15-251: Great Theoretical Ideas in Computer Science
Lecture 6

To Infinity and Beyond







Galileo (1564-1642)

Best known publication:
Dialogue Concerning the Two Chief World Systems

His final magnum opus (1638):
Discourses and Mathematical Demonstrations Relating to
Two New Sciences



he three characters

Salviati: f
Argues for the Copernican system. 9

The “smart one”. (Obvious Galileo stand-in.)
Named after one of Galileo’s friends.

Sagredo:

“Intelligent layperson”. He’s neutral.
Named after one of Galileo’s friends.

Simplicio:
Argues for the Ptolemaic system. The “idiot”.
Modeled after two of Galilelo’s enemies.



& ~ Salviati Simplicio
s Y

If | assert that all numbers, including both squares and non-
squares, are more than the squares alone, | shall speak the
truth, shall | not?

Most certainly.

If | should ask further how many squares there are

one might reply truly that there are

as many as the corresponding number of square-roots,

since every square has its own square-root and every square-
root its own square...

Precisely so.

But if | inquire how many square-roots there are,

it cannot be denied that there are as many as the numbers because
every number is the square-root of some square. This being
granted, we must say that there are as many squares as there are
numbers ...

Yet at the outset we said that there are many more numbers than
squares.



Sagredo: What then must one conclude under these circumstances?

% Salviati

.. Neither is the number of squares less than
the totality of all the numbers, ...

.. hor the latter greater than the former, ...

.. and finally, the attributes “equal,”
“greater,” and “less,” are not applicable
to infinite, but only to finite, quantities.



“Infinity is nothing more than a figure of speech
which helps us talk about limits. The notion of a
completed infinity doesn't belong in mathematics”

- Carl Friedrich Gauss (1777 — 1855)




Vi
Cantor (1845 - 1918)



Some of Cantor’s contributions

> Explicit definitions comparing the cardinality
(size) of (infinite) sets

> There are different levels of infinity.

> There are infinitely many different infinities.

> The diagonalization argument

> Also: |N| = |Squares| even though Squares
IS a proper subset of N.



Reaction to Cantor’s ideas at the time

| don’t know what predominates
in Cantor’s theory -
philosophy or theology.




Reaction to Cantor’s ideas at the time

Scientific charlatan.




Reaction to Cantor’s ideas at the time

Corrupter of youth.




Reaction to Cantor’s ideas at the time

Utter non-sense.




Reaction to Cantor’s ideas at the time

Laughable




Reaction to Cantor’s ideas at the time




Reaction to Cantor’s ideas at the time

Most of the ideas of Cantorian set
theory should be banished from
mathematics once and for all!




Reaction to Cantor’s ideas at the time

No one should expel us from the
Paradise that Cantor has created.




Cantor’s Definition

Sets A and B have the same

‘cardinality’ (size), written |A| = |B|,

If there exists a bijection between them.

Note: This is not a definition of “|A|".
This is a definition of the phrase “|A| = |BJ".



In Galileo’s case

N={0,1,2,3,4,56,7,8,9,10, ...}

S={0,1, 4 9, ..}

There is a bijection between N and S (hamely, f(a)=a?)
Thus |S|=|N]| (even though S € N).



More examples: Hilbert's Grand Hotel




More examples: Hilbert's Grand Hotel

One extra person:  |N| = [N\ {0}
(bijection Is f(x) = x+1)
Nw {1} = |N]|

Extra bus: N| = [{2,4,6,8,...}
(bijection is f(x) = 2x)

NwN| = |N|

Infinitely many buses: [N x N| < |N|
(injection is f(j,j) = (ith prime)



3 Important Types of Functions

injective, |-to-l|
f : A — B is injective if A— B

a#ad = f(a) # f(a')

surjective, onto
f : A— B is surjective if

A—»B
Vbe B,da€ As.t. f(a)=0b
bijective, |-to-| correspondence
: A — B is bijective if
/ JEEY A<+ B

f is injective and surjective



Comparing cardinalities

4] < | B A~ B

4] > | B A B

4] = | B A+ B



Comparing cardinalities of finite sets

A = {apple, orange, banana}
B = {200, 300, 400, 500}

What does |A| < |B|mean?

apple 510[0
orange 200
banana 300

400

|A| < |B| iff there is an injection from A to B.



Comparing cardinalities of finite sets

A = {apple, orange, banana}
B = {200, 300, 400, 500}

What does |B| > |A|mean?

apple 510[0
orange 200
banana 300

400

|B| > |A] iff there is an surjection from B to A.



