15-251: Great Theoretical Ideas in Computer Science Lecture 8

## Undecidability



## Almost all Languages are undecidable

Set of all languages: $\left|\left\{S \mid S \subseteq\{0,1\}^{*}\right\}\right|=\left|\mathcal{P}\left(\{0,1\}^{*}\right)\right|=|\mathbb{R}|$
Set of all dec. lang.: $\leq \mid\left\{\langle M\rangle \in\{0,1\}^{*} \mid M\right.$ is a decider TM $\}$

$$
=\left|\{0,1\}^{*}\right|=|\mathbb{N}|
$$

$\Rightarrow$ Most languages do not have a TM deciding them

Question:
Is it just weird languages that no one would care about which are undecidable?

Answer (due to Turing, 1936):

Sadly, no.

There are many natural languages one would like to compute but which are undecidable.


## Many interesting Languages are undecidable



In particular, any problems related to non-wimpy /
Turing equivalent computation are undecidable.

## Decidable Problems

ACCEPT $_{\text {DFA }}=\{\langle D, x\rangle \mid$ D is a DFA that accepts $\mathbf{x}\}$
SELF-ACCEPT $_{\text {DFA }}=\{\langle D\rangle \mid \mathbf{D}$ is a DFA that accepts $\langle D\rangle\}$
EMPTY $_{\text {DFA }}=\{\langle D\rangle \mid$ D is a DFA that accepts no $x\}$
EQUIV $_{\text {DFA }}=$
$=\left\{\left\langle D, D^{\prime}\right\rangle \mid \mathrm{D}\right.$ and $\mathrm{D}^{\prime}$ are DFA and $\left.\mathrm{L}(\mathrm{D})=\mathrm{L}\left(\mathrm{D}^{\prime}\right)\right\}$
Theorem:
ACCEPT $_{\text {DFA }}$, SELF-ACCEPT ${ }_{\text {DFA }}$, EMPTY DFA and EQUIV ${ }_{\text {DFA }}$ are decideable.

## Undecidable Problems

ACCEPT $_{\text {TM }}=\{\langle M, x\rangle \mid M$ is a TM that accepts $\mathbf{x}\}$

SELF-ACCEPT $_{\text {TM }}=\{\langle M\rangle \mid M$ is a TM that accepts $\langle M\rangle\}$
EMPTY $_{\text {TM }}=\{\langle M\rangle \mid M$ is a TM that accepts no $x\}$
EQUIV $_{\text {TM }}=$
$=\left\{\left\langle M, M^{\prime}\right\rangle \mid M\right.$ and $M^{\prime}$ are $T M s$ and $\left.L(M)=L\left(M^{\prime}\right)\right\}$
Theorem:
ACCEPT $_{\text {TM }}$, SELF-ACCEPT $_{\text {TM }}$, EMPTY $_{\text {TM }}$ and EQUIV $_{\text {TM }}$ are undecideable.

## Example: Program Equivalence

Given a program P and a program P' we would like to automatically decide whether both do the same thing.

Formally:
EQUIV $_{\text {TM }}=$
$=\left\{\left\langle P, P^{\prime}\right\rangle \mid \mathbf{P}\right.$ and $\mathrm{P}^{\prime}$ are Python programs and LD) = LCD')\} ~

Useful for:

- Compiler Optimization
- Matching programs to their specification
- Autograder for 112 or 251


## Example: 112 Autograder

First 112 assignment: Write a "Hello World" program.
Given a program P submitted by a student we want to automatically decide whether P does the right thing.

We want an algorithm A such that:
$\mathrm{A}(\langle P\rangle)= \begin{cases}\text { pass } & \text { iff } P \text { outputs "Hello World" and } \\ \text { fail } & \text { otherwise }\end{cases}$

More formally we want to decide the language HELLO $=\{\langle M\rangle \mid \mathbf{M}$ is a TM that outputs "Hello World" when run on the empty intput\}

## Simple enough, no?

Not at CMU!

