ for this encoding).
If $\langle\cdot\rangle: \Sigma^{*} \rightarrow$ S is a surjection, i.e., has at least one encoding for any X in S, then $|\mathbb{N}|=\left|\Sigma^{*}\right| \geq S$.

Proving sets countable: the computer scientist's method:

Encodable = Countable

If a set of mathematical objects is encodable then it is countable.

Proving sets countable:

 the computer scientist's method
Ex. problem:

Prove that $\mathbb{Q}[x]$ is countable.

Valid solution:
Any polynomial in $\mathbb{Q}[x]$ can be described by a finite string over the alphabet

$$
\Sigma=\left\{0,1, \ldots, 9, x,+,-,{ }^{*}, /, \wedge\right\} .
$$

(For example: $\left.x^{\wedge} 3-1 / 4 x^{\wedge} 2+6 x-22 / 7.\right)$

Definitions:

Cardinality Countable

Study Guide

Theorem/proof:
Countability of various sets. Cantor-Bernstein Thm. Diagonalization:

Uncountability of $\{0,1\}^{\infty}$.