Sanity checks for infinite sets
A < |B| iff |B| > |A]

!Af—}BiffB—»A ]

If |[A| < |B| and |B| < |C| then |A| < |C]

e e e e e e e e e e —————

Transitivity Is also true for bijections / equality.

Al = |B| iff |[A] < |B| and |B| < |4]
Cantor
Ao Bif A~ Band A > B Schroder

LA o BifA<s Band B A ] Bernstein




Cantor Schroder Bernstein

Theorem: !AHBiffA%BandB%A

Proof:
- Draw injections as directed edges between elements

In the domain and elements in the range.

- Each element has exactly one outgoing and at most
one incoming edge.

—> Get the union of directed cycles and directed paths
which are infinite on one or both sides — all alternating
between elements in A and B.

- For each such path / cyle take every other edge
(starting with the end/beginning for one-sided infinite paths)

This gives a perfect matching / 1-to-1 correspondence.
QED




0, 1, 2, 3, 4, 5, 6, 7,...}
0, 2, 4, 6, 8, 10, 12, 14, ...}
0, -1,+1,-2,+2, -3, +3, -4, ...}
2, 3, 5 7,11, 13, 17, 19, ...}

If S Is an Infinite set and you can
list off its elements as s, Sy, S,, Ss, ... Uniquely,
in a well-defined way, then |S| = |N].

Any set S with |S| = |N]| is called
countably infinite.

A set Is called countable If it Is either finite or
countably infinite.




(0,0)

(1,0)
° ° ° ° ° e o (1,1)
(0.1)
° ° ° ° (-1,1)
(-1,0)
® ® o (-1,-1)
(0,-1)
° ° ° (1,-1)
(2,-1)
® ® ° (2.0)
(2,1)
° ° ° ° ° o o (2.2)
(1,2)
° ° ° ° ° e o

(0,2)



Come on, no way! Between any two
rationals there are infinitely many more.

Not so fast:;

if g #£0,
mlmz{mﬂ if q #

0 ifgq=0.

Is clearly a surjection, so |Z?| = |Q].



Let’'s do one more example.

Let {0,1}" denote the set of all
binary strings of any finite length.

Is {0,1}" countable?

€, 0, 1,00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, ...

Length O  Length 1 strings Length 2 strings Length 3 strings
strings in binary order In binary order In binary order
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———
—_— >

WJ

]

N

Perhaps this definition
just captures the difference
between finite and infinite?

&
nmullﬂmmu

Good question.
If A and B are infinite sets
do we always have |A| = [B|?

Yeah, | was thinking about all this in 1873.

The next most obvious guestion:
Is R (the reals) countable?




The 1873 proof was specifically
tailored to R.

In 1891, | described a much slicker
proof of uncountabllity.

People call it...

The
Diagonal
Argument




I'll use the diagonal argument to prove

the set of all infinite binary strings,
denoted {0,1}V, is uncountable.

Examples of infinite binary strings:

x =000000000000000000000000000...

y =010101010101010101010101010...

z=101101110111101111101111110....

w =001101010001010001010001000...
(Here w, = 1 if and only if n is a prime.)




I'll use the diagonal argument to prove
the set of all infinite binary strings,
denoted {0,1}V, is uncountable.

Interesting! | remember we
showed that {0,1}", the set of all
finite binary strings,

IS countable.

about R?

We’'ll come back to it. Anyway, strings are more
interesting than real numbers, don’t you think?




Theorem: {0,1}" is NOT countable.

Suppose for the sake of contradiction that you can
make a list of all the infinite binary strings.

For illustration, perhaps the list starts like this:

0: 00000000000000000000O0QOQ...
0101010101010101010101...
1011011101111011111011...
0011010100010100010100...
0101001111111111111111...
1100010000000000000000...



Theorem: {0,1}N is NOT countable.

Consider the string formed by the ‘diagonal’:

00000000000000000000O0AOQ...
0101010101010101010101...
1011011101111011111011...
0011010100010100010100...
0101001111111111111111...
1100010000000000000000...

SN



Theorem: {0,1}N is NOT countable.

Consider the string formed by the ‘diagonal’:

00000000000000000000O00OQ...
0101010101010101010101...
1011011101111011111011...
0011010100010100010100...
0101001111111111111111...
1100010000000000000000...

SN i



Theorem: {0,1}" is NOT countable.

Actually, take the negation of the string on the diagonal:

100010...
It can’t be anywhere on the list, since it differs
from every string on the list! Contradiction. B

0: 0000000000000000000O0O0AOQ...
0101010101010101010101...
1011011101111011111011...
0011010100010100010100...
0101001111111111111111...
1100010000000000000000...