## Hello World HW Submission \#1

main( $\mathrm{t},-, \mathrm{a}$ ) char * a; \{ return! $0<t$ ? $\mathrm{t}<3$ ? main( $-79,-13, \mathrm{a}+$ main( $-87,1-$, main( $-86,0, \mathrm{a}+1$ ) $+\mathrm{a})$ ): $1, \mathrm{t}<$ ? main $(\mathrm{t}+1, \ldots, a): 3$, main ( $-94,-27+\mathrm{t}, \mathrm{a}) \& \& \mathrm{t}=2$ ? $<13$ ? main ( $2,{ }_{-}+1$, "\%s \%d \%dln" ) :9:16: t<0? t<-72? main( _, t,
"@n'+,\#'/*\{\}w+/w\#cdnr/+,\{\}r/*de\}+,/*\{*+,/w\{\%+,/w\#q\#n+,/\#\{1,+,/n\{n+,/+\#n+,/\#;\#q\#n+,/+k\#;*+,/'r :'d*'3,\}\{w+K w'K:'+\}e\#'; $d q \neq \mid$
q\#'+d'K\#!/+k\#;q\#'r\}eKK\#\}w'r\}eKK\{nl]/\#;\#q\#n')\{)\#\}w')\{)\{nl]/'+\#n';d\}rw' i;\# )\{nl]!/n\{n\#'; r\{\#w'r nc\{nl]'/\#\{l,+'K \{rw' iK\{;[\{n1]'/w\#q\#n'wk nw' iwk\{KK\{n|]!/w\{\%'I\#\#w\#' i;
 ')\# \}'+\}\#\#\#(!!/") : t<-50? _==*a ? putchar(31[a]): main(-65,_,a+1) : main((*a == 'l') + t, _, a + 1 ): $0<t$ ? main ( 2,2, "\%s") :*a=='/|| main(0, main(-61,*a, "!ek;dc i@bK'(q)[w]*\%n+r3\#\#, \{\}:Inuwloca-O;m .vpbks,fxntdCeghiry") ,a+1);\}

## This C program prints out all the lyrics of The Twelve Days Of Christmas.

Ok, so let just run the program P and check the output.

## Hello World HW Submission \#2

## def HelloWorld():

$t=3$
while (True):
for n in xrange $(3, \mathrm{t}+1$ ):
for $x$ in $\operatorname{xrange}(1, t+1)$ :
for $y$ in xrange( $1, \mathrm{t}+1$ ):
for $z$ in xrange $(1, t+1)$ : if ( $\mathrm{x}^{* *} \mathrm{n}+\mathrm{y}^{* *} \mathrm{n}==\mathrm{z}^{* *} \mathrm{n}$ ):


> return "Hello World"
$\mathrm{t}+=1$
Terminates and outputs "Hello World" if and only if Fermat's Last Theorem is false.

## Hello World HW Submission \#3

numberToTest := 2;
flag := 1;
while flag = 1 do
flag := 0;
numberToTest := numberToTest + 2;
for $p$ from 2 to numberToTest do if IsPrime( $p$ ) and IsPrime(numberToTest- $p$ ) then flag := 1;
break; end if
end for
Terminates and outputs "Hello World" end do print("HELLO WORLD")

## A simple undecidable language

Autograder / Hello World problem:
Given a program P, is it terminating and outputting "Hello World"?
HELLO $=\{\langle M\rangle \mid \mathrm{M}$ is a TM that outputs "Hello World" on the empty intput $\varepsilon\}$

Halting problem:
Given a program P , is it terminating?
$\operatorname{HALT}_{\varepsilon}=\{\langle M\rangle \mid M$ is a TM terminating on $\varepsilon\}$
HALT $=\{\langle M, x\rangle \mid \mathrm{M}$ is a TM terminating on x$\}$

## The Halting Problem is Undecidable (1936)



## The Halting Problem is Undecidable

Theorem:
The language
HALT $=\{\langle M, x\rangle \mid \mathbf{M}$ is a $\mathbf{T M}$ terminating on $\mathbf{x}\}$ is undecidable.

Proof:
Assume for the sake of contradiction that $\mathrm{M}_{\text {HALT }}$ is a decider TM which decides HALT.

