15-252

1 MinMax Trees (100)

Background

Recall from lecture the circuits defined by

$$
\begin{aligned}
T_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right) \\
T_{k+1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) & =T_{1}\left(T_{k}\left(\boldsymbol{x}_{1}\right), T_{k}\left(\boldsymbol{x}_{2}\right), T_{k}\left(\boldsymbol{x}_{3}\right), T_{k}\left(\boldsymbol{x}_{4}\right)\right)
\end{aligned}
$$

Our goal is to evaluate the circuit T_{k} reading as few bits of the given truth assignment $\alpha: \mathbf{2}^{4^{k}} \boldsymbol{\rightarrow} \mathbf{2}$.

Task

A. Prove the monotonicity property of the claim on slide 22 .

No, the picture on slide 23 is not enough. Think about trying to convince a theorem prover, a notoriously blind contraption.
B. Prove the lemma on slide 19.

Induction might be a good idea.

