1 Group Recognizer (100)

Background

There is a very important group called the dihedral group D_4 that represents the symmetries of a square (all rigid motions of the plane that move a square back to itself). For example, a clockwise rotation looks like so:

The group has 8 elements and can be written as $\{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$. Here *a* corresponds to a rotation by 90 degrees, and *b* is the reflection along the horizontal axis.

Now consider all words over the alphabet $\Sigma = \{a, b\}$. Each word corresponds to a group element in the obvious fashion, so we have a map $\eta : \Sigma^* \to D_4$ which turns out to be a monoid homomorphism.

Task

- A. Explain the group elements $\{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$ geometrically.
- B. Argue that $a^4 = b^2 = 1$ and $ab = ba^3$.
- C. Show that the language $L = \{ x \in \Sigma^* \mid \eta(x) = 1 \}$ of all words that evaluate to 1 is regular. Construct the smallest possible DFA for L.
- D. Using your DFA, determine the cardinality of $L \cap \Sigma^n$.