## The Halting Problem is Undecidable

Here is the description of another TM called D, which uses $\mathrm{M}_{\text {HALT }}$ as a subroutine:

Given as input $\langle M\rangle$, the encoding of a TM M:
D executes $\mathrm{M}_{\text {HALT }}(\langle\mathrm{M},\langle\mathrm{M}\rangle\rangle)$.
If this call accepts, D enters an infinite loop.
If this call rejects, D halts (say, it accepts).

In other words... $\mathrm{D}(\langle\mathrm{M}\rangle)$ loops if $\mathrm{M}(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops.

## The Halting Problem is Undecidable

Assume $\mathrm{M}_{\text {HALT }}$ is a decider TM which decides HALT.
We can use it to construct a machine D such that
$D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops.

Time for the contradiction:
Does $\mathrm{D}(\langle\mathrm{D}\rangle)$ loop or halt?

By definition, if it loops it halts and if it halts it loops.
Contradiction.

## Cantor's Diagonal Argument.

## $D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops

The set of all TM's is countable, so list it:

|  | $\left\langle M_{1}\right\rangle$ | $\left\langle M_{2}\right\rangle$ | $\left\langle M_{3}\right\rangle$ | $\left\langle M_{4}\right\rangle$ | $\left\langle M_{5}\right\rangle$ | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $M_{1}$ | halts | halts | loops | halts | loops |  |
| $M_{2}$ | loop | loops | loops | loops | loops |  |
| $M_{3}$ | halts | loops | halts | halts | halts |  |
| $M_{4}$ | halts | halts | halts | halts | loops |  |
| $M_{5}$ | halts | loops | loops | halts | loops |  |

## How could D be on this list?

What would the diagonal entry be??
$D(\langle M\rangle)$ loops if $M(\langle M\rangle)$ halts, halts if $M(\langle M\rangle)$ loops

The set of all TM's is countable, so list it:

|  | $\left\langle M_{1}\right\rangle$ | $\left\langle M_{2}\right\rangle$ | $\left\langle M_{3}\right\rangle$ | $\left\langle M_{4}\right\rangle$ | $\left\langle M_{5}\right\rangle$ | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $M_{1}$ | halts | halts | loops | halts | loops |  |
| $M_{2}$ | loop | loops | loops | loops | loops |  |
| $M_{3}$ | halts | loops | halts | halts | halts |  |
| $M_{4}$ | halts | halts | halts | halts | loops |  |
| $M_{5}$ | halts | loops | loops | halts | loops |  |

## The Halting Problem is Undecidable

Theorem:
There exists no program $P_{\text {HALT. }}$. py which, given as input a program file P.py and an input file input.txt, always correctly outputs whether program P.py terminates on this input.

Proof:
Assume for the sake of contradiction that $P_{\text {HALT. }}$ py exists.

## The Halting Problem is Undecidable

Here is the pseudo-code of another program Impossible.py, which uses $\mathrm{P}_{\text {HALT. }}$.py as a subroutine:

Impossible.py:
Input: Program file P.py
Copy P.py to input.txt
run $P_{\text {HALT. }}$ py, as a subroutine, with P.py and input.txt, i.e.,
result $=$ P $_{\text {HALT }}$.py P.py input.txt
If result $==$ halts then loop forever
else terminate

## The Halting Problem is Undecidable

## Imp.py:

Input: Program file P.py
Copy P.py to input.txt
run $\mathrm{P}_{\text {HALT, }}$ as a subroutine, with P.py and input.ttx, i.e., result $=\mathrm{P}_{\text {HaLt }}$.py P.py input.txt
If result $==$ halts then loop forever else terminate

Now running Imp.py with Imp.py as input leads to the execution of $P_{\text {HALT }}$ py Imp.py Imp.py followed by doing the opposite of what $\mathrm{P}_{\text {HALT }}$ Imp.py Imp.py predicted would happen.

## Given some code, determine if it terminates.

It's not: "we don't know how to solve it efficiently".

It's not: "we don't know if it's a solvable problem".

