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Robustness of Decidability 

Decidability power is the same for TMs with: 

Decidability power is also the same as: 

- Python, C, Java, Assembly (any other language) 

- Random Access Machiene + other comp. models 

- Lambda-Calculus 

 

- one-sided or double-sided infinite tape  

- ability to stay in addition to going left / right 

- even a fixed (oblivious) moving pattern works 

- binary or larger finite tape alphabet 

- one tape or a finite number of tapes/heads 



Side note: Efficiency 

Model details (and encodings) do play a role when it 

comes to efficiency, e.g., how many computation 

steps are needed.  

Examples: 

   - a TM with one tape can simulate any multi-tape TM with 

      a quadratic slowdown (sometimes needed) 

   - Random Access Machines can be simulated by a  

      multi-tape TM with logarithmic slowdown 

   - Quantum computation can be simulated with exponential 

     slowdown. It is unknown whether a super-polynomial 

     slowdown is needed) 



Robustness of Decidability 

Most computational models, including those abstracted 

from any natural phenomenon, tend to be either wimpy or 

Turing equivalent, i.e., exactly equivalent in computational 

power to TMs. 

No candidates of potentially implementable / natural 

computational models that are more powerful than a TM 

have been suggested.  

Church–Turing Thesis (1936): 

“Any natural / reasonable notion of 

computation can be simulated by a TM.” 



Cellular Automata 

Most systems / the world can be described as many (tiny) 

parts interacting with other close-by parts.  

 

Formal computational model: 

A Cellural automaton (CA) consists of: 

 - cells with a finite set of states Q 

 - a neighborhood relation between cells 

 - a transition function δv: Q
deg(v)+1 → Q 

Computation: In every round every cell v (synchronously) 

transitions its state according to δv based on its and its 

neighbors’ state. 



Applications of Cellular Automata 

• Simulation of Biological Processes 
 

• Simulation of Cancer cells growth 
 

• Predator – Prey Models 
 

• Art 
 

• Simulation of Forest Fires 
 

• Simulations of Social Movement 
 

• …many more..  

 



Cellular Automata: Examples 



Example CA: Conway’s Game of Life 



Example CA: Conway’s Game of Life 

Cells form the infinite 2D-Grid 

 

Q = {alive,dead} 

 

3 transition rules (δ: Q9 → Q):  

 

Loneliness:  Life cell with fewer than 2 neighbors dies. 

 

Overcrowding:  Life cell with at least 4 life neighbors dies. 

  

Procreation: Dead cell with exactly 3 neighbors gets born. 



 

• loneliness   

 

 

 

• overcrowding  

 

 

 

• procreation  

Conway’s Game of Life: Rule examples 



Conway’s Game of Life: Patterns 

Stable 

Periodic 

Moving 



Example CA: Conway’s Game of Life 



Theorem:  For any TM there is a 1D-CA simulating it. 

Construction Sketch: 

 - For TM with state set Q and tape alphabet Γ create 

   1D-CA with state space Γ x (Q ∪ {-}). 

 - Cells simulate the tape and exactly one cell indi- 

    cates the position of the a head and the TM state.  

 - Cells only transition if a neighboring cell contains 

   the head. 

 - Transitions are based on the TM transition function.  

CA Turing Equivalence 

Theorem:  Python / a TM can simulate any CA. 
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Theorem:  For any TM there is a 1D-CA simulating it. 

Construction Sketch: 

For TM with state set Q and tape alphabet Γ create 

1D-CA with state space Γ  x (Q ∪ {-}).. 

Cells simulate the tape and exactly one cell indicates 

the position of the a head and the TM state. Cells only 

transition if a neighboring cell contains the head. 

Transitions are based on the TM transition function.  

CA Turing Equivalence 

Theorem:  Python / a TM can simulate any CA. 

Theorem:  Game of Life can simulate a universal TM.  



“Any natural / reasonable notion of 

computation can be simulated by a TM.” 

Church–Turing Thesis: 



Decidability 



Decidable languages 

Definition: 

A language L ⊆ Σ* is decidable if there is  

     a Turing Machine M which: 
 

1.  Halts on every input  x∈ Σ*. 

2.  Accepts inputs x∈L and rejects inputs x∉L.  

Such a Turing Machine is called a decider.   

It ‘decides’ the language L. 
 

We like deciders. We don’t like TM’s that sometimes loop. 



