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15-251 
Great Theoretical Ideas in Computer Science 

Lecture 9:
Introduction to Computational Complexity



Poll

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

What is the running time of this algorithm?

O(1)

O(log n)

O(n1/2)

O(n)

O(n2)

O(n3)

O(2n)

O(n log n)

Choose the tightest bound.



What have we done so far?

What will we do next?



What have we done so far?

>  Introduction to the course
“Computer science is no more about computers 
than astronomy is about telescopes.”

>  Strings and Encodings

>  Formalization of computation/algorithm

Deterministic Finite Automata

Turing Machines



What have we done so far?

>  The study of computation

Computability/Decidability

- Most problems are undecidable.

- Some very interesting problems are undecidable.

But many interesting problems are decidable!



What is next?

>  The study of computation

Computability/Decidability

Computational Complexity  (Practical Computability)

- How do we define computational complexity?

- What is the right level of abstraction to use?

- How do we analyze complexity?

- What can we do to better understand
  the complexity of problems?

- What are some interesting problems to study?



Why is computational complexity important?



Why is computational complexity important?

complexity  ~  practical computability

Simulations  (e.g. of physical or biological systems)

- tremendous applications in science, engineering, medicine,…

Optimization problems

- arise in essentially every industry

Security, privacy, cryptography

- applications of computationally hard problems

Social good

- finding efficient ways of helping others

Artificial intelligence list goes on 
. 
. 
.



Why is computational complexity important?

(or maybe 6 million dollar question)

1 million dollar question



Goals for this week



Goals for the week

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction



What is the right language and level of abstraction 
for studying  computational complexity?

“The (asymptotic) complexity of algorithm A is           .”

What is the meaning of:

O(n2)



We have to be careful

Size matters

Value matters

Model matters



Size matters

n is usually:      # bits in a binary encoding of input.
sometimes:      explicitly defined to be something else.

Running time of an algorithm depends on input length.

n = input length/size

sorting bazillion numbers         sorting 2 numbers.>



Running time of an algorithm is a function of n.

GREAT IDEA # 1

(But what is n going to be mapped to?)



We have to be careful

Size matters

Value matters

Model matters



Value matters

Not all inputs are created equal!

Among all inputs of length n:

- some might take 2 steps

- some might take bazillion steps.



GREAT IDEA # 2

Running time of an algorithm is a worst-case function of n.

n # steps taken by the worst input 
of length n7!



Value matters

BUT worst-case analysis has its advantages:

- An ironclad guarantee.

- Hard to define “typical” instances.

We are not dogmatic about it.

Can do “smoothed analysis”.

Can study “average-case” (random inputs)

…

Can try to look at “typical” instances.

- Random instances are often not representative.

- Often much easier to analyze.

Why worst-case?



We have to be careful

Size matters

Value matters

Model matters



Model matters

TM, C, Python, JAVA, CA all equivalent:

With respect to decidability,  model does not matter.

The same is not true with respect to complexity!



Model matters

L = {0k1k : k � 0}

How many steps required to decide L?

                  is the best for 1-tape TMs.O(n log n)

                  is the best for 2-tape TMs.O(n)

Facts:



Model matters

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

# of steps

1
1
1
3? 4? 5?
1
1
1
1 O(n)

Seems like



Model matters

L = {0k1k : k � 0}

hi -= 1

Initially  hi = n-1 

How many bits to store  hi ? ⇠ log2 n

If n-1 is a power of 2:

1 0 0 0 0 0 … 0hi =

⇠ log2 n steps0 1 1 1 1 1 … 1hi =-1



Model matters

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

# of steps

1
1
1
3? 4? 5?
1
1
log n ?
1 O(n log n) ?



Model matters

L = {0k1k : k � 0}

Initially  lo = 0,  hi = n-1

Does it take n steps to go from s[0] to s[n-1] ?

if (s[lo] != 0 or s[hi] != 1):



Model matters

L = {0k1k : k � 0}

A function in Python:

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

# of steps

1
1
1
n ??
1
1
log n ?
1 ?O(n2)



GREAT IDEA # 3

Computational model does matter for running time.



Model matters

Which model is the best model?

No such thing.

-  Be clear about what the model is!

-  Be clear about what constitutes a step in the model.



GREAT IDEA # 4

All reasonable deterministic models are 
polynomially equivalent.