We know that it is unsolvable by any algorithm.

We know that it is unsolvable by any algorithm, any mechanism, any human being, anything in this world and any (physical) world we can imagine.

## ACCEPT is undecidable

Theorem:

## ACCEPT $=\{\langle M, x\rangle \mid M$ is a TM which accepts $x\}$ is undecidable.

We could use the same diagonalization proof for ACCEPT.
But maybe there is an easier way ...
Particularly, ACCEPT seems clearly harder than HALT.
After all, how can I decide if a program accepts if I don't even know if it halts.

## ACCEPT is undecidable

Theorem:
ACCEPT $=\{\langle M, x\rangle \mid M$ is a TM which accepts $x\}$ is undecidable.

New Proof Strategy:
Try to show that:
ACCEPT is at least as hard as HALT


HALT is at most as hard as ACCEPT


HALT would be easy if ACCEPT were easy

## ACCEPT is undecidable

## Theorem:

## ACCEPT $=\{\langle M, x\rangle \mid M$ is a TM which accepts $x\}$ is undecidable.

Proof (by contradiction):
Assume ACCEPT is decidable then show that HALT would be also decidable:
Suppose $\mathrm{M}_{\text {ACCEPT }}$ is a TM deciding ACCEPT.
Here is a description of a TM deciding HALT:
"Given $\langle M, x\rangle$, run $M_{\text {ACCEPTS }}(\langle M, x\rangle)$. If it accepts, then accept.
Reverse the accept \& reject states in $\langle M\rangle$, forming $\langle M\rangle$.
Run $M_{\text {ACcEPTS }}\left(\left\langle M^{\prime}, x\right\rangle\right)$. If it accepts (i.e., $M$ rejects $\left.x\right)$, then accept.
Else reject."

## New Proof Strategy summarized:

Want to show:

## Problem L is undecidable

New Proof Strategy:

Deciding L is at least as hard as deciding HALT


HALT would be easy if $L$ were easy


## Reductions

## Definition:

Language A reduces to language B means: "It is possible to decide A using an algorithm for deciding B as a subroutine."

Notation:
$\mathrm{A} \leq_{T} \mathrm{~B}$
(T stands for Turing).
Think, "A is no harder than B ".

## Reductions

## Fact:

Suppose $A \leq_{T} B$; i.e., A reduces to B.
If $B$ is decidable, then so is $A$.

We actually used the contrapositive:
Fact:
Suppose $\mathrm{A} \leq_{T} \mathrm{~B}$; i.e., A reduces to B.
If A is undecidable, then so is B .

Note that " $\mathrm{A} \leq_{T} \mathrm{~B}$ " is a stronger statement than proving that A is decidable under the assumption that B is decidable.

## Reductions

# Reductions are the main technique for showing undecidability. 

## Interesting:

We use a positive statement, i.e., the existence of a reduction algorithm, in order to prove a negative (impossibility) result.

## Reductions (HALT $\leq_{T}$ ACCEPT)

## Theorem:

For ACCEPT $=\{\langle M, x\rangle \mid M$ is a TM which accepts $x\}$ we have HALT $\leq_{T}$ ACCEPT.

## Proof:

Suppose $\mathrm{M}_{\text {ACCEPT }}$ is a subroutine deciding ACCEPT.
Here is a description of a TM deciding HALT:
"Given $\langle M, x\rangle$, run $M_{\text {ACcEPTS }}(\langle M, x\rangle)$. If it accepts, then accept.
Reverse the accept \& reject states in $\langle M\rangle$, forming $\langle M\rangle$.
Run $\mathrm{M}_{\text {ACCEPT }}\left(\left\langle\mathrm{M}^{\prime}, \mathrm{x}\right\rangle\right)$. If it accepts (i.e., M rejects x ), then accept.
Else reject."

