
15-251: Great Theoretical Ideas in Computer Science 

To Infinity and Beyond 

Lecture 6 





Galileo (1564–1642) 

His final magnum opus (1638): 

Discourses and Mathematical Demonstrations Relating to  

Two New Sciences 

Best known publication:   

Dialogue Concerning the Two Chief World Systems 



The three characters 

Salviati: 

Argues for the Copernican system. 

The “smart one”.  (Obvious Galileo stand-in.) 

Named after one of Galileo’s friends. 

Sagredo: 

“Intelligent layperson”.  He’s neutral. 

Named after one of Galileo’s friends. 

Simplicio: 

Argues for the Ptolemaic system. The “idiot”.   

Modeled after two of Galilelo’s enemies. 



Salviati Simplicio 

If I assert that all numbers, including both squares and non-

squares, are more than the squares alone, I shall speak the 

truth, shall I not? 

Most certainly. 

If I should ask further how many squares there are  

one might reply truly that there are  

as many as the corresponding number of square-roots,  

since every square has its own square-root  and  every square-

root its own square… 

Precisely so. 

But if I inquire how many square-roots there are,  

it cannot be denied that there are as many as the numbers because 

every number is the square-root of some square. This being 

granted, we must say that there are as many squares as there are 

numbers … 

Yet at the outset we said that there are many more numbers than 

squares. 



… Neither is the number of squares less than  

    the totality of all the numbers, … 

Salviati 

Sagredo: What then must one conclude under these circumstances? 

… nor the latter greater than the former, … 

… and finally, the attributes “equal,”  

    “greater,” and “less,” are not applicable    

    to infinite, but only to finite, quantities. 



“Infinity is nothing more than a figure of  speech 

 which helps us talk about limits. The notion of  a  

completed infinity doesn't belong in mathematics” 

- Carl Friedrich Gauss (1777 – 1855) 



Cantor (1845 – 1918) 



>  Explicit definitions comparing the cardinality  

    (size)  of  (infinite) sets 

>  There are different levels of  infinity. 

> The diagonalization argument 

>  Also:    |ℕ| = |Squares|  even though Squares 

    is a proper subset of  ℕ. 

Some of  Cantor’s contributions 

> There are infinitely many different infinities. 



I don’t know what predominates  

in Cantor’s theory - 

philosophy or theology. 

- Leopold Kronecker 

Reaction to Cantor’s ideas at the time 



Scientific charlatan. 

- Leopold Kronecker 

Reaction to Cantor’s ideas at the time 



Corrupter of  youth. 

- Leopold Kronecker 

Reaction to Cantor’s ideas at the time 



Utter non-sense. 

- Ludwig Wittgenstein 

Reaction to Cantor’s ideas at the time 



Laughable. 

- Ludwig Wittgenstein 

Reaction to Cantor’s ideas at the time 



WRONG. 

- Ludwig Wittgenstein 

Reaction to Cantor’s ideas at the time 



Most of  the ideas of  Cantorian set 

theory should be banished from 

mathematics once and for all! 

- Henri Poincaré 

Reaction to Cantor’s ideas at the time 



No one should expel us from the 

Paradise that Cantor has created. 

- David Hilbert 

Reaction to Cantor’s ideas at the time 



Cantor’s Definition 

Sets A and B have the same 

‘cardinality’ (size), written |A| = |B|, 

if there exists a bijection between them. 

Note:     This is not a definition of “|A|”. 

This is a definition of the phrase “|A| = |B|”. 



In Galileo’s case 

ℕ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … } 

S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … } 

There is a bijection between ℕ and S (namely, f(a)=a2) 

Thus |S|=|ℕ| (even though S ⊊ ℕ). 



More examples: Hilbert’s Grand Hotel 



More examples: Hilbert’s Grand Hotel 

(bijection is f(x) = x+1) 

One extra person: 

Extra bus: 

(bijection is f(x) = 2x) 

Infinitely many buses: 

(injection is f(j,j) = (ith prime)j 



injective,  1-to-1 

surjective,  onto 

bijective,  1-to-1 correspondence 

3 Important Types of  Functions 



Comparing cardinalities 



What does                  mean? 

iff  there is an injection from       to     . 

Comparing cardinalities of  finite sets 



What does                   mean? 

iff  there is an surjection from       to     . 

Comparing cardinalities of  finite sets 



Sanity checks for infinite sets 

Cantor 

Schröder 

Bernstein 

Transitivity is also true for bijections / equality. 



Cantor Schröder Bernstein 

Theorem: 

Proof: 
- Draw injections as directed edges between elements 

in the domain and elements in the range.  

- Each element has exactly one outgoing and at most 

one incoming edge. 

Get the union of directed cycles and directed paths 

which are infinite on one or both sides – all alternating 

between elements in A and B. 

