15-252

Assignment 5
Due: March 2, 2018.

1 Group Recognizer (100)

Background

There is a very important group called the dihedral group D_{4} that represents the symmetries of a square (all rigid motions of the plane that move a square back to itself). For example, a clockwise rotation looks like so:

The group has 8 elements and can be written as $\left\{1, a, a^{2}, a^{3}, b, b a, b a^{2}, b a^{3}\right\}$. Here a corresponds to a rotation by 90 degrees, and b is the reflection along the horizontal axis.

Now consider all words over the alphabet $\Sigma=\{a, b\}$. Each word corresponds to a group element in the obvious fashion, so we have a map $\eta: \Sigma^{\star} \rightarrow D_{4}$ which turns out to be a monoid homomorphism.

Task

A. Explain the group elements $\left\{1, a, a^{2}, a^{3}, b, b a, b a^{2}, b a^{3}\right\}$ geometrically.
B. Argue that $a^{4}=b^{2}=1$ and $a b=b a^{3}$.
C. Show that the language $L=\left\{x \in \Sigma^{\star} \mid \eta(x)=1\right\}$ of all words that evaluate to 1 is regular. Construct the smallest possible DFA for L.
D. Using your DFA, determine the cardinality of $L \cap \Sigma^{n}$.