## More Reductions $\left(\mathrm{ACCEPT} \leq_{\mathrm{T}}\right.$ ALL)

 Theorem:ALL $=\{\langle M\rangle \mid M$ accepts all strings $\}$ is undecidable. (and therefore its compliment EMPTY is as well)

Proof: $\left(\right.$ ACCEPT $\leq_{T}$ ALL)
Suppose $\mathrm{M}_{\text {ALL }}$ is a subroutine deciding ALL.
Here is a description of a TM deciding ACCEPT:
"Given $\langle\mathrm{M}, \mathrm{x}\rangle$, write down the description $\left\langle\mathrm{M}_{\mathrm{x}}\right\rangle$ of a TM $\mathrm{M}_{\mathrm{x}}$ which does this:
"Overwrite the input with $x$ and then run M."
Call subroutine $M_{\text {ALL }}$ on input $\left\langle M_{x}\right\rangle$. Accept if it accepts, reject otherwise" (Note that $M_{x}$ behaves the same on all inputs and in particular we have that $M_{x}$ accepts all strings if and only if $M$ accepts $x$.)

## More Reductions (ACCEPT $\leq_{T}$ EMPTY)

## Theorem:

We also have ACCEPT $\leq_{T}$ EMPTY.

Proof: (ACCEPT $\leq_{T}$ EMPTY)
Suppose $\mathrm{M}_{\text {EMPTY }}$ is a subroutine deciding EMPTY.
Here is a description of a TM deciding ACCEPT:
"Given $\langle M, x\rangle$, write down the description $\left\langle M_{x}\right\rangle$ of a TM $M_{x}$ which does this:
"Overwrite the input with $x$ and then run M."
Call subroutine $\mathrm{M}_{\text {EMPTY }}$ on input $\left\langle\mathrm{M}_{\mathrm{x}}\right\rangle$. Reject if it accepts else reject."

## More Reductions (ALL,EMPTY $\leq_{\mathrm{T}}$ EQUIV)

 Theorem:EQUIV $=\left\{\left\langle M, M^{\prime}\right\rangle \mid L(M)=L\left(M^{\prime}\right)\right\}$ is undecidable.

Proof: $\left(\mathrm{ALL} \leq_{T}\right.$ EQUIV and EMPTY $\leq_{T}$ EQUIV)
Suppose $\mathrm{M}_{\text {Eouv }}$ is a subroutine deciding EQUIV.
Here is a description of a TM deciding ALL:
"Given $\langle M\rangle$ write down the description $\langle M$ " $\rangle$ of a TM M' which always accepts / rejects.

Then call subroutine $\mathrm{M}_{\text {Equiv }}$ on input $\left\langle\mathrm{M}, \mathrm{M}^{\prime}\right\rangle$."

## Poll - Test your Intuition

We just showed:

$$
\begin{gathered}
\text { HALT } \leq_{\mathrm{T}} \text { ACCEPT } \leq_{\mathrm{T}} \text { EMPTY } \leq_{\mathrm{T}} \text { EQUIV } \\
\text { and } \\
\text { ACCEPT } \leq_{\mathrm{T}} \text { ALL } \leq_{\mathrm{T}} \text { EQUIV }
\end{gathered}
$$

Which of the following, do you believe also hold?

HALT $\leq$ EMPTY<br>HALT $\leq$ EQUIV<br>EMPTY $\leq$ ACCEPT<br>EQUIV $\leq$ EMPTY<br>EQUIV $\leq$ HALT

## Poll - Test your Intuition

We just showed:

$$
\begin{gathered}
\text { HALT } \leq_{\mathrm{T}} \text { ACCEPT } \leq_{\mathrm{T}} \text { EMPTY } \leq_{\mathrm{T}} \text { EQUIV } \\
\text { and } \\
\text { ACCEPT } \leq_{\mathrm{T}} \mathrm{ALL} \leq_{\mathrm{T}} \text { EQUIV }
\end{gathered}
$$

Which of the following, do you believe also hold?


## More Reductions $\left(\right.$ EMPTY $\leq_{T}$ HALT)

## Theorem:

HALT, ACCEPT, EMPTY are all equally hard.