- For each such path / cyle take every other edge  

    (starting with the end/beginning for one-sided infinite paths) 

This gives a perfect matching / 1-to-1 correspondence. 

              QED  



  ℕ = {+0, +1, +2, +3, +4, +5, +6, +7, …} 

   E = {   0, +2, +4, +6,  18,  10,  12,  14, …} 

   ℤ = {   0, −1, +1, −2, +2, −3, +3, −4, …} 

    P = {   2, +3, +5, +7,  11,  13,  17,  19, …} 

If S is an infinite set and you can 

list off its elements as s0, s1, s2, s3, … uniquely, 

in a well-defined way, then |S| = |ℕ|. 

Any set S with |S| = |ℕ| is called  

countably infinite. 
 

A set is called countable if it is either finite or 

countably infinite. 



So ℤ is countable.  Is ℤ2 countable? 

(0,0) 

(1,0) 

(1,1) 

(0,1) 

(−1,1) 

(−1,0) 

(−1,−1) 

(0,−1) 

(1,−1) 

(2,−1) 

(2,0) 

(2,1) 

(2,2) 

(1,2) 

(0,2) 



What about ℚ, the rationals?  Countable? 

Come on, no way! Between any two 

rationals there are infinitely many more. 

  

 

 
Is clearly a surjection, so |ℤ2| ≥ |ℚ|. 

Not so fast: 



Let’s do one more example. 
 

Let {0,1}* denote the set of all  

binary strings of any finite length. 
 

Is {0,1}* countable? 

Yes, this is easy.  Here is my listing: 

ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, … 

Length 0 

strings 

Length 1 strings 

in binary order 

Length 2 strings 

in binary order 

Length 3 strings 

in binary order 



Perhaps this definition 

just captures the difference 

between finite and infinite? 

Good question. 

If A and B are infinite sets 

do we always have |A| = |B|? 

Yeah, I was thinking about all this in 1873. 

The next most obvious question:   

Is ℝ (the reals) countable? 



The 1873 proof was specifically 

tailored to ℝ. 

 

In 1891, I described a much slicker 

proof of uncountability. 

 

People call it… 

 

 

 

 

 



I’ll use the diagonal argument to prove 

the set of all infinite binary strings, 

denoted {0,1}ℕ, is uncountable. 

Examples of infinite binary strings: 

 x = 000000000000000000000000000… 

 y = 010101010101010101010101010… 

 z = 101101110111101111101111110… 

w = 001101010001010001010001000… 

        (Here wn = 1 if and only if n is a prime.) 



We’ll come back to it.  Anyway, strings are more 

interesting than real numbers, don’t you think? 

I’ll use the diagonal argument to prove 

the set of all infinite binary strings, 

denoted {0,1}ℕ, is uncountable. 

Interesting!  I remember we 

showed that {0,1}*, the set of all 

finite binary strings, 

is countable. 

Yep. 

What 

about ℝ? 



Theorem: {0,1}ℕ is NOT countable. 

Suppose for the sake of contradiction that you can  

make a list of all the infinite binary strings. 

For illustration, perhaps the list starts like this: 
 

    0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

    1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1… 

    2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1… 

    3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0… 

    4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

    5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

   …     … 



 
 

    0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

    1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1… 

    2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1… 

    3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0… 

    4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

    5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

   …     … 

Consider the string formed by the ‘diagonal’: 

Theorem: {0,1}ℕ is NOT countable. 



 
 

    0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

    1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1… 

    2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1… 

    3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0… 

    4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

    5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

   …     …               ⋱ 

Consider the string formed by the ‘diagonal’: 

Theorem: {0,1}ℕ is NOT countable. 



 
 

    0:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

    1:    0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1… 

    2:    1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1… 

    3:    0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0… 

    4:    0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

    5:    1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

   …     …               ⋱ 

           Actually, take the negation of the string on the diagonal: 

        1 0 0 0 1 0… 

 It can’t be anywhere on the list, since it differs  

      from every string on the list!        Contradiction. 

Theorem: {0,1}ℕ is NOT countable. 



Here is the same proof, using words: 

Suppose for contradiction’s sake that {0,1}ℕ is countable. 

Thus |ℕ| ≥ |{0,1}∞|;  

            i.e., there’s a surjection f : ℕ → {0,1}∞. 

Define an infinite binary string w∈{0,1}∞ by wn = ¬ f(n)n. 

We claim that w ≠ f(m) for every m∈ℕ.  This is because,  

          by definition, they disagree in the mth position. 

Therefore f is not a surjection onto {0,1}ℕ, contradiction. 

Theorem: {0,1}ℕ is NOT countable. 



Theorem:  

For example: 

The same proof also shows: 



The same proof also shows: 

Suppose for contradiction’s sake that A ≥ {0,1}A, i.e., 

there’s a surjection f : A → {0,1}A. 

Define an string w∈{0,1}A by wa = ¬ f(a)a for every a∈A. 