Model matters

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

1
1
1
3? 4? 5?
1
1
1
1

Which model does this correspond to ?

O(n)



Model matters

The Random-Access Machine (RAM) model

Good combination of reality/simplicity.

+ , - , / , *, <, >, etc. takes 1 stepe.g.  245*12894

memory access takes 1 stepe.g.  A[94]

Unless specified otherwise, we use this model.

Actually:
Assume arithmetic operations take 1 step IF
numbers are bounded by poly(n).

(more on this next lecture)



Putting great ideas  # 1, # 2 and # 3  together



defined by

Definition:

The running time of an algorithm A is a function

TA(n) = max

instances I
of size n

{# steps A takes on I}

TA : N ! N

Defining running time

Write            when A is clear from context.T (n)

With a specific computational model in mind:

worst-case



Need one more level of abstraction

There is a TM that decides PALINDROME in time

T (n) =
1

2
n2 +

3

2
n+ 1.

Analogous to 
“too many significant digits”.



Need one more level of abstraction

Comparing running times of two different algorithms:

TA(n) =
1

2
n2 +

3

2
n+ 1

TB(n) =
1

4
n2 + 100n1.5 + 1000n� 42

Which one is better?



GREAT IDEA/ABSTRACTION # 5

O(·) ⌦(·) ⇥(·)

The CS way to compare functions:

 � =



Big O

Our notation for          when comparing functions.

The right level of abstraction!

“Sweet spot”

- coarse enough to suppress details like
  programming language, compiler, architecture,…

- sharp enough to make comparisons between
  different algorithmic approaches.



Big O

Informal: An upper bound that 
ignores constant factors and ignores small n.

For 

f(n) = O(g(n)) roughly means 

f(n)  g(n) up to a constant factor
and ignoring small n.

f, g : N+ ! R+



Big O

n0
n

2g(n)
g(n)

f(n)

Formal Definition:

For                         , we say                            iff(n) = O(g(n))

there exist constants     ,               such thatC n0 > 0

f(n)  Cg(n)for all             ,   we have                         .

(      and       cannot depend on    . )  C n0 n

f, g : N+ ! R+

n � n0



Big O

n

f(n)

g(n)

4g(n)

n0 = 13

f(n) = 3n2 + 10n+ 30 g(n) = n2



Big O

Note on notation:

People usually write: 4n2 + 2n = O(n2)

Another valid notation: 4n2 + 2n 2 O(n2)



Big O

Constant: O(1)

Logarithmic: O(log n)

Square-root: O(
p
n) = O(n0.5)

Linear: O(n)

Loglinear: O(n log n)

Quadratic: O(n2)

Exponential:

Polynomial: O(nk)

Common Big O classes and their names

(for some constant k > 0)

O(2n
k

) (for some constant k > 0)



n vs log n

How much smaller is log n compared to n ?

n log n

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

~ 1 quintillion



n vs 2n

2n n

2 1
8 3

128 7
1024 10

1,048,576 20
1,073,741,824 30

1,152,921,504,606,846,976 60

How much smaller is n compared to 2n ?



Exponential running time

If your algorithm has exponential running time
e.g. ⇠ 2n

No hope of being practical.



Some exotic functions

1

log log n

log

⇤ n

log n
p
n

n/ log n

n

n log n

n2

n3

nO(1)

nlogn

2n

3n

n!

nn

22
n

...

22
2

2

n times



Big Omega

             is like 

             is like O(·) 

⌦(·) �

Informal: An upper bound that 
ignores constant factors and ignores small n.

O(·)

Informal: A lower bound that 
ignores constant factors and ignores small n.

⌦(·)

f(n) = ⌦(g(n)) () g(n) = O(f(n))



Big Omega

Formal Definition:

For                         , we say                            if

there exist constants     ,               such thatn0 > 0

for all             ,  we have                           .

(     and       cannot depend on    . )  n0 n

f, g : N+ ! R+ f(n) = ⌦(g(n))

c

f(n) � cg(n)

c

n � n0

n0
n

f(n)

g(n)

1

2
g(n)



Big Omega

n0.0001
is ⌦(log n)

0.001n2 � 1010n� 1030 is ⌦(n2)

10�10n4 is ⌦(n3)

Some Examples:



Theta

               is like 

               is like O(·) 

⌦(·) �

               is like ⇥(·) =



Theta

Formal Definition:

For                         , we say                            iff, g : N+ ! R+ f(n) = ⇥(g(n))

f(n) = O(g(n)) f(n) = ⌦(g(n))and                            .