Proof: (EMPTY $\leq_{T}$ HALT)
Suppose $\mathrm{M}_{\text {HALT }}$ is a subroutine deciding HALT.
Here is a description of a TM deciding EMPTY:
"Given $\langle M\rangle$, write down the description $\left\langle M^{\prime}\right\rangle$ of a TM M' which does this:
"For t=1 to $\infty$
run $M$ on each string of length at most $t$ for $t$ steps
If any execution terminates and accepts then terminate (+ accept)"
Then call subroutine $\mathrm{M}_{\text {HALT }}$ on input $\left\langle\mathrm{M}^{\prime}, \varepsilon\right\rangle$ but reverse the accept/reject."

## More Undecidability

Theorem:
HALT, ACCEPT, EMPTY are all equally hard.
What about EQUIV and ALL?
Fun Fact \#1:
EQUIV and ALL are harder than HALT and so are TOTAL $=\{\langle M\rangle \mid M$ halts on all inputs $x\}$ FINITE = $\{\langle M\rangle \mid L(M)$ is finite $\}$
and in fact all these problems are equally hard.
Fun Fact \#2:
There is an infinite hierarchy of harder and harder undecidable languages.

## More Undecidability

## Fun Fact:

There is an infinite hierarchy of harder and harder undecidable languages. (which however still only covers countably many languages)

How does one define / construct this hierarchy?
Look at TMs which have a subroutine/oracle that solves HALT. These oracle TMs can solve ACCEPT and other equivalent problems easily BUT they cannot decide if an oracle TM given to them halts. This makes the HALTing problem for oracle TMs even harder. ...

Question:
Do all undecidable problems involve TM's?

Answer:
No! Some very different problems are undecidable!

## Cellular Automata

## Input: A CA with its initial configuration.

## E.g. a game of life pattern



Theorem: Deciding whether the input CA loops is an undecidable problem.

## Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.


Definition: A match is a sequence of dominoes, repetitions allowed, such that top string $=$ bottom string.

## Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.


Match:

$=a b c c a b c c$
$=a b c c a b c c$

## Post's Correspondence Problem

Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.
Theorem (Post, 1946): Undecidable.
There is no algorithm solving this problem.
(More formally, PCP = \{〈Domino Set $\rangle$ : there's a match $\}$ is an undecidable language.)

## Post's Correspondence Problem

## Input: A finite collection of "dominoes", having strings written on each half.

Task: Output YES if and only if there is a match.

Theorem (Post, 1946): Undecidable.

Two-second proof sketch:
Given a TM M, you can make a domino set such that the only matches are execution traces of $M$ which end in the accepting state. Hence ACCEPTS $\leq_{T} P C P$.

## Wang Tiles

Input: Finite collection of "Wang Tiles" (squares) with colors on the edges. E.g.,


Task: Output YES if and only if it's possible to make an infinite grid from copies of them, where touching sides must color-match.

Theorem (Berger, 1966): Undecidable.

## Richardson's Problem

Input: A set S of rational numbers.
What you can do: Make an expression E using the numbers in $S$, the numbers $\pi$ and $\ln (2)$, the variable x, and operations +, -, ', sin, exp, abs.

Question: Can you make an E such that $E \equiv 0$ ?

Theorem (Richardson, 1968): Undecidable.

## Mortal Matrices

Input: Two $21 \times 21$ matrices of integers, A \& B.
Question: Is it possible to multiply A and B together (multiple times in any order) to get the 0 matrix?

Theorem (Halava, Harju, Hirvensalo, 2007):
Undecidable.

## Hilbert's $10^{\text {th }}$ problem

Input: Multivariate polynomial w/ integer coeffs.
Question: Does it have an integer root?

Theorem (1970): Undecidable.

Matiyasevich Robinson
Davis Putnam


## Hilbert's $10^{\text {th }}$ problem

Input: Multivariate polynomial w/ integer coeffs.
Question: Does it have an integer root? Undecidable.

Question: Does it have a real root? Decidable.


Question: Does it have a rational root?
Not known if it's decidable or not.

## Definitions:

 Halting and other Problems

## Study Guide

Theorems/proofs: Undecidability of HALT many reduction proofs

Practice:
Diagonalization Reductions
Programming with TM's

