
CMU 15-252 Spring 2018

Homework 11
due May 4th in class

1. (SOLO) Below is a Markov chain with two states {0, 1} and not-fully-specified transition
probabilities, defined in terms of parameters 0 < p, q < 1.

(a) Write the transition matrix K for this chain. (The “first” row/column should correspond
to state 0, the “second” row/column to state 1.)

(b) Determine the invariant distribution π for this chain.

(c) In this part of the problem we consider what happens when p or q can be 0 or 1.

For the case of p = q = 1, the resulting chain is “periodic” (don’t worry about what
that formally means) and the rows of Kt do not converge to a limit as t→∞. Still, the
chain does have an invariant distribution, π = [12

1
2 ].

When one (or both) of p, q is 0, the resulting chain is not even strongly connected. The
Fundamental Theorem does not tell us anything about this case. Nevertheless, please
answer the following questions: Does the chain have an invariant distribution π satisfying
π = πK? If so, is it unique? If so, do the rows of Kt converge to it as t → ∞? (When
answering these questions, distinguish the case when p = q = 0 from the case when only
one of them is 0.)

2. (OPEN) True story: The laws of physics, as we know them, do not definitely rule out
time-travel. True story 2: The first person to mathematically prove this (that time-travel is
consistent with the laws of physics) was Kurt Gödel. Specifically, it is possible that there exist
spacetime “wormholes” with the following properties: (i) the two endpoints of the wormhole
have the same position in space; (ii) the two endpoints of the wormhole have different positions
in time; (iii) the state of the universe at the two endpoints of the wormhole is, by definition,
the same. We have never found such a wormhole, but it is possible that they exist. If by
some amazing miracle they do exist, it’s probable that their spacial extent is not very large,
maybe like the size of one electron.

For the purposes of this question, you can think of such a wormhole like a magic microwave.
One endpoint is in the microwave at 9am and one endpoint in the microwave at 5pm. The
microwave is just large enough to hold a single electron, and we can use this electron’s spin
to encode a single logical bit, either 0 or 1. By definition, whatever the state of the bit inside
the microwave is at 9am, that’s also the state of the bit inside the microwave at 5pm. It’s
kind of like the bit is sent back in time from 5pm to 9am.
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Actually, Stephen Hawking and George Ellis once argued that time travel is impossible, for
the following “grandfather paradox”-type reason. Suppose you operate the microwave as
follows. At 9am you open it up and take out the bit b inside. Then during the day, you
apply a NOT gate to b, and put it back in the microwave. Hawking and Ellis then argued as
follows: Suppose that b is 0 at time 9am; then your NOT gate causes it to be 1 at time 5pm,
a contradiction. On the other hand, suppose that b is 1 at time 9am; then your NOT gate
causes it to be 0 at time 5pm, a contradiction. Gödel would love this argument.

Not so fast, said David Deutsch (founder of quantum computation). The laws of physics are
actually probabilistic, so there’s no reason to assume that the state of b is deterministic. And
indeed, suppose the “state of b at time 9am” is “probability 1

2 of being 0, probability 1
2 of

being 1”. Then after you apply the NOT gate during the day, the resulting state of b at
time 5pm will be “probability 1

2 of being 0, probability 1
2 of being 1”. Same as at 9am, no

contradiction.

David Deutsch proposed the following model of how this magic microwave could not only
be possible, it could be useful computationally! In Deutsch’s model, instead of just a single
NOT gate, you can have any randomized polynomial-time algorithm A. This algorithm
should have two inputs: a “real” n-bit input string x, and a single “time-traveling input
bit” b0. Furthermore, A should have two separate outputs: ACCEPT/REJECT, plus a
“time-traveling output bit” b1. The model is now as follows: The algorithm gets a real input
x (from the user) and gets the time-traveling input bit b0 out of the microwave at 9am. Then
it runs for a day (polynomial-time), puts b1 back in the microwave at 5pm, and at the same
time ACCEPTS/REJECTS. Note that the microwave can only be used once.

Notice that if you fix an input string x, the behavior of algorithm A is like a 2-state Markov
chain with respect to the time-traveling bit. I.e., it’s just like the above problem for some
values p and q (that depend on x and A). Let us call that resulting Markov chain Ax.
Now Deutsch’s model is that once you decide you’ll use algorithm A during the day, the
universe automagically sets the (probabilistic) state of b0 (and hence b1) to be the1 invariant
distribution πx of Ax.

Basically, the situation is the following: Once you define the randomized algorithm A, it im-
plicitly defines a 2-state Markov chain for each possible real input x; then when the algorithm
runs on x, it also gets access to one bit b0 drawn from the invariant distribution πx.

Finally the problem: In this model, show that there is a Monte Carlo randomized polynomial-
time algorithm A solving SAT (with error probability ≤ 1%)! (Tip: Reread the problem
statement multiple times. It has many hints along the way.)

(Note: In fact, it turns out that in the above model, one can efficiently solve all problems in
PSPACE, which if you recall, contains the whole polynomial hierarchy, and probably much
more.)

1Actually, to be very careful, we should say “some” rather than “the”, for reasons you’ll understand when you do
the p = q = 0 case of Question 1.
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