Theorem: {0,1}" is NOT countable.

Here Is the same proof, using words:

Suppose for contradiction’s sake that {0,1}" is countable.
Thus [N| = [{0,1}~;
l.e., there's a surjection f : N — {0,1}~.
Define an infinite binary string we{0,1}* by w, = = f(n),..
We claim that w # f(m) for every meN. This is because,
by definition, they disagree in the m™ position.

Therefore f is not a surjection onto {0,1}V, contradiction.



The same proof also shows:

P(A)={B|BC A}
For example: S ={1,2,3}
P(S) ={0,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}

+— {1,3}
— 0



The same proof also shows:

Suppose for contradiction’s sake that A = {0,1}4, i.e.,
there’s a surjection f: A — {0,1}A.
Define an string we{0,1}* by w, = - f(a), for every acA.
We claim that w # f(b) for every beA. This is because,
by definition, they disagree in the position indexed by b.

Therefore f is not a surjection onto {0,1}*, contradiction.



em
.\ 3 R is uncountable. Even the set [0,1] of all reals
N between 0 and 1 is uncountable.

N < [P(N)| < [P(P(Y))| < [P(P(P(N)))| < -

Awesome. So not only is {0,1} N
uncountable but there is a whole hirarchy
of larger and larger infinities:

But what
about R?

This is because there is a bijection
between [0,1] and {O,1}".
Hence |R| = [[0,1]| = {O,1}"] > |N].




It's just the function f which maps each
real number between 0 and 1 to its
binary expansion!

.1000000000...

14 + 1/16 + 1/64 + ...
.0101010101...

14159265358979323...,
.00100100001111110...,




Um, technically that’s not a surjection.
It misses, e.g., .0111111111111111.....

It's just the function f which maps each
real number between 0 and 1 to its
binary expansion!

1/2 .1000000000...

1/3 14 + 1/16 + 1/64 + ...

.0101010101...

14159265358979323...,
.00100100001111110...,




Um, technically that’s not a surjection.
It misses, e.g., .0111111111111111....

You're saying because this also
equals 1/27?
In the same way that,
In base 10, .499999...
IS the same as .500000...7?

. | was hoping you wouldn’t notice that. This was all so
elegant — and you had to go and bring that up!



There are a variety of easy hacks you can
use to get around this issue.



Summary: cardinalities we've seen so far

card. sets with that cardinality

0 0
{0,1}, {red,green}, ...

No

o N, Primes, Squares, Z, Zz, Nz, Q, {0,1}*,
P(N) = un:b” {O,l}N, [0,1], R. .

“the continuum”

P(P(N))) {S|S subset of R }



Summary: cardinalities we've seen so far

Fact: There are no infinite sets with
cardinality less than |N].

Question: Is there any set S with
IN| < S < |R|?

| didn’t think so, and called this the
Continuum Hypothesis. | spent a really

long time trying to prove it, with no
success. ®




Summary: cardinalities we've seen so far

There's a reason you failed...

And it's not because the
Continuum Hypothesis is false...

Question: Is there any set S with
IN| < S < |R]?

| didn’t think so, and called this the
Continuum Hypothesis. | spent a really

long time trying to prove it, with no
success. ®




Proving sets countable:
the computer scientist's method

We showed [{0,1}| = |N].

Actually, if 2 is any finite “alphabet” (set)
then 2" = {all finite strings over alphabet 2}
IS countably infinite.

Eg.,if>={0,1,...,9,a,b, ..,z + - * /"

01, ..,4a ...,/%"00,01,...,0a,0/,0* 10, ..., 4, ", 000, 001, ...



Proving sets countable:
the computer scientist's method

Suppose we want to show that a set
S={all mathematical objects of type-T} is countable.

First specify a way to encode any such object X
with strings over some finite alphabet 2.
(recall, we write (X) for this encoding).

f(-):=* > Sisa surjection, i.e.,
has at least one encoding for any X in S,
then |N| = |27 = S.



Proving sets countable:
the computer scientist's method:

Encodable = Countable

If a set of mathematical objects is encodable
then it Is countable.



Proving sets countable:
the computer scientist's method

EX. problem: Prove that Q[x] is countable.

Valid solution:

Any polynomial in Q[x] can be described
by a finite string over the alphabet
2={0,1,...,9,x,+ -, %/,

(For example: x*3-1/4x"2+6x-22/7.)



Definitions:
Cardinality
Countable

Theorem/proof:
Countability of various sets
Cantor-Bernstein Thm.
Diagonalization:

Study Guide Uncountability of {0,1}".