We claim that w ≠ f(b) for every b∈A.  This is because,  

          by definition, they disagree in the position indexed by b. 

Therefore f is not a surjection onto {0,1}A, contradiction. 

Theorem:  



Awesome. So not only is {0,1} ℕ  

uncountable but there is a whole hirarchy 

of larger and larger infinities: 

 But what 

about ℝ? 

ℝ is uncountable.  Even the set [0,1] of all reals 

between 0 and 1 is uncountable. 

This is because there is a bijection  

between [0,1] and {0,1}ℕ. 

Hence |ℝ| ≥ | [0,1] | = |{0,1}ℕ| > |ℕ|. 



What’s the bijection  

between [0,1] and {0,1}∞? 

It’s just the function f which maps each  

real number between 0 and 1 to its  

binary expansion!  
 

E.g.:  1/2 ↔ .1000000000… 
 

 1/3  =  1/4 + 1/16 + 1/64 + … 

   ↔ .0101010101…  
 

 π−3  =  .14159265358979323…10 

  ↔  .00100100001111110…2 



Um, technically that’s not a surjection. 

It misses, e.g., .0111111111111111… 

It’s just the function f which maps each  

real number between 0 and 1 to its  

binary expansion!  
 

E.g.:  1/2 ↔ .1000000000… 
 

 1/3  =  1/4 + 1/16 + 1/64 + … 

   ↔ .0101010101…  
 

 π−3  =  .14159265358979323…10 

  ↔  .00100100001111110…2 



Sorry. 

Um, technically that’s not a surjection. 

It misses, e.g., .0111111111111111… 

You’re saying because this also 

equals 1/2? 

In the same way that,  

in base 10,     .499999… 

is the same as .500000…? 

Yeah. 

Ugh.  I was hoping you wouldn’t notice that. This was all so 

elegant – and you had to go and bring that up! 



There are a variety of easy hacks you can 

use to get around this issue. 



Summary: cardinalities we’ve seen so far 

card. sets with that cardinality 

0 ∅ 

2 {0,1},  {red,green}, … 

… 

ℕ, Primes, Squares, ℤ, ℤ2, ℕ2, ℚ, {0,1}*, … 

… 

“ℵ0” 
“aleph zero” 

{0,1}ℕ, [0,1], ℝ… 
         = “c” 

“the continuum” 

= 

… 
{S | S subset of ℝ } 



Summary: cardinalities we’ve seen so far 

Fact:  There are no infinite sets with  

cardinality less than |ℕ|.  

Question:  Is there any set S with                 

|ℕ| < S < |ℝ|? 

I didn’t think so, and called this the 

Continuum Hypothesis.  I spent a really 

long time trying to prove it, with no 

success.  



Summary: cardinalities we’ve seen so far 

Fact:  There are no infinite sets with  

cardinality less than |ℕ|.  

Question:  Is there any set S with                 

|ℕ| < S < |ℝ|? 

I didn’t think so, and called this the 

Continuum Hypothesis.  I spent a really 

long time trying to prove it, with no 

success.  

There’s a reason you failed… 

And it’s not because the  

Continuum Hypothesis is false… 



Proving sets countable: 

the computer scientist’s method 

We showed |{0,1}*| = |ℕ|. 

E.g., if Σ = {0, 1, …, 9, a, b, …, z, +, −, *, /, ^}: 

Actually, if  Σ  is any finite “alphabet” (set) 

then Σ* = {all finite strings over alphabet Σ} 

is countably infinite. 

ϵ, 0, 1, …, a, …, /, ^, 00, 01, …, 0a, 0/, 0^, 10, …, ^/, ^^, 000, 001, … 



Proving sets countable: 

the computer scientist’s method 

Suppose we want to show that a set  

S={all mathematical objects of type-T} is countable. 

First specify a way to encode any such object X 

with strings over some finite alphabet Σ.  

(recall, we write        for this encoding). 
 

If     :Σ* → S is a surjection, i.e., 

has at least one encoding for any X in S, 

then |ℕ| = |Σ*| ≥ S. 

 

then                and since       is countable so is S! 



Proving sets countable: 

the computer scientist’s method: 

 

Encodable = Countable 

 

If a set of mathematical objects is encodable 

then it is countable. 



Proving sets countable: 

the computer scientist’s method 

Prove that ℚ[x] is countable. Ex. problem: 

Valid solution: 

Any polynomial in ℚ[x] can be described 

by a finite string over the alphabet 

 Σ = {0, 1, …, 9, x, +, −, *, /, ^}. 
 

(For example: x^3−1/4x^2+6x−22/7.) 

 

 



Definitions: 

   Cardinality 

   Countable 
 

 

 

 

Theorem/proof: 

   Countability of various sets. 

   Cantor-Bernstein Thm. 

   Diagonalization: 

       Uncountability of {0,1}∞. Study Guide 