Decidability: Poll 

ACCEPTDFA = {            | D is a DFA that accepts x} 
  

EMPTYDFA = {        | D is a DFA that accepts no x} 
  

EQUIVDFA = 

 = {              | D and D’ are DFA and L(D) = L(D’)} 
  

SELF-ACCEPTDFA = {       | D is a DFA that accepts        } 
  



Encoding different objects with strings 

We use the      notation to denote the encoding of an 

object as a string in      . 

Examples: 

Fix some alphabet     . 

is the encoding a TM 

is the encoding a DFA 

is the encoding of a pair of  TMs 

is the encoding a pair            ,  where  

     is a TM,  and             . 



Decidability: Poll 

ACCEPTDFA = {            | D is a DFA that accepts x} 
  

EMPTYDFA = {        | D is a DFA that accepts no x} 
  

EQUIVDFA = 

 = {              | D and D’ are DFA and L(D) = L(D’)} 
  

SELF-ACCEPTDFA = {       | D is a DFA that accepts        } 
  



Decidability: Examples 

ACCEPTDFA = {            | D is a DFA that accepts x} 
  

SELF-ACCEPTDFA = {       | D is a DFA that accepts        } 
  

Theorem: 

ACCEPTDFA is decideable. 

SELF-ACCEPTDFA is decideable. 

Proof:  Simulate DFA step by step.  



Decidability: Examples 

Theorem: 

EMPTYDFA is decidable. 

Proof: 

A DFA D accepts the empty language iff  

    no accepting state is reachable from the start state 

    via a simple sequence of states. 

Try all |Q|! possible such sequences.  

EMPTYDFA = {        | D is a DFA that accepts no x} 
  



Decidability: Examples 

EQUIVDFA is decidable. 

Proof: 

Create a DFA D’’ for the symmetric difference  

 

using the Union and Intersection theorem for DFA.  

Run the decider TM for EMPTYDFA on         . 

EQUIVDFA = 

 = {              | D and D’ are DFA and L(D) = L(D’)} 
  
Theorem: 



Reductions 

Definition: 

Language A reduces to language B means: 

      “It is possible to decide A using an 

  algorithm for deciding B as a subroutine.” 

Notation:              A ≤T B      (T stands for Turing). 

Think, “A is no harder than B”. 

Using one problem as a subroutine to solve 

 another is a powerful algorithmic technique. 



Reductions 

Fact: 

Suppose A ≤T B; i.e., A reduces to B. 

If B is decidable, then A is also decidable. 

 

Here:     

EQUIVDFA ≤T EMPTYDFA and EMPTYDFA  is decidable. 

This makes EQUIVDFA decidable.  

Indeed, EQUIVDFA is at most as hard as EMPTYDFA 

because solving EQUIVDFA is easy given a 

solution to EMPTYDFA. 
 



Undecidability 



Definition: 

A language L ⊆ Σ* is undecidable if there is  

     no Turing Machine M which: 
 

1.  Halts on every input  x∈ Σ*. 

2.  Accepts inputs x∈L and rejects inputs x∉L.  

Undecidability 



Let     be the set of all languages over              . 

Select all correct ones: 

- A is finite 

- A is countable 

- A is uncountable 

- A is infinite 

Poll 

Σ = {0,1} 



Let     be the set of all languages over              . 

Select all correct ones: 

- A is finite 

- A is countable 

- A is uncountable 

- A is infinite 

Poll 

Σ = {0,1} 



Question:  

Is every language in {0,1}* decidable? 

Is every function f : {0,1}*→{0,1} computable? 

Answer:  

Every TM is encodable by a finite string.   

Therefore the set of all TM’s is countable. 

So the subset of all decider TM’s is countable. 

Thus the set of all decidable languages is countable. 

No! 

But the set of all languages is the power set of {0,1}* 

which is uncountable.  

⇔ 



Question:  

Is every language in {0,1}* decidable? 

Is every function f : {0,1}*→{0,1} computable? 

Answer:  

Essentially all (decision) functions are uncomputable! 

⇔ 



Definitions: 
    Cellular Automata (CA) 

     Reductions 

     Undecidability 
    

 

Theorems/proofs: 

    Turing equivalency of CA 

    Decidability of several 
 languages 

    Existence of undecidable 
 problems 
 

Practice: 

   Decidability Proofs 

  (via Reductions) 

Study Guide 