Equivalently:

There exist constants                  such thatc, C, n0

cg(n)  f(n)  Cg(n)for all             ,  we have                                     .n � n0



Theta

Some Examples:

0.001n2 � 1010n� 1030 is ⇥(n2)

1000n is ⇥(n)

0.00001n is ⇥(n)



Putting everything together

Make sure you are specifying:

- the computational model 

> what constitutes a step in the model

- the length of the input

“The (asymptotic) complexity of algorithm A is           .”

Now we really understand what this means:

O(n2)

(which means                          )TA(n) = O(n2).



Goals for the week

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction



Upper bounds vs lower bounds



GREAT IDEA # 6

Instrinsic complexity of a problem 
(upper bounds vs lower bounds)



Intrinsic complexity of a problem

The intrinsic complexity of a computational problem:

Asymptotic complexity of the most efficient algorithm 
solving it.



Intrinsic complexity

best alg. that solves L ⇥(n2)

algs. with complexity
better than          .⇥(n2)

Time complexity

algs. with complexity
worse than          .⇥(n2)

nothing here solves L.

some algs. here solve L.



Intrinsic complexity

If you give an algorithm that solves a problem

upper bound on the intrinsic complexity

How do you show a lower bound on intrinsic complexity?

Argue against all possible algorithms that solves
the problem.

The dream:  Get a matching upper and lower bound.
i.e.,  nail down the intrinsic complexity.



Example

L = {0k1k : k � 0}

def twoFingers(s):
lo = 0
hi = len(s)-1
while (lo < hi):

if (s[lo] != 0 or s[hi] != 1):
return False

lo += 1
hi -= 1

return True

In the RAM model:

O(n)

Could there be
a faster algorithm?

e.g. O(n/ log n)



Example

L = {0k1k : k � 0}

Fact: Any algorithm that decides L must use         steps.

Proof:
Suppose there is an algorithm A that decides L in         steps.        < n

Consider the input         =I 0k1k

When A runs on input     , there must be some index 
such that A never reads        . 

I
I[j]

j

Let      be the same as    ,  but with j’th coordinate reversed.I 0 I
I 0(    is a NO instance)

When A runs on    , it has the same behavior as it does on   .I 0 I

But then A cannot be a decider for L.    Contradiction.

� n

(    is a YES instance)I

Proof is by contradiction.



Example

This shows the intrinsic complexity of L is           .⌦(n)

But we also know the intrinsic complexity of L is O(n).

The dream achieved. Intrinsic complexity is ⇥(n).



Goals for the week

2. Appreciating the power of algorithms.

- analyzing some cool (recursive) algorithms

1. What is the right way to study complexity?

- upper bounds vs lower bounds

- polynomial time vs exponential time

- using the right language and level of abstraction



Polynomial time vs Exponential time



GREAT IDEA # 7

There is something magical about polynomial time.



What is efficient in theory and in practice ?

In practice:

O(n)

O(n log n)

O(n2)

O(n3)

O(n5)

O(n100)

Awesome! Like really awesome!

Great!

Kind of efficient.

Barely efficient. (???)

Would not call it efficient.

Definitely not efficient!O(n10)

WTF?



What is efficient in theory and in practice ?

In theory:
Polynomial time 

Otherwise

Efficient.

Not efficient.



What is efficient in theory and in practice ?

-  Poly-time is not meant to mean “efficient in practice”.

-  Poly-time:  extraordinarily better than brute force search.

-  Poly-time:  mathematical insight into problem’s structure.

-  Robust to notion of what is an 
   elementary step,     what model we use, 
   reasonable encoding of input,     implementation details.

-  Nice closure property:  Plug in a poly-time alg. into 
   another poly-time alg. —> poly-time



What is efficient in theory and in practice ?

Brute-Force Algorithm:   Exponential time

Algorithmic Breakthrough:   Polynomial time

what we care
about most
in 15-251

usually the “magic”
happens here

Blood, sweat, and tears:   Linear time

what we care
about more
in 15-451



What is efficient in theory and in practice ?

   Summary:  Poly-time vs not poly-time
   is a qualitative difference, not a quantitative one